
®

JavaScript
i jQuery

Duet nie do pokonania!

David Sawyer McFarland

Wydanie III

Tytuł oryginału: JavaScript & jQuery: The Missing Manual, Third Edition

Tłumaczenie: Piotr Rajca

ISBN: 978-83-283-0550-2

© 2015 Helion S.A.

Authorized Polish translation of the English edition of JavaScript & jQuery: The Missing
Manual, 3rd Edition ISBN 9781491947074 © 2014 Sawyer McFarland Media, Inc.

This translation is published and sold by permission of O’Reilly Media, Inc.,
which owns or controls all rights to publish and sell the same.

Polish edition copyright © 2015 by Helion S.A.
All rights reserved.

All rights reserved. No part of this book may be reproduced or transmitted
in any form or by any means, electronic or mechanical, including photocopying, recording
or by any information storage retrieval system, without permission from the Publisher.

Wszelkie prawa zastrzeżone. Nieautoryzowane rozpowszechnianie całości lub fragmentu
niniejszej publikacji w jakiejkolwiek postaci jest zabronione. Wykonywanie kopii
metodą kserograficzną, fotograficzną, a także kopiowanie książki na nośniku filmowym,
magnetycznym lub innym powoduje naruszenie praw autorskich niniejszej publikacji.

Wszystkie znaki występujące w tekście są zastrzeżonymi znakami firmowymi
bądź towarowymi ich właścicieli.

Autor oraz Wydawnictwo HELION dołożyli wszelkich starań, by zawarte w tej książce
informacje były kompletne i rzetelne. Nie biorą jednak żadnej odpowiedzialności ani
za ich wykorzystanie, ani za związane z tym ewentualne naruszenie praw patentowych
lub autorskich. Autor oraz Wydawnictwo HELION nie ponoszą również żadnej
odpowiedzialności za ewentualne szkody wynikłe z wykorzystania informacji
zawartych w książce.

Wydawnictwo HELION
ul. Kościuszki 1c, 44-100 GLIWICE
tel. 32 231 22 19, 32 230 98 63
e-mail: helion@helion.pl
WWW: http://helion.pl (księgarnia internetowa, katalog książek)

Pliki z przykładami omawianymi w książce można znaleźć pod adresem:
ftp://ftp.helion.pl/przyklady/jsjqn3.zip

Drogi Czytelniku!
Jeżeli chcesz ocenić tę książkę, zajrzyj pod adres
http://helion.pl/user/opinie/jsjqn3_ebook
Możesz tam wpisać swoje uwagi, spostrzeżenia, recenzję.

 Poleć książkę na Facebook.com
 Kup w wersji papierowej
 Oceń książkę

 Księgarnia internetowa
 Lubię to! » Nasza społeczność

mailto:helion@helion.pl
http://helion.pl
ftp://ftp.helion.pl/przyklady/jsjqn3.zip
http://helion.pl/user/opinie/jsjqn3_ebook
http://ebookpoint.pl/rf/JSJQN3_EBOOK
http://ebookpoint.pl/rt/JSJQN3
http://ebookpoint.pl/ro/JSJQN3_EBOOK
http://ebookpoint.pl
http://ebookpoint.pl/r/4CAKF

Spis treści

Nieoficjalna czołówka .. 13
Wprowadzenie .. 17

Część I. Wprowadzenie do języka JavaScript35

Rozdział 1. Pierwszy program w języku JavaScript ...37
Wprowadzenie do programowania ... 38

Czym jest program komputerowy? ... 40
Jak dodać kod JavaScript do strony? ... 40

Zewnętrzne pliki JavaScript .. 42
Pierwszy program w języku JavaScript ... 46
Dodawanie tekstu do stron .. 48
Dołączanie zewnętrznych plików JavaScript .. 49
Wykrywanie błędów .. 51

Konsola JavaScript w przeglądarce Chrome ... 52
Konsola przeglądarki Internet Explorer ... 55
Konsola JavaScript w przeglądarce Firefox ... 56
Konsola błędów w przeglądarce Safari ... 57

Rozdział 2. Gramatyka języka JavaScript ..59
Instrukcje ... 59
Wbudowane funkcje .. 60
Typy danych ... 60

Liczby .. 61
Łańcuchy znaków .. 61
Wartości logiczne ... 62

Zmienne ... 63
Tworzenie zmiennych .. 63
Używanie zmiennych ... 66

S P I S T R EŚC I
4

Używanie typów danych i zmiennych ..67
Podstawowe operacje matematyczne ..68
Kolejność wykonywania operacji ...69
Łączenie łańcuchów znaków ...69
Łączenie liczb i łańcuchów znaków ...70
Zmienianie wartości zmiennych ...71

Przykład — używanie zmiennych do tworzenia komunikatów72
Przykład — pobieranie informacji ...74
Tablice ..77

Tworzenie tablic ...78
Używanie elementów tablicy ..79
Dodawanie elementów do tablicy ..80
Usuwanie elementów z tablicy ..82

Przykład — zapisywanie danych na stronie za pomocą tablic83
Krótka lekcja o obiektach ...86
Komentarze ...88

Kiedy używać komentarzy? ...89
Komentarze w tej książce ..90

Rozdział 3. Dodawanie struktur logicznych i sterujących93
Programy reagujące inteligentnie ...93

Podstawy instrukcji warunkowych ..94
Uwzględnianie planu awaryjnego ..98
Sprawdzanie kilku warunków ...98
Bardziej skomplikowane warunki ...102
Zagnieżdżanie instrukcji warunkowych ..104
Wskazówki na temat pisania instrukcji warunkowych104

Przykład — używanie instrukcji warunkowych ...105
Obsługa powtarzających się zadań za pomocą pętli109

Pętle while ..109
Pętle i tablice ..111
Pętle for ..112
Pętle do-while ...114

Funkcje — wielokrotne korzystanie z przydatnego kodu115
Krótki przykład ...117
Przekazywanie danych do funkcji ...118
Pobieranie informacji z funkcji ...120
Unikanie konfliktów między nazwami zmiennych121

Przykład — prosty quiz ...124

Część II. Wprowadzenie do biblioteki jQuery 131

Rozdział 4. Wprowadzenie do jQuery ... 133
Kilka słów o bibliotekach JavaScript ...133
Jak zdobyć jQuery? ..135

Dołączanie pliku jQuery z serwera CDN ...137
Pobieranie pliku jQuery ..138

S P I S T R EŚC I
5

Dodawanie jQuery do strony ... 139
Podstawowe informacje o modyfikowaniu stron WWW 142
Zrozumieć DOM .. 145
Pobieranie elementów stron na sposób jQuery ... 147

Proste selektory .. 148
Selektory zaawansowane .. 151
Filtry jQuery .. 153
Zrozumienie kolekcji jQuery .. 155

Dodawanie treści do stron ... 157
Zastępowanie i usuwanie wybranych elementów 160

Ustawianie i odczyt atrybutów znaczników .. 160
Klasy .. 161
Odczyt i modyfikacja właściwości CSS ... 163
Jednoczesna zmiana wielu właściwości CSS .. 164

Odczyt, ustawienia i usuwanie atrybutów HTML 166
Wykonanie akcji na każdym elemencie kolekcji 167

Funkcje anonimowe ... 168
this oraz $(this) .. 169

Automatycznie tworzone, wyróżniane cytaty ... 171
Opis rozwiązania ... 172
Kod rozwiązania ... 172

Rozdział 5. Akcja i reakcja — ożywianie stron za pomocą zdarzeń177
Czym są zdarzenia? ... 177

Zdarzenia związane z myszą ... 179
Zdarzenia związane z dokumentem i oknem .. 180
Zdarzenia związane z formularzami ... 181
Zdarzenia związane z klawiaturą .. 182

Obsługa zdarzeń przy użyciu jQuery .. 182
Przykład — prezentacja obsługi zdarzeń ... 185
Zdarzenia specyficzne dla biblioteki jQuery ... 190

Oczekiwanie na wczytanie kodu HTML ... 190
Umieszczanie i usuwanie wskaźnika myszy z elementu 192
Obiekt reprezentujący zdarzenie ... 194
Blokowanie standardowych reakcji na zdarzenia 195
Usuwanie zdarzeń .. 196

Zaawansowane zarządzanie zdarzeniami ... 197
Inne sposoby stosowania funkcji on() ... 199
Delegowanie zdarzeń przy użyciu funkcji on() 200

Przykład — jednostronicowa lista FAQ .. 204
Omówienie zadania ... 204
Tworzenie kodu ... 205

Rozdział 6. Animacje i efekty ..211
Efekty biblioteki jQuery ... 211

Podstawowe wyświetlanie i ukrywanie ... 212
Wygaszanie oraz rozjaśnianie elementów ... 213
Przesuwanie elementów ... 216

S P I S T R EŚC I
6

Przykład — wysuwany formularz logowania ..216
Tworzenie kodu ...217

Animacje ..220
Tempo animacji ...221

Wykonywanie operacji po zakończeniu efektu ..223
Przykład — animowany pasek ze zdjęciami ..225

Tworzenie kodu ...227
jQuery i przejścia oraz animacje CSS3 ..231

jQuery i przejścia CSS ... 232
jQuery i animacje CSS ..234

Rozdział 7. Popularne zastosowania jQuery ...239
Zamiana rysunków ..239

Zmienianie atrybutu src rysunków ...240
Podmiana obrazków przy użyciu jQuery ..241
Wstępne wczytywanie rysunków ..242
Efekt rollover z użyciem obrazków ..243

Przykład — dodawanie efektu rollover z użyciem rysunków245
Omówienie zadania ..245
Tworzenie kodu ...246

Przykład — galeria fotografii z efektami wizualnymi249
Omówienie zadania ..249
Tworzenie kodu ...251

Kontrola działania odnośników ..255
Pobieranie odnośników w kodzie JavaScript ..255
Określanie lokalizacji docelowej ...255
Blokowanie domyślnego działania odnośników256

Otwieranie zewnętrznych odnośników w nowym oknie258
Tworzenie nowych okien ...260

Właściwości okien ..261
Przedstawienie wtyczek jQuery ..265

Czego szukać we wtyczce jQuery? ...266
Podstawy stosowania wtyczek jQuery ...268

Responsywne menu nawigacyjne ...270
Kod HTML ...270
Kod CSS ...273
Kod JavaScript ..273
Przykład ...273
Dostosowywanie wyglądu wtyczki SmartMenus277

Rozdział 8. Wzbogacanie formularzy ..279
Wprowadzenie do formularzy ..279

Pobieranie elementów formularzy ...281
Pobieranie i ustawianie wartości elementów formularzy283
Sprawdzanie stanu przycisków opcji i pól wyboru284
Zdarzenia związane z formularzami ...285

S P I S T R EŚC I
7

Inteligentne formularze ... 290
Aktywowanie pierwszego pola formularza .. 290
Wyłączanie i włączanie pól ... 291
Ukrywanie i wyświetlanie opcji formularza ... 293

Przykład — proste wzbogacanie formularza .. 294
Aktywowanie pola .. 295
Wyłączanie pól formularza ... 295
Ukrywanie pól formularza .. 298

Walidacja formularzy .. 299
Wtyczka Validation .. 301
Podstawowa walidacja .. 302
Zaawansowana walidacja ... 305
Określanie stylu komunikatów o błędach ... 310

Przykład zastosowania walidacji .. 311
Prosta walidacja ... 312
Walidacja zaawansowana ... 313
Walidacja pól wyboru i przycisków opcji ... 316
Formatowanie komunikatów o błędach .. 319

Część III. Wprowadzenie do biblioteki jQuery UI 321

Rozdział 9. Rozbudowa interfejsu użytkownika ..323
Czym jest jQuery UI? .. 323
Dlaczego warto używać jQuery UI? .. 325
Stosowanie jQuery UI ... 327

Dodawanie jQuery UI do strony ... 329
Wyświetlanie komunikatów przy użyciu okien dialogowych 330

Miniprzykład — tworzenie okna dialogowego 332
Określanie właściwości okna dialogowego .. 333
Miniprzykład — przekazywanie opcji do okna dialogowego 336
Otwieranie okna dialogowego w odpowiedzi na zdarzenia 338
Dodawanie przycisków do okien dialogowych 339
Miniprzykład — dodawanie przycisków do okien dialogowych 341

Prezentowanie informacji w etykietkach ekranowych 345
Miniprzykład — szybkie dodawanie etykietek ekranowych 347
Opcje etykietek ekranowych ... 348
Umieszczanie w etykietkach treści HTML ... 349
Miniprzykład — umieszczanie kodu HTML w etykietkach ekranowych .. 350

Dodawanie zestawów kart ... 351
Opcje zestawów kart .. 354
Miniprzykład — dodawanie zestawu kart .. 356
Karty prezentujące zawartość ... 360

Oszczędzanie miejsca z wykorzystaniem akordeonów 363
Miniprzykład — tworzenie akordeonu jQuery UI 366

Dodawanie menu .. 368
Tworzenie poziomego paska nawigacyjnego ... 371

S P I S T R EŚC I
8

Rozdział 10. Formularze raz jeszcze ...375
Wybieranie dat ze stylem ...375

Określanie właściwości kalendarzy ...377
Przykład — pole do wyboru daty urodzenia ..381

Stylowe rozwijane listy ..383
Określanie właściwości list rozwijanych ...385
Wykonywanie operacji po wybraniu opcji z listy386

Stylowe przyciski ...389
Dostosowywanie przycisków ..390

Poprawianie wyglądu przycisków opcji i pól wyboru391
Dostarczanie podpowiedzi przy użyciu automatycznego uzupełniania393

Generowanie podpowiedzi przy użyciu tablicy danych395
Stosowanie osobnych etykiet i wartości ...397
Pobieranie danych automatycznego uzupełniania z serwera398
Opcje widżetu Autocomplete ..400

Przykład — widżety UI usprawniające formularze401

Rozdział 11. Dostosowywanie wyglądu jQuery UI ..407
Prezentacja narzędzia ThemeRoller ...407
Pobieranie i stosowanie nowego tematu ...413

Dodawanie własnego tematu do istniejących stron WWW414
Więcej informacji o arkuszach stylów jQuery UI415

Przesłanianie stylów jQuery UI ..415
Zasada szczegółowości ..416
Jak są określane style widżetów jQuery UI? ...418

Rozdział 12. Interakcje i efekty jQuery UI .. 421
Widżet Draggable ..421

Dodawanie widżetu Draggable do strony ...422
Miniprzykład — zastosowanie widżetu Draggable423
Opcje widżetu Draggable ..424
Zdarzenia widżetu Draggable ..430

Widżet Droppable ..434
Stosowanie widżetu Droppable ...435
Opcje widżetu Droppable ..436
Zdarzenia widżetu Droppable ...438

Przykład — technika „przeciągnij i upuść” ..443
Sortowanie elementów strony ..449

Stosowanie widżetu Sortable ...449
Opcje widżetu Sortable ...451
Zdarzenia widżetu Sortable ...455
Metody widżetów Sortable ..458

Efekty jQuery UI ...461
Efekty ...462
Tempo animacji ...465
Animowanie zmiany klas ...466

S P I S T R EŚC I
9

Część IV. Zaawansowane zastosowania jQuery
i języka JavaScript ...469

Rozdział 13. Wprowadzenie do technologii AJAX .. 471
Czym jest AJAX? .. 471
AJAX — podstawy ... 473

Elementy układanki ... 474
Komunikacja z serwerem WWW .. 476

AJAX w bibliotece jQuery .. 479
Używanie metody load() ... 480
Przykład — korzystanie z metody load() .. 482
Metody get() i post() ... 486
Formatowanie danych przesyłanych na serwer 487
Przetwarzanie danych zwróconych z serwera .. 490
Obsługa błędów .. 494
Przykład — korzystanie z metody $.get() ... 495

Format JSON .. 500
Dostęp do danych z obiektów JSON .. 502
Złożone dane JSON .. 503

Prezentacja JSONP .. 506
Dodawanie do witryny kanału Flickr ... 506

Tworzenie adresu URL ... 508
Łączenie opcji .. 510
Stosowanie metody $.getJSON() ... 510
Prezentacja danych kanału Flickr w formacie JSON 511

Przykład — dodawanie zdjęć z Flickr na własnej stronie 512

Rozdział 14. Tworzenie aplikacji do obsługi listy zadań 519
Przegląd aplikacji .. 519
Dodanie przycisku .. 520
Dodanie okna dialogowego .. 522
Dodawanie zadań .. 525
Oznaczanie zadania jako wykonanego ... 531

Delegowanie zdarzeń ... 531
Usuwanie zadań .. 536
Dalsze kroki .. 538

Edycja zadań .. 538
Potwierdzanie usunięcia ... 539
Zapisywanie listy ... 539
Inne pomysły ... 540

S P I S T R EŚC I
10

Część V. Wskazówki, sztuczki i rozwiązywanie problemów541

Rozdział 15. Wykorzystywanie wszystkich możliwości jQuery 543
Przydatne informacje i sztuczki związane z jQuery543

$() to to samo, co jQuery() ...543
Zapisywanie pobranych elementów w zmiennych544
Jak najrzadsze dodawanie treści ..546
Optymalizacja selektorów ..547

Korzystanie z dokumentacji jQuery ...548
Czytanie dokumentacji na stronie jQuery ...552

Poruszanie się po DOM ...554
Inne funkcje do manipulacji kodem HTML ...560

Rozdział 16. Zaawansowane techniki języka JavaScript565
Stosowanie łańcuchów znaków ..565

Określanie długości łańcucha ...566
Zmiana wielkości znaków w łańcuchu ..566
Przeszukiwanie łańcuchów znaków: zastosowanie indexOf()567
Pobieranie fragmentu łańcucha przy użyciu metody slice()569

Odnajdywanie wzorów w łańcuchach ...570
Tworzenie i stosowanie podstawowych wyrażeń regularnych571
Tworzenie wyrażeń regularnych ...572
Grupowanie fragmentów wzorców ..576
Przydatne wyrażenia regularne ...577
Dopasowywanie wzorców ...582
Zastępowanie tekstów ..585
Testowanie wyrażeń regularnych ..585

Stosowanie liczb ..587
Zamiana łańcucha znaków na liczbę ...587
Sprawdzanie występowania liczb ..589
Zaokrąglanie liczb ..589
Formatowanie wartości monetarnych ...590
Tworzenie liczb losowych ...591

Daty i godziny ...592
Pobieranie miesiąca ..593
Określanie dnia tygodnia ..594
Pobieranie czasu ...594
Tworzenie daty innej niż bieżąca ..597

Tworzenie bardziej wydajnego kodu JavaScript ..599
Zapisywanie ustawień w zmiennych ...600
Zapisywanie ustawień w obiektach ...601
Operator trójargumentowy ...602
Instrukcja Switch ...603
Łączenie tablic i dzielenie łańcuchów znaków605

Łączenie różnych elementów ...606
Używanie zewnętrznych plików JavaScript ...606

Tworzenie kodu JavaScript o krótkim czasie wczytywania609

S P I S T R EŚC I
11

Rozdział 17. Diagnozowanie i rozwiązywanie problemów611
Najczęstsze błędy w kodzie JavaScript .. 611

Brak symboli końcowych .. 612
Cudzysłowy i apostrofy .. 616
Używanie słów zarezerwowanych ... 617
Pojedynczy znak równości w instrukcjach warunkowych 617
Wielkość znaków ... 618
Nieprawidłowe ścieżki do zewnętrznych plików JavaScript 618
Nieprawidłowe ścieżki w zewnętrznych plikach JavaScript 619
Znikające zmienne i funkcje ... 620

Testowanie aplikacji przy użyciu konsoli ... 621
Otwieranie konsoli ... 621
Przeglądanie błędów przy użyciu konsoli ... 623
Śledzenie działania skryptu za pomocą funkcji console.log() 623
Przykład — korzystanie z konsoli .. 624
Diagnozowanie zaawansowane .. 628

Przykład diagnozowania .. 633

Część VI. Dodatki ... 641

Dodatek A. Materiały związane z językiem JavaScript 643
Źródła informacji .. 643

Witryny ... 643
Książki ... 644

Podstawy języka JavaScript .. 644
Witryny ... 644
Książki ... 644

jQuery ... 645
Witryny ... 645
Książki ... 645

Zaawansowany język JavaScript .. 645
Artykuły i prezentacje .. 646
Witryny ... 646
Książki ... 646

CSS ... 647
Witryny ... 647
Książki ... 647

Skorowidz ... 649

S P I S T R EŚC I
12

Nieoficjalna czołówka

O autorze
David Sawyer McFarland jest prezesem firmy Sawyer McFarland
Media, Inc. z siedzibą w Portland w stanie Oregon. Firma ta świad-
czy usługi z zakresu programowania sieciowego i szkoleń. David
tworzy strony WWW od 1995 roku, kiedy to zaprojektował swoją
pierwszą witrynę — internetowy magazyn dla specjalistów z branży

komunikacyjnej. Pracował też jako webmaster na University of California w Berkeley
i w instytucie Berkeley Multimedia Research Center, a także sprawował pieczę nad
przebudową witryny Macworld.com z wykorzystaniem stylów CSS.

Oprócz tworzenia witryn WWW David zajmuje się pisaniem, szkoleniami i pro-
wadzeniem zajęć. Wykładał projektowanie stron WWW w licznych szkołach:
Graduate School of Journalism w Berkeley, Center for Electronic Art, Academy of
Art College, Ex’Pressions Center for New Media i Portland State University. Ponadto
publikuje artykuły na temat sieci WWW w magazynach Practical Web Design, MX
Developer’s Journal i Macworld oraz w witrynie CreativePro.com.

David czeka na opinie na temat książki pod adresem missing@sawmac.com, je-
śli jednak szukasz pomocy technicznej, zapoznaj się z listą materiałów podanych
w dodatku A.

O zespole pracującym nad książką
Nan Barber (redaktorka) pracuje nad serią „Nieoficjalny podręcznik” jako za-
stępca redaktora. Mieszka w Massachusetts wraz z mężem i różnymi urządzeniami
elektronicznymi. Jej adres e-mail to nanbarber@gmail.com.

Melanie Yarbrough (redaktorka wydania) pracuje i bawi się w Cambridge, Massa-
chusetts, gdzie piecze, co tylko jest w stanie sobie wyobrazić, i jeździ po mieście na
rowerze. Jej adres e-mail to myarbrough@oreilly.com.

mailto:missing@sawmac.com
mailto:nanbarber@gmail.com
mailto:myarbrough@oreilly.com

J A V A S C R I P T I J Q U E R Y . N I E O F I C J A L N Y P O D RĘC Z N I K

Seria Nieoficjalny
podręcznik

14

Jennifer Davis (recenzentka techniczna) jest inżynierem mającym wieloletnie do-
świadczenia w zakresie poprawiania wydajności tworzenia platform programowych.
Jako inżynier Chef Automation pomaga firmom odkrywać ich najlepsze praktyki
i poprawiać organizację pracy, skracając średni czas pracy nad oprogramowaniem.
Zajmuje się także organizacją różnego rodzaju imprez dla Reliability Engineering,
w ramach grupy użytkowników oprogramowania Chef z rejonu Bay Area.

Alex Stangl (recenzent techniczny) zajmuje się profesjonalnym tworzeniem opro-
gramowania od ponad 25 lat, używa wielu różnych języków i technologii. Lubi pro-
blemy stanowiące duże wyzwanie, zagadki, poznawanie nowych języków (takich jak
Clojure), przygotowywanie recenzji technicznych. Realizuje się jako dobry mąż i oj-
ciec. Jego adres e-mail to alex@stangl.us.

Jasmine Kwityn (korektorka) jest niezależną adjustatorką i indeksatorką. Mieszka
w New Jersey wraz ze swym mężem Edem oraz trzema kotami: Mushki, Axle oraz
Punky. Jej adres e-mail to jasminekwityn@gmail.com.

Bob Pfahler (indekser) jest niezależnym indekserem, który pracował nad tą książką
z ramienia firmy Potomac Indexing, LLC, międzynarodowej grupy indeksatorskiej
(http://www.potomacindexing.com). Oprócz technologii komputerowych specjali-
zuje się w zagadnieniach związanych z biznesem, zarządzaniem, biografiami i histo-
rią. Jego adres e-mail to bobpfahler@hotmail.com.

Podziękowania
Gorąco dziękuję wszystkim, którzy pomagali mi w czasie prac nad tą książką
i ustrzegli mnie od popełnienia kłopotliwych błędów, w tym Jennifer Davis oraz
Aleksowi Stanglowi. Dziękuję także studentom z Portland State University, którzy
przetrwali moje wykłady z języka JavaScript i walczyli z zadawanymi im zadaniami
— a szczególnie członkom Team Futzbit (kombinacji Pizza Hut i Taco Bell) za te-
stowanie przykładów; byli to Julia Hall, Amber Brucker, Kevin Brown, Josh Elliot,
Tracy O’Connor oraz Blake Womack. Ponadto wszyscy powinniśmy być wdzięczni
Johnowi Resigowi i zespołowi pracującemu nad biblioteką jQuery za utworzenie
najlepszego dotąd narzędzia, które sprawia, że praca z językiem JavaScript to
świetna zabawa.

Na zakończenie dziękuję Davidowi Pogue’owi za pomoc w rozpoczęciu pracy, Nan
Barber za poprawę stylu książki, mojej żonie Scholle za znoszenie mych humorów
oraz moim dzieciom Grahamowi i Kate za to, że są wspaniałe.

Seria Nieoficjalny podręcznik
Książki z serii „Nieoficjalny podręcznik” (ang. Missing Manual) to mądre, świetnie
napisane poradniki dotyczące produktów komputerowych, do których nie dołą-
czono drukowanych podręczników (co dotyczy większości narzędzi z tej branży).
Każda książka ma ręcznie opracowany indeks i odwołania do konkretnych stron
(nie tylko rozdziałów).

mailto:alex@stangl.us
mailto:jasminekwityn@gmail.com
http://www.potomacindexing.com
mailto:bobpfahler@hotmail.com

 N I E O F I C J A L N E P O D Z IĘK O W A N I A

Seria Nieoficjalny
podręcznik

15

Poniższa lista zawiera wydane i przygotowywane tytuły z tej serii:

Access 2007 PL. Nieoficjalny podręcznik, Matthew MacDonald

Access 2010: The Missing Manual, Matthew MacDonald

Access 2013: The Missing Manual, Matthew MacDonald

Adobe Edge Animate: The Missing Manual, Chris Grover

Buying a Home: The Missing Manual, Nancy Conner

CSS3. Nieoficjalny podręcznik. Wydanie III, David Sawyer McFarland

Dreamweaver CC: The Missing Manual, David Sawyer McFarland
i Chris Grover

Dreamweaver CS6: The Missing Manual, David Sawyer McFarland

Excel 2007 PL. Nieoficjalny podręcznik, Matthew MacDonald

Excel 2010: The Missing Manual, Matthew MacDonald

Excel 2013: The Missing Manual, Matthew MacDonald

Facebook: The Missing Manual, Third Edition, E.A. Vander Veer

FileMaker Pro 13: The Missing Manual, Susan Prosser i Stuart Gripman

Flash CS6: The Missing Manual, Chris Brover

Fotografia cyfrowa według Davida Pogue'a, David Pogue

Fotografia cyfrowa. Nieoficjalny podręcznik, Chris Grover i Barbara Brundage

Galaxy S4: The Missing Manual, Preston Gralla

Galaxy S5: The Missing Manual, Preston Gralla

Galaxy Tab: The Missing Manual, Preston Gralla

Google+: The Missing Manual, Kevin Purdy

iMovie '11 & iDVD: The Missing Manual, David Pogue i Aaron Miller

Internet. Nieoficjalny podręcznik, David Pogue i J.D. Biersdorfer

iPad: The Missing Manual, Sixth Edition, J.D. Biersdorfer

iPhone App Development: The Missing Manual, Craig Hockenberry

iPhone: The Missing Manual, Seventh Edition, David Pogue

iPhoto '11: The Missing Manual, David Pogue i Lesa Snider

iPod: The Missing Manual, Eleventh Edition, J.D. Biersdorfer i David Pogue

Kindle Fire HD: The Missing Manual, Peter Meyers

Komputery PC. Nieoficjalny podręcznik, Andy Rathbone

Living Green: The Missing Manual, Nancy Conner

Mac OS X Lion: The Missing Manual, David Pogue

Mac OS X Snow Leopard: The Missing Manual, David Pogue

Microsoft Project 2007 PL. Nieoficjalny podręcznik, Bonnie Biafore

Microsoft Project 2010: The Missing Manual, Bonnie Biafore

J A V A S C R I P T I J Q U E R Y . N I E O F I C J A L N Y P O D RĘC Z N I K

Seria Nieoficjalny
podręcznik

16

Microsoft Project 2013: The Missing Manual, Bonnie Biafore

Motorola Xoom: The Missing Manual, Preston Gralla

Mózg. Nieoficjalny podręcznik, Matthew MacDonald

NOOK HD: The Missing Manual, Preston Gralla

Office 2010 PL. Nieoficjalny podręcznik, Nancy Connor i Matthew MacDonald

Office 2011 for Macintosh: The Missing Manual, Chris Grover

Office 2013: The Missing Manual, Nancy Conner i Matthew MacDonald

OS X Mavericks: The Missing Manual, David Pogue

OS X Mountain Lion: The Missing Manual, David Pogue

OS X Yosemite: The Missing Manual, David Pogue

Personal Investing: The Missing Manual, Bonnie Biafore

Photoshop CC: The Missing Manual, Lesa Snider

Photoshop CS6: The Missing Manual, Lesa Snider

Photoshop Elements 12: The Missing Manual, Barbara Brundage

PHP & MySQL: The Missing Manual, Second Edition, Brett McLaughlin

PowerPoint 2007 PL. Nieoficjalny podręcznik, E.A. Vander Veer

QuickBooks 2014: The Missing Manual, Bonnie Biafore

QuickBooks 2015: The Missing Manual, Bonnie Biafore

Switching to the Mac: The Missing Manual, Mavericks Edition, David Pogue

Switching to the Mac: The Missing Manual, Yosemite Edition, David Pogue

Tworzenie stron WWW. Nieoficjalny podręcznik. Wydanie II,
Matthew MacDonald

Windows 7: The Missing Manual, David Pogue

Windows 8: The Missing Manual, David Pogue

Windows Vista PL. Nieoficjalny podręcznik, David Pogue

Word 2007 PL. Nieoficjalny podręcznik, Chris Grover

WordPress: The Missing Manual, Second Edition, Matthew MacDonald

Your Body: The Missing Manual, Matthew MacDonald

Your Money: The Missing Manual, J.D. Roth

Wprowadzenie

Na początku swego istnienia sieć WWW była dość nudnym miejscem. Strony
WWW oparte na zwykłym HTML-u służyły tylko do wyświetlania informacji. In-
terakcja ograniczała się do kliknięcia odnośnika i oczekiwania na wczytanie nowej
strony.

Dziś większość witryn WWW działa niemal tak szybko jak tradycyjne programy
i natychmiast reaguje na każde kliknięcie myszą. Jest to możliwe dzięki narzędziom,
którym poświęcona jest ta książka, czyli językowi JavaScript oraz wspomagającej go
bibliotece jQuery.

Czym jest JavaScript?
JavaScript to język programowania, który umożliwia wzbogacanie kodu HTML
o animacje, interaktywność i dynamiczne efekty wizualne.

JavaScript pozwala zwiększyć użyteczność stron WWW przez udostępnianie natych-
miastowych informacji zwrotnych. Przykładowo koszyk zakupów oparty na tym
języku może wyświetlać łączną cenę zakupów (z uwzględnieniem podatków i kosz-
tów wysyłki) natychmiast po wybraniu produktów. Przy użyciu języka JavaScript
można też wyświetlić komunikat o błędzie bezpośrednio po próbie przesłania nie-
kompletnego formularza.

JavaScript umożliwia także tworzenie zabawnych, dynamicznych i interaktywnych
interfejsów. Za jego pomocą można przekształcić statyczną stronę zawierającą mi-
niaturki zdjęć w animowany pokaz slajdów. Można też zrobić coś bardziej wyrafino-
wanego, na przykład pokazać na stronie znacznie więcej danych bez jednoczesnego
natłoku informacyjnego, umieszczając je w niewielkich panelach, które użytkow-
nik może wyświetlić po kliknięciu myszą (patrz strona 351). Można także utworzyć
coś zabawnego i atrakcyjnego, takiego jak etykiety ekranowe pokazujące uzu-
pełniające informacje na temat elementów prezentowanych na stronie (patrz
strona 345).

J A V A S C R I P T I J Q U E R Y . N I E O F I C J A L N Y P O D RĘC Z N I K

Czym jest JavaScript?

18

Kolejną zaletą języka JavaScript jest błyskawiczność działania. Ta cecha umożliwia
natychmiastowe reagowanie na działania użytkowników: kliknięcie odnośnika,
wypełnienie formularza lub przesunięcie kursora myszy. JavaScript nie powoduje
uciążliwych opóźnień specyficznych dla języków używanych po stronie serwera (na
przykład języka PHP), które wymagają przesyłania danych między przeglądarką a ser-
werem. Ponieważ JavaScript nie wymaga ciągłego odświeżania stron, umożliwia
tworzenie witryn, które działają bardziej jak tradycyjne programy niż strony WWW.

Jeśli odwiedziłeś kiedyś witrynę Google Maps (http://maps.google.com/), widziałeś
już JavaScript w akcji. W tej witrynie można wyświetlić mapę swojej (a właściwie
zupełnie dowolnej) miejscowości, a następnie zwiększyć przybliżenie, aby zobaczyć
ulice i przystanki autobusowe, lub oddalić obraz w celu uzyskania ogólnego obrazu
miasta, województwa albo kraju. Choć już wcześniej istniały liczne witryny z ma-
pami, pobranie potrzebnych informacji wymagało w nich długiego odświeżania
wielu stron. Google Maps nie wymaga wczytywania nowych stron i natychmiast
reaguje na działania użytkownika.

Za pomocą języka JavaScript można rozwijać zarówno bardzo proste programy (na
przykład skrypty wyświetlające stronę WWW w nowym oknie przeglądarki), jak
i kompletne aplikacje sieciowe. Do tej drugiej grupy należą na przykład narzędzia
z rodziny Google Docs (http://docs.google.com/), które umożliwiają przygotowy-
wanie prezentacji, edycję dokumentów i tworzenie arkuszy kalkulacyjnych w prze-
glądarce w podobny sposób, jak robi się to przy użyciu tradycyjnych programów.

Trochę historii
Język JavaScript został opracowany w 1995 roku przez pracownika firmy Netscape
Brendana Eicha, który pracował nad nim 10 dni. Oznacza to, że ma on niemal tyle
samo lat co sieć WWW. Choć JavaScript jest dziś traktowany jak pełnowartościowe
narzędzie, nie zawsze tak było. W przeszłości uznawano go za język programowania
dla amatorów, służący do dodawania bezużytecznych komunikatów w pasku sta-
tusu przeglądarki lub animowanych motylków podążających za kursorem myszy.
W sieci można było łatwo znaleźć tysiące bezpłatnych programów w języku JavaScript
(nazywanych skryptami), jednak wiele z nich działało tylko w wybranych przeglą-
darkach lub powodowało ich awarie.

Uwaga: JavaScript nie ma nic wspólnego z językiem Java. Pierwotna nazwa języka JavaScript to

LiveScript, jednak dział marketingu firmy Netscape uznał, że powiązanie nowego narzędzia z bardzo

popularnym wówczas językiem Java zwiększy zainteresowanie użytkowników. Nie popełnij błędu i nie

pomyl obu tych języków… zwłaszcza na rozmowie kwalifikacyjnej!

Początkowo negatywny wpływ na rozwój języka JavaScript miał brak zgodności mię-
dzy dwiema najpopularniejszymi przeglądarkami: Netscape Navigatorem i Internet
Explorerem. Ponieważ firmy Netscape i Microsoft starały się udostępnić produkt
lepszy od konkurencji, oferując nowsze i (pozornie) lepsze funkcje, obie przeglądarki
działały w odmienny sposób. Utrudniało to tworzenie programów JavaScript, które
funkcjonowałyby prawidłowo w obu aplikacjach.

http://maps.google.com/
http://docs.google.com/

 W P R O W A D Z E N I E

Czym jest JavaScript?

19

Uwaga: Po udostępnieniu przez Netscape języka JavaScript Microsoft wprowadził jScript — własną

wersję języka JavaScript obsługiwaną przez przeglądarkę Internet Explorer.

Na szczęście, te straszliwe dni już dawno minęły i nowoczesne przeglądarki, takie
jak Firefox, Safari, Chrome, Opera czy też Internet Explorer 11, korzystają ze stan-
dardowego sposobu obsługi JavaScriptu, co znacznie ułatwia pisanie w tym języku
programów, które mogą działać w niemal wszystkich przeglądarkach. (Pomiędzy ak-
tualnie używanymi przeglądarkami wciąż można znaleźć trochę niezgodności, dla-
tego też będziesz musiał poznać kilka sztuczek, by pisać programy, które naprawdę
będą mogły działać we wszystkich przeglądarkach. W tej książce dowiesz się, jak po-
radzić sobie z problemami związanymi z niezgodnością przeglądarek).

W ciągu kilku ostatnich lat nastąpiło odrodzenie języka JavaScript, napędzane przez
popularne witryny, na przykład Google, Yahoo i Flickr, w których język ten posłużył
do utworzenia interaktywnych aplikacji sieciowych. Nigdy wcześniej nie było lep-
szego czasu na naukę języka JavaScript. Dzięki bogatej wiedzy i wysokiej jakości
skryptom nawet początkujący programiści mogą wzbogacić witryny o zaawansowane,
interaktywne funkcje.

Uwaga: Język JavaScript jest także znany pod nazwą ECMAScript. ECAMScript jest „oficjalną” specyfi-

kacją języka, opracowaną i utrzymywaną przez międzynarodową organizację standaryzacyjną o nazwie

Ecma International (http://www.ecmascript.org).

JavaScript jest wszędzie
JavaScript działa nie tylko na stronach WWW. Język ten jest tak użyteczny, że
kiedy już go poznasz, będziesz mógł tworzyć widżety Yahoo i Google Apps, pisać
programy na iPhone’y i dodawać nowe, skryptowe możliwości do programów firmy
Adobe, takich jak Acrobat, Photoshop, Illustrator oraz Dreamweaver. Swoją drogą,
ta ostatnia aplikacja zawsze umożliwiała dodawanie nowych poleceń zaawanso-
wanym programistom używającym języka JavaScript.

W swoim systemie operacyjnym Mac OS X Yosemite firma Apple zapewniła
użytkownikom możliwość automatyzowania ich komputerów przy użyciu języka
JavaScript. Co więcej, JavaScript jest używany w wielu pomocnych narzędziach
programistycznych, takich jak Gulp.js (może automatycznie kompresować obrazy,
pliki CSS i JavaScript) lub Bower (ułatwia pobieranie często używanych bibliotek
JavaScript, na przykład jQuery, jQuery UI czy też AngularJS).

JavaScript jest także coraz częściej stosowany do pisania kodu wykonywanego po
stronie serwera. Platforma Node.js (wersja silnika JavaScript V8, opracowanego
przez Google, która pozwala na wykonywanie skryptów JavaScript na serwerze)
jest chętnie wykorzystywana przez takie firmy jak Walmart, PayPal oraz eBay. A za-
tem poznanie języka JavaScript może nawet stanowić początek kariery związanej
z tworzeniem złożonych aplikacji serwerowych. W rzeczywistości połączenie ję-
zyka JavaScipt używanego do tworzenia interfejsu użytkownika aplikacji (czyli
fragmentów działających w przeglądarce) oraz części serwerowej jest określane jako
stosowanie JavaScriptu w pełnym zakresie.

Innymi słowy, nigdy nie było lepszego momentu do nauki JavaScript niż ten czas!

http://www.ecmascript.org

J A V A S C R I P T I J Q U E R Y . N I E O F I C J A L N Y P O D RĘC Z N I K

Czym jest jQuery?

20

Czym jest jQuery?
JavaScript ma jeden mały, krępujący sekret: pisanie w tym języku jest dosyć trudne.
Choć pisanie w JavaScripcie i tak jest prostsze niż w wielu innych językach, wciąż
jest to język programowania. A dla wielu osób, zaliczają się do nich także projektanci
stron WWW, programowanie jest trudne. Aby dodatkowo skomplikować cały pro-
blem, różne przeglądarki rozumieją JavaScript nieco inaczej, przez co program, który
na przykład w przeglądarce Chrome działa prawidłowo, w Internet Explorerze 9
może nie działać w ogóle. Ta często występująca sytuacja może kosztować wiele
godzin żmudnego testowania programu na wielu różnych komputerach i w wielu
przeglądarkach, zanim upewnimy się, że program będzie działał prawidłowo
u wszystkich użytkowników witryny.

I właśnie w tym miejscu pojawia się jQuery. Jest to biblioteka języka JavaScript
zbudowana w celu ułatwienia pisania programów w tym języku. Biblioteka jQuery
jest złożonym programem napisanym w JavaScripcie, który zarówno ułatwia opra-
cowanie skomplikowanych zadań, jak i rozwiązuje wiele problemów związanych
ze zgodnością przeglądarek. Innymi słowy, jQuery uwalnia od dwóch największych
problemów języka JavaScript — złożoności oraz drobiazgowej natury różnych prze-
glądarek.

Biblioteka jQuery jest tajemną bronią projektantów strony w walce z programo-
waniem w języku JavaScript. Dzięki zastosowaniu jQuery w jednym wierszu kodu
można wykonać operacje, które w innym przypadku wymagałyby napisania setek
wierszy własnego kodu i poświęcenia długich godzin na ich testowanie. W rzeczy-
wistości szczegółowa książka poświęcona wyłącznie językowi JavaScript byłaby
przynajmniej dwukrotnie grubsza od tej, a po jej przeczytaniu (gdybyś w ogóle do-
trwał do końca) byłbyś w stanie zrobić dwukrotnie mniej niż przy wykorzystaniu
choćby podstawowej znajomości biblioteki jQuery.

To właśnie z tego powodu znaczna część tej książki jest poświęcona bibliotece jQuery.
Za jej pomocą można zrobić tak wiele w tak prosty sposób. Jej kolejną wspaniałą ce-
chą jest to, że dzięki tysiącom tak zwanych „wtyczek” pozwala w bardzo prosty spo-
sób dodawać do tworzonych witryn zaawansowane możliwości. Przykładowo wtyczka
jQuery UI (którą poznasz na stronie 323) pozwala tworzyć złożone elementy inter-
fejsu użytkownika, takie jak zestawy kart, rozwijane menu czy kalendarze do wybie-
rania dat, przy użyciu jednego wiersza kodu!

Nic zatem dziwnego, że jQuery jest używana na milionach witryn (http://trends.
builtwith.com/javascript/jQuery). Została wbudowana w popularne systemy za-
rządzania treścią, takie jak Drupal lub WordPress. Nawet w ogłoszeniach o pracę
można znaleźć firmy poszukujące „programistów jQuery”, bez wspominania o zna-
jomości języka JavaScript. Poznając jQuery, dołączasz do ogromnej społeczności
programistów i projektantów, korzystających z prostszego i dającego większe moż-
liwości sposobu tworzenia interaktywnych witryn WWW.

http://trends.builtwith.com/javascript/jQuery
http://trends.builtwith.com/javascript/jQuery

 W P R O W A D Z E N I E

HTML: podstawowa
struktura

21

HTML: podstawowa struktura
JavaScript nie jest przydatny bez dwóch innych podstawowych narzędzi do tworze-
nia stron WWW — języków HTML i CSS. Wielu programistów łączy te trzy języki
z „warstwami” stron. HTML służy do tworzenia warstwy strukturalnej, która umoż-
liwia uporządkowanie grafiki i tekstu w sensowny sposób. CSS (kaskadowe arkusze
stylów) zapewniają warstwę prezentacji i umożliwiają atrakcyjne przedstawianie
treści zapisanej w kodzie HTML. Język JavaScript tworzy warstwę operacyjną
i wprowadza życie w strony WWW, umożliwiając interakcję z użytkownikami.

Oznacza to, że do opanowania języka JavaScript potrzebna jest znajomość języ-
ków HTML i CSS.

Wskazówka: Kompletne wprowadzenie do języka HTML5 znajdziesz w książce HTML5. Rusz głową!

Erica T Freemana i Elisabeth Robson. Szczegółowe omówienie kaskadowych arkuszy stylów przed-

stawiono w książce CSS3. Nieoficjalny podręcznik Davida Sawyera McFarlanda (obie wydane przez

wydawnictwo Helion).

HTML (ang. Hypertext Markup Language, czyli hipertekstowy język znaczników)
zawiera proste polecenia nazywane znacznikami, które określają różne części stron
WWW. Poniższy kod HTML tworzy prostą stronę:

<!DOCTYPE html>
<html>
<head>
<meta charset=utf-8>
<title>To tytuł strony.</title>
</head>
<body>
A to tekst w ciele strony.
</body>
</html>

Nie jest to ciekawy kod, ale przedstawia wszystkie podstawowe elementy stron
WWW. Ta strona rozpoczyna się od wiersza określającego, z jakiego typu dokumen-
tem mamy do czynienia i z jakimi standardami jest on zgodny. Wiersz ten na-
zywany jest deklaracją typu dokumentu, w skrócie — doctype. Język HTML jest
dostępny w różnych wersjach, a w każdej z nich można używać innej deklaracji typu.
W tym przypadku zastosowana została deklaracja typu dokumentu dla języka
HTML5. Analogiczne deklaracje dla dokumentów HTML 4.01 oraz XHTML są
znacznie dłuższe, a dodatkowo zawierają adres URL wskazujący przeglądarce poło-
żenie specjalnego pliku definicji danego języka.

Deklaracja typu informuje przeglądarkę o sposobie wyświetlania strony. Może wpły-
wać nawet na działanie kodu CSS i JavaScript. Jeśli programista poda błędną dekla-
rację lub w ogóle ją pominie, może długo szukać przyczyny niezgodności w funk-
cjonowaniu skryptów w różnych przeglądarkach. Dlatego zawsze należy pamiętać
o podaniu typu dokumentu.

Niegdyś używano wielu typów dokumentów; były to na przykład HTML 4.01
Transitional, HTML 4.01 Strict, XHTML 1.0 Transitional, XHTML 1.0 Strict
— wszystkie miały postać długiego wiersza trudnego kodu, w którym bardzo łatwo
można było zrobić błąd. Deklaracja typu dokumentu języka HTML5 — <!DOCTYPE
html> — jest krótka, prosta i to właśnie jej powinieneś używać.

J A V A S C R I P T I J Q U E R Y . N I E O F I C J A L N Y P O D RĘC Z N I K

HTML: podstawowa
struktura

22

Działanie znaczników HTML
W przykładowym kodzie zamieszczonym na stronie 21, podobnie jak w kodzie
HTML każdej strony WWW, większość poleceń występuje w parach zawierają-
cych bloki tekstu i inne instrukcje. Znaczniki wewnątrz nawiasów ostrych to pole-
cenia, które informują przeglądarkę o tym, jak ma wyświetlić stronę. Są to znacz-
niki z nazwy „hipertekstowy język znaczników”.

Znacznik początkowy (otwierający) wskazuje przeglądarce początek polecenia,
a znacznik końcowy określa koniec instrukcji. Znacznik końcowy (zamykający)
zawsze zawiera ukośnik (/) po pierwszym nawiasie ostrym (<). Przykładowo
znacznik <p> oznacza początek akapitu, a znacznik </p> — jego koniec. Niektóre
znaczniki, takie jak , <input> czy też
, nie występują w parach — w ich
przypadku używany jest tylko znacznik otwierający.

Aby strona WWW działała poprawnie, musi obejmować przynajmniej trzy poniższe
znaczniki:
 Znacznik <html>, który pojawia się raz na początku strony (po deklaracji typu),

a następnie — z ukośnikiem — na jej końcu. Informuje on przeglądarkę o tym,
że dokument jest napisany w języku HTML. Cała zawartość strony, w tym
inne znaczniki, znajduje się między otwierającym a zamykającym znaczni-
kiem <html>.
Jeśli stronę WWW potraktować jak drzewo, znacznik <html> to pień. Wycho-
dzą z niego dwie gałęzie, które reprezentują dwie podstawowe części każdej
strony — sekcję nagłówkową i ciało.

 Sekcja nagłówkowa strony WWW znajduje się wewnątrz znaczników <head>
i zawiera między innymi tytuł strony. Można tu umieścić także inne, niewi-
doczne informacje (na przykład słowa kluczowe używane przy wyszukiwaniu),
które są przydatne dla przeglądarek i wyszukiwarek.
Sekcja nagłówkowa może też zawierać informacje używane przez przeglądarkę
do wyświetlania stron i zwiększania interaktywności. Mogą to być na przykład
kaskadowe arkusze stylów. Ponadto programiści często umieszczają w tej sek-
cji kod JavaScript i odnośniki do plików z takim kodem.

 Ciało strony znajduje się w znacznikach <body> i obejmuje wszystkie infor-
macje widoczne w oknie przeglądarki: nagłówki, tekst, obrazki i tak dalej.

Znacznik <body> zawiera zwykle następujące elementy:
 Znaczniki <p> (otwierający) i </p> (zamykający), które informują przeglądarkę

o początku i końcu akapitu.
 Znacznik , który służy do wyróżniania tekstu. Umieszczenie słów

między tym znacznikiem a tagiem powoduje pogrubienie czcionki.
Fragment kodu HTML Uwaga! to polecenie wyświetlenia
słowa „Uwaga!” pogrubioną czcionką.

 Znacznik <a> (znacznik kotwicy) tworzy odnośnik na stronie WWW.
Odnośnik (inaczej odsyłacz, łącze, hiperłącze lub link) może prowadzić do
dowolnego miejsca w sieci WWW. Aby poinformować przeglądarkę o do-
celowej lokalizacji, należy w znaczniku <a> podać adres, na przykład
Kliknij tutaj!.

http://www.missingmanuals.com/

 W P R O W A D Z E N I E

CSS:
dodawanie stylu do stron

23

W I E D Z A W P I G U Ł C E

Walidacja stron WWW
Na stronie 21 wspomniano, że deklaracja typu okre-

śla wersję języka HTML lub XHTML użytą do utworzenia

strony. Między typami stron występują drobne różnice.

Na przykład XHTML, w odróżnieniu od HTML 4.01,

wymaga zamknięcia znacznika <p> oraz pisania nazw

znaczników i atrybutów małymi literami (<a> zamiast

<A>). HTML5 zawiera nowe znaczniki i pozwala na korzy-

stanie ze składni HTML lub XHTML. Z uwagi na różne re-

guły obowiązujące w poszczególnych wersjach należy

zawsze przeprowadzić walidację strony.

Walidator kodu HTML to program, który sprawdza, czy

strona jest prawidłowo napisana. Takie narzędzie określa

typ dokumentu, a następnie analizuje kod, aby sprawdzić,

czy jest zgodny z podaną deklaracją. Walidator wskazuje

między innymi błędnie napisane nazwy znaczników i nie-

zamknięte znaczniki. Organizacja W3C (ang. World Wide

Web Consortium), odpowiedzialna za zarządzanie licznymi

technologiami sieciowymi, udostępnia bezpłatny walida-

tor pod adresem http://validator.w3.org. Wystarczy

skopiować kod HTML i wkleić go w formularzu, przesłać

stronę lub wskazać walidatorowi istniejącą witrynę. Narzę-

dzie sprawdzi wtedy kod HTML i poinformuje, czy strona

jest prawidłowa. Jeśli wykryje błędy, opisze je i wskaże

wiersz ich wystąpienia w pliku HTML.

Poprawny kod HTML to nie tylko prawidłowa forma

dokumentu. Strona musi przejść walidację, aby progra-

my w języku JavaScript działały poprawnie. Wiele skryp-

tów manipuluje kodem HTML — na przykład sprawdza

wartość pól formularza lub umieszcza nowy fragment

kodu (taki jak komunikat o błędzie) w określonym miej-

scu. Aby kod JavaScript mógł uzyskać dostęp do

strony i manipulować nią, kod HTML musi być odpo-

wiednio uporządkowany. Pominięcie znacznika zamyka-

jącego, dwukrotne użycie tego samego identyfikatora

lub błędne zagnieżdżenie znaczników może spowodo-

wać, że skrypt będzie zachowywał się w nieoczekiwany

sposób lub w ogóle przestanie działać.

Przeglądarka wykrywa, że po kliknięciu słów „Kliknij tutaj!” ma przejść do
witryny poświęconej serii „Missing Manual”. Część href znacznika to atrybut,
a sam adres URL to wartość tego atrybutu. W przykładowym kodzie http://
www.missingmanuals.com to wartość atrybutu href.

CSS: dodawanie stylu do stron

Dawniej HTML był jedynym językiem, który trzeba było poznać. Programista mógł
tworzyć strony z kolorowym tekstem i grafiką oraz wyróżniać słowa za pomocą
czcionek o różnych rozmiarach, krojach i kolorach. Jednak obecnie użytkownicy
witryn mają większe oczekiwania, dlatego trzeba zastosować nowszą, bardziej ela-
styczną technologię, o nazwie kaskadowe arkusze stylów (ang. Cascading Style
Sheets — CSS), która umożliwia tworzenie bardziej zaawansowanych wizualnie
stron. CSS to język do obsługi formatowania, który pozwala zwiększyć atrakcyjność
tekstu, budować strony o złożonym układzie i nadawać styl witrynie.

HTML służy do określania struktury strony. Pomaga wskazać elementy, które pro-
gramista chce zaprezentować światu. Znaczniki <h1> i <h2> określają nagłówki
i ich względne znaczenie: nagłówek z poziomu 1 jest ważniejszy od nagłówka
z poziomu 2. Znacznik <p> określa podstawowy akapit z informacjami. Inne
znaczniki zapewniają dodatkowe wskazówki strukturalne. Przykładowo element
 określa listę wypunktowaną, która pozwala poprawić czytelność listy pro-
duktów wymienionych w przepisie.

http://validator.w3.org
http://www.missingmanuals.com
http://www.missingmanuals.com

J A V A S C R I P T I J Q U E R Y . N I E O F I C J A L N Y P O D RĘC Z N I K

CSS:
dodawanie stylu do stron

24

CSS natomiast pozwala zaprojektować wygląd dobrze uporządkowanej zawartości
dokumentu HTML i sprawić, że będzie ona bardziej atrakcyjna i czytelna. Styl CSS
to reguła, która informuje przeglądarkę o tym, jak ma wyświetlać dany element na
stronie. Na przykład można utworzyć regułę CSS, zgodnie z którą tekst wszystkich
znaczników <h1> ma mieć 36 pikseli wysokości, czcionkę Verdana i pomarańczowy
kolor. Język CSS umożliwia też wykonywanie bardziej zaawansowanych zadań,
takich jak dodawanie obramowań, określanie szerokości marginesów, a nawet
precyzyjne wskazywanie położenia elementów strony.

Jedne z najciekawszych zmian, jakie można wprowadzić na stronie za pomocą
języka JavaScript, dotyczą właśnie stylów CSS. JavaScript umożliwia dodawanie
stylów do znaczników HTML, usuwanie reguł i dynamiczne zmienianie właściwości
stylów CSS na podstawie danych wprowadzonych przez użytkownika lub w wyniku
kliknięcia myszą. Można nawet animować elementy, zmieniając właściwości jed-
nego stylu na właściwości innego (na przykład animować kolor tła, by zmienił się
z żółtego na czerwony). Można też wyświetlić lub ukryć element przez zmianę
wartości właściwości display albo uruchomić animację w postaci przesuwania się
elementu po stronie, co wymaga dynamicznego zmieniania wartości właściwości
position.

Anatomia stylu
Pojedynczy styl, który określa wygląd jednego elementu, jest dość prosty. Jest to
reguła, która informuje przeglądarkę, jak ma sformatować element (na przykład
wyświetlić nagłówek na niebiesko, dodać czerwone obramowanie wokół rysunku lub
utworzyć 150-pikselową ramkę z listą odnośników). Styl to informacja: „Przeglą-
darko, spraw, aby to wyglądało tak”. Style składają się z dwóch elementów: forma-
towanego elementu strony (selektora) i instrukcji formatujących (bloku deklaracji).
Selektorem może być nagłówek, akapit, rysunek i tak dalej. Bloki deklaracji pozwa-
lają zmienić kolor tekstu na niebieski, dodać czerwone obramowanie wokół akapitu,
umieścić zdjęcie na środku strony — możliwości są niemal nieskończone.

Uwaga: Autorzy tekstów technicznych często używają słownictwa organizacji W3C i nazywają style

CSS regułami. Tu oba pojęcia występują wymiennie.

Oczywiście style CSS nie są zapisane w języku naturalnym, dlatego używają swoje-
go własnego. Aby na przykład zmienić kolor i rozmiar czcionki wszystkich akapi-
tów strony, należy użyć następującego kodu:

p { color: red; font-size: 1.5em; }

Ten styl to informacja: „Użyj do wyświetlania tekstu wszystkich akapitów (tekstu
w znacznikach <p>) czerwonej czcionki o wysokości 1,5 em”. Jednostka em jest
oparta na standardowym rozmiarze tekstu w przeglądarce. Rysunek W.1 pokazuje,
że nawet tak prosty styl składa się z kilku elementów. Oto one.

 Selektor, który wskazuje przeglądarce formatowane elementy strony. Mogą
to być na przykład nagłówki, akapity, rysunki lub odnośniki. Na rysunku W.1
selektor (p) wskazuje znacznik <p>, dlatego przeglądarka sformatuje tekst w tych

 W P R O W A D Z E N I E

CSS:
dodawanie stylu do stron

25

Rysunek W.1. Styl (reguła) składa się z dwóch głów-
nych części: selektora, który wskazuje przeglądarce
formatowany element, i bloku deklaracji, zawierają-
cego instrukcje formatujące

znacznikach za pomocą instrukcji podanych w stylu. Przy użyciu wielu do-
stępnych selektorów i szczypty wyobraźni można uzyskać pełną kontrolę nad
wyglądem stron. (Selektory odgrywają także kluczowe znaczenie podczas korzy-
stania z biblioteki jQuery, dlatego też w tej książce, zaczynając od strony 147,
znajdziesz szczegółowe informacje na ich temat).

 Blok deklaracji, który obejmuje opcje formatowania stosowane do elementów
określonych za pomocą selektora. Blok ten rozpoczyna się od otwierającego
nawiasu klamrowego ({) i kończy nawiasem zamykającym tego typu (}).

 Deklaracja. Pomiędzy otwierającym i zamykającym nawiasem klamrowym
umieszczana jest jedna lub kilka deklaracji czy też instrukcji formatujących.
Każda deklaracja składa się z dwóch części — właściwości i wartości — a kończy
średnikiem. Właściwość oraz wartość są od siebie oddzielone dwukropkiem,
na przykład color: red.

 Właściwości. CSS udostępnia szeroki zakres opcji formatowania, nazywanych
właściwościami. Właściwość to słowo (lub kilka słów połączonych dywizami)
określające efekt działania stylu. Większość właściwości ma proste nazwy,
na przykład font-size, margin-top i background-color. Ta ostatnia — co łatwo
zgadnąć — określa kolor tła.

Uwaga: Jeśli chcesz lepiej poznać język CSS, zapoznaj się z książką CSS3. Nieoficjalny podręcznik.

 Wartości. Programista może zrealizować swój twórczy potencjał przez przypi-
sanie wartości do właściwości CSS, zmieniając na przykład kolor tła na niebieski,
czerwony, fioletowy lub jaskrawojasnozielony. Różne właściwości CSS wymagają
wartości określonego typu — koloru (na przykład red lub #FF0000), długości (na
przykład 18px, 2in lub 5em), adresu URL (na przykład images/background.gif)
lub słowa kluczowego (na przykład top, center lub bottom).

Na rysunku W.1 styl zapisany jest w jednym wierszu, jednak nie jest to wymagana
forma. Wiele stylów obejmuje liczne właściwości formatujące, dlatego łatwiej odczy-
tać regułę po podzieleniu jej na wiersze. Na przykład selektor i otwierający nawias
klamrowy można umieścić w pierwszym wierszu, poszczególne deklaracje w dalszych
wierszach, a na końcu dodać zamykający nawias klamrowy:

p {
 color: red;
 font-size: 1.5em;
}

Pomocne jest dodawanie za pomocą tabulacji lub kilku odstępów wcięć przy właści-
wościach. Pozwala to oddzielić wizualnie selektor od deklaracji. Odstęp między dwu-
kropkiem a wartością właściwości jest opcjonalny, jednak poprawia czytelność
stylu. Odstępy można dodawać w dowolny sposób. Poprawne są wszystkie wersje:
color:red, color: red i color : red.

J A V A S C R I P T I J Q U E R Y . N I E O F I C J A L N Y P O D RĘC Z N I K

Narzędzia w języku
JavaScript

26

Narzędzia do programowania
w języku JavaScript

Do tworzenia stron zawierających kody HTML, CSS i JavaScript wystarczy pro-
sty edytor tekstu, na przykład Notatnik (Windows) lub Text Edit (Mac). Jednak po
wpisaniu kilkuset wierszy kodu JavaScript warto wypróbować program lepiej do-
stosowany do tworzenia stron WWW. W tym punkcie znajdziesz listę popularnych
programów tego typu — zarówno bezpłatnych, jak i komercyjnych.

Uwaga: Dostępne są dosłownie setki narzędzi, które pomagają tworzyć strony WWW i pisać pro-

gramy w języku JavaScript, dlatego podana lista nie jest kompletna. Znalazły się tu tylko „największe

hity” używane obecnie przez fanów tego języka.

Programy bezpłatne
Dostępnych jest wiele bezpłatnych programów do edycji stron WWW i arkuszy
stylów. Jeśli wciąż używasz Notatnika lub edytora Text Edit, wypróbuj jedno z poniż-
szych narzędzi.

 Brackets (Windows, Max, Linux, http://brackets.io/) jest edytorem o otwartym
kodzie źródłowym, opracowanym przez firmę Adobe. Jest to program dar-
mowy, w którym zaoferowano wiele wspaniałych możliwości, takich jak pod-
gląd edytowanej strony na bieżąco w przeglądarce. Co ciekawe, Brackets został
napisany w języku JavaScript.

 Notepad++ (Windows, http://notepad-plus-plus.org) to przyjaciel programi-
sty. Koloruje składnię kodów JavaScript i HTML oraz umożliwia zapisywanie
makr i przypisywanie do nich skrótów klawiaturowych, co pozwala zautomaty-
zować proces wstawiania najczęściej używanych fragmentów kodu.

 HTML-Kit (Windows, http://www.chami.com/html-kit) to rozbudowany
edytor HTML/XHTML, który zawiera wiele przydatnych funkcji, na przykład
możliwość podglądu strony WWW bezpośrednio w programie (dzięki temu nie
trzeba nieustannie przełączać się między przeglądarką i edytorem), kombinacje
klawiszy do dodawania znaczników HTML i tak dalej.

 CoffeeCup Free HTML Editor (Windows, http://www.coffeecup.com/
FREE-EDITOR) to bezpłatna wersja komercyjnego edytora CoffeeCup HTML
(69 dolarów).

 TextWrangler (Mac, http://www.barebones.com/products/textwrangler/) to
bezpłatne narzędzie, które jest zubożoną wersją BBEdit — rozbudowanego, po-
pularnego edytora tekstu dla komputerów Mac. TextWrangler nie ma wszystkich
wbudowanych narzędzi do tworzenia kodu znanych z BBEdit, ale udostępnia
kolorowanie składni (wyróżnianie znaczników i właściwości odmiennymi kolo-
rami, co ułatwia przeglądanie strony i wyszukiwanie jej obszarów), obsługę
FTP (co umożliwia przesyłanie plików na serwer sieciowy) i inne funkcje.

http://brackets.io/
http://notepad-plus-plus.org
http://www.chami.com/html-kit
http://www.coffeecup.com/FREE-EDITOR
http://www.barebones.com/products/textwrangler/
http://www.coffeecup.com/FREE-EDITOR

 W P R O W A D Z E N I E

Narzędzia w języku
JavaScript

27

 Eclipse (Windows, Linux, Mac; http://www.eclipse.org/) jest bezpłatnym śro-
dowiskiem programistycznym, bardzo popularnym wśród programistów uży-
wających języka Java, lecz posiada także narzędzia umożliwiające pracę z kodem
HTML, CSS i JavaScript. Jego wersję przeznaczoną dla programistów JavaScript
można znaleźć na stronie http://www.eclipse.org/downloads/packages/eclipse-
-ide-javascript-web-developers/indigor; dostępna jest także wtyczka ułatwiająca
dodawanie mechanizmu automatycznego uzupełniania dla jQuery (http://
marketplace.eclipse.org/category/free-tagging/jquery).

 Aptana Studio (Windows, Linux, Mac; (http://www.aptana.com) jest potęż-
nym, bezpłatnym środowiskiem przeznaczonym do tworzenia kodów HTML,
CSS, JavaScript, PHP oraz Ruby on Rails.

 Vim oraz Emacs są znanymi od dawna, doskonałymi edytorami używanymi
w systemie Unix. Są dostępne także w systemach Mac OS X oraz Linux;
można także pobrać ich wersje przeznaczone dla systemu Windows. Lubią je
poważni programiści, jednak dla większości osób nauka korzystania z nich
może być trudnym zadaniem.

 Atom (Windows i Mac, https://atom.io/). To zupełnie nowy gracz w grupie
edytorów dla programistów. Jego kody źródłowe są dostępne w serwisie GitHub
(służącym do dzielenia się i wspólnej, grupowej pracy nad projektami), a sam
program zawiera wiele możliwości stworzonych specjalnie z myślą o potrze-
bach nowoczesnych programistów. Cechuje go budowa modularna, pozwalająca
na tworzenie wielu wtyczek rozszerzających jego wbudowane możliwości funk-
cjonalne.

Oprogramowanie komercyjne
Komercyjne programy do tworzenia witryn są bardzo zróżnicowane — od niedrogich
edytorów tekstu po kompletne, pełne dodatkowych funkcji narzędzia do budowy
witryn.

 SublimeText (Windows, Max, Linux, https://www.sublimetext.com/, 70 dola-
rów) jest ukochanym narzędziem wielu programistów. Edytor pozwala za-
oszczędzić sporo czasu osobom piszącym w języku JavaScript. Przykładem
jego możliwości może być „automatyczne tworzenie par znaków” — mechanizm,
który automatycznie dodaje drugi znak z pary znaków o specjalnym znaczeniu
(na przykład program automatycznie doda nawias zamykający, kiedy programi-
sta wpisze znak nawiasu otwierającego).

 EditPlus (Windows, https://www.editplus.com/, 35 dolarów) to niedrogi edytor
tekstu z obsługą kolorowania składni, protokołu FTP, automatycznego uzupeł-
niania tekstu i innymi funkcjami przyspieszającymi pracę.

 BBEdit (Mac, http://www.barebones.com/products/bbedit/, 49,99 dolarów).
Ten bardzo popularny edytor tekstu dla komputerów Mac udostępnia wiele na-
rzędzi do pisania kodu w językach HTML, XHTML, CSS, JavaScript i innych,
a także liczne mechanizmy i skróty przydatne przy budowaniu stron WWW.

http://www.eclipse.org/
http://www.eclipse.org/downloads/packages/eclipse-ide-javascript-web-developers/indigor
http://www.eclipse.org/downloads/packages/eclipse--ide-javascript-web-developers/indigor
http://marketplace.eclipse.org/category/free-tagging/jquery
http://marketplace.eclipse.org/category/free-tagging/jquery
http://www.aptana.com
https://atom.io/
https://www.sublimetext.com/
https://www.editplus.com/
http://www.barebones.com/products/bbedit/

J A V A S C R I P T I J Q U E R Y . N I E O F I C J A L N Y P O D RĘC Z N I K

O książce

28

 Dreamweaver (Mac i Windows, http://www.adobe.com/products/dreamweaver.
html, roczny abonament 294,97 euro) to graficzny edytor stron WWW. Narzę-
dzie to pozwala zobaczyć, jak strona będzie wyglądać w przeglądarce. Dream-
weaver obejmuje rozbudowany edytor tekstu do tworzenia programów w języku
JavaScript oraz doskonałe narzędzia do budowania stylów CSS i zarządzania
nimi. Dokładne informacje o sposobach korzystania z tego użytecznego pro-
gramu można znaleźć w książce Dreamweaver CC: The Missing Manual.

O książce
JavaScript, w odróżnieniu od aplikacji Microsoft Word, Dreamweaver i innych,
nie jest pojedynczym produktem rozwijanym przez jedną firmę. Nie istnieje dział
pomocy technicznej, który opracowuje zrozumiałe podręczniki dla przeciętnych
programistów stron WWW. Choć można znaleźć wiele informacji w witrynach
Mozilla.org (https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference),
Ecmascript.org (http://www.ecmascript.org/docs.php) i innych, nie ma jednego,
centralnego źródła wiedzy na temat języka JavaScript.

Ponieważ nie istnieje oficjalny podręcznik języka JavaScript, programiści poznający
ten język często nie wiedzą, od czego zacząć. Bardziej zaawansowane techniki tego
języka mogą sprawiać trudności nawet doświadczonym programistom. Książka ta
ma pełnić funkcję nieoficjalnego podręcznika, który powinien być udostępniany
z samym językiem. Znajdziesz tu podane krok po kroku instrukcje pokazujące,
jak używać języka JavaScript do tworzenia wysoce interaktywnych stron WWW.

Dobrą dokumentację jQuery można znaleźć na stronie http://api.jquery.com/.
Jednak została ona napisana przez programistów i jest przeznaczona dla progra-
mistów; dlatego też zamieszczone w niej opisy są krótkie i mają charakter tech-
niczny. I choć korzystanie z jQuery jest zazwyczaj łatwiejsze niż tworzenie stan-
dardowego kodu w języku JavaScript, ta książka i tak nauczy Cię podstawowych
zasad i technik stosowania biblioteki jQuery, abyś, używając jej na własnych stro-
nach, podążał właściwą drogą.

Książka JavaScript i jQuery. Nieoficjalny podręcznik jest przeznaczona dla osób,
które mają już pewne doświadczenie w tworzeniu stron WWW. Aby w pełni wy-
korzystać przedstawione tu informacje, powinieneś znać HTML i CSS, ponieważ
działanie języka JavaScript jest często zależne od tych technologii. Rozdziały wpro-
wadzające są napisane dla zaawansowanych początkujących i średnio zaawan-
sowanych użytkowników komputerów. Jeśli nie masz doświadczenia w tworze-
niu stron WWW, w specjalnych ramkach zatytułowanych „Wiedza w pigułce”
znajdziesz informacje potrzebne do zrozumienia omawianych zagadnień. Z kolei
doświadczeni programiści stron WWW powinni zwrócić szczególną uwagę na
ramki z serii „Poradnia dla zaawansowanych”, które zawierają dodatkowe tech-
niczne wskazówki, sztuczki i skróty przeznaczone właśnie dla nich.

Uwaga: W tej książce znajdują się odwołania do innych pozycji, poświęconych zagadnieniom, które są

zbyt zaawansowane lub niezwiązane bezpośrednio z tematem, aby umieszczać je w podręczniku do języ-

ka JavaScript. Czasem polecane tytuły to publikacje wydawnictwa O’Reilly Media, które odpowiada też za

serię „Missing Manual” (w Polsce książki z serii „Nieoficjalny podręcznik” wydaje wydawnictwo Helion), jed-

nak nie zawsze tak jest. Jeśli inne wydawnictwo opublikowało doskonałą pozycję, polecam właśnie ją.

http://www.adobe.com/products/dreamweaver.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference
http://www.ecmascript.org/docs.php
http://api.jquery.com/
http://www.adobe.com/products/dreamweaver.html

 W P R O W A D Z E N I E

O książce

29

Podejście do języka JavaScript stosowane w tej książce
JavaScript to prawdziwy język programowania. Działa inaczej niż języki HTML
i CSS oraz ma własny zestaw często skomplikowanych reguł. Projektanci stron
WWW mają czasem problemy z przestawieniem się na sposób myślenia specy-
ficzny dla programistów, a żadna pojedyncza książka nie zawiera wszystkich infor-
macji na temat języka JavaScript.

Książka JavaScript i jQuery. Nieoficjalny podręcznik nie ma zmienić Cię w następ-
nego doskonałego programistę. Jej zadaniem jest zapoznanie projektantów stron
WWW ze szczegółami języka JavaScript, a następnie przejście do prezentacji biblio-
teki jQuery, która umożliwia wbudowanie przydatnych interaktywnych funkcji
w witrynę WWW w jak najszybszy i najłatwiejszy sposób.

W tej książce poznasz podstawy języka JavaScript i programowania, jednak nie
umożliwiają one tworzenia fascynujących stron WWW. Na 650 stronach nie
sposób zmieścić wszystkich informacji o języku JavaScript, które są potrzebne do
budowania zaawansowanych, interaktywnych stron. Zamiast tego znaczna część
tej książki koncentruje się na przedstawieniu bardzo popularnej biblioteki języka
JavaScript — jQuery — która, jak się sam niebawem przekonasz, uwolni Cię od
żmudnych i czasochłonnych szczegółów tworzenia programów JavaScript dzia-
łających w wielu różnych przeglądarkach.

Najpierw poznasz podstawy języka JavaScript, a następnie przejdziesz bezpośred-
nio do zaawansowanych mechanizmów interaktywnych z pewną — w porządku,
znaczną — pomocą w postaci biblioteki jQuery. To prawda, można zbudować
dom, samodzielnie ścinając i obrabiając drzewo, tworząc okna, drzwi i framugi,
produkując kafelki i tak dalej. Podejście „zrób to sam” jest powszechnie stosowane
w wielu książkach na temat języka JavaScript. Jednak kto ma czas na pracę w takim
stylu? Podejście stosowane w tej książce bardziej przypomina budowanie domu z go-
towych elementów i składanie ich z wykorzystaniem podstawowej wiedzy. Efekt
końcowy to piękny i funkcjonalny budynek postawiony dużo szybciej niż przy za-
stosowaniu metody wymagającej opanowania wszystkich etapów budowy.

Struktura książki
Książka JavaScript i jQuery. Nieoficjalny podręcznik składa się z pięciu części, a każda
z nich zawiera kilka rozdziałów.

 Część I, „Wprowadzenie do języka JavaScript”, obejmuje podstawy. Poznasz tu
„cegiełki” języka JavaScript, a także znajdziesz ogólne wskazówki na temat pro-
gramowania. Dowiesz się, jak dodawać skrypty do stron WWW, jak przechowy-
wać informacje i manipulować nimi, a także jak wzbogacić program o możli-
wość reagowania na różne sytuacje. Zobaczysz, jak komunikować się z oknem
przeglądarki, zapisywać i wczytywać pliki cookie, reagować na różne zdarzenia
(na przykład kliknięcie myszą lub przesłanie formularza) i modyfikować kod
HTML stron WWW.

J A V A S C R I P T I J Q U E R Y . N I E O F I C J A L N Y P O D RĘC Z N I K

Podstawy

30

 Część II, „Wprowadzenie do biblioteki jQuery”, zawiera podstawowe informacje
o jQuery — najpopularniejszej bibliotece języka JavaScript. Zdobędziesz tu pod-
stawowe informacje na temat tego zadziwiającego narzędzia programistycznego,
które sprawią, że staniesz się bardziej efektywnym i zdolnym programistą. Do-
wiesz się, jak pobierać elementy stron i operować na nich, dodawać do nich ele-
menty interaktywności poprzez zapewnienie możliwości reakcji na poczynania
użytkownika oraz jak dodawać atrakcyjne efekty wizualne i animacje.

 Część III, „Wprowadzenie do biblioteki jQuery UI”, zawiera informacje o sio-
strzanym projekcie jQuery — bibliotece jQuery UI. Jest to biblioteka języka
JavaScript, która udostępnia wiele widżetów i efektów. Ułatwia ona tworzenie
i dodawanie do stron popularnych elementów interfejsu użytkownika, takich
jak zestawy kart, okna dialogowe, akordeony, rozwijane menu i tak dalej. Bi-
blioteka jQuery UI pomoże Ci opracować w swojej następnej aplikacji siecio-
wej stylowy i spójny interfejs użytkownika.

 Część IV, „Zaawansowane zastosowania jQuery i języka JavaScript”, jest po-
święcona zaawansowanym zastosowaniom jQuery i języka JavaScript. Szczegól-
nie rozdział 13. jest poświęcony technologii, która już sama sprawia, że JavaScript
jest najbardziej olśniewającym językiem do tworzenia aplikacji sieciowych.
W tym rozdziale dowiesz się, jak używać JavaScriptu do komunikowania się
z serwerem WWW, tak aby strony mogły pobierać informacje z serwera i na
ich podstawie aktualizować swoją treść — a wszystko bez konieczności wczy-
tywania następnej strony. Z kolei w rozdziale 14. prześledzisz krok po kroku
proces tworzenia aplikacji do zarządzania listą zadań, w której skorzystano
z bibliotek jQuery i jQuery UI.

 Część V, „Wskazówki, sztuczki i rozwiązywanie problemów”, to zakończenie
zagadnień podstawowych i przejście do bardziej zaawansowanych. W tej części
książki dowiesz się, jak efektywnie korzystać z biblioteki jQuery oraz jak po-
sługiwać się jej bardziej zaawansowanymi funkcjami. Dowiesz się tu także, co
można zrobić, gdy program nie będzie działał zgodnie z oczekiwaniami lub — co
gorsza — w ogóle nie będzie działał. Poznasz błędy często popełniane przez po-
czątkujących programistów, a także techniki wykrywania i naprawiania usterek
w programach.

Dodatek znajdujący się na końcu książki zawiera szczegółową listę materiałów,
które pomogą Ci w dalszym poznawaniu języka JavaScript.

Podstawy
Aby korzystać z tej książki, a nawet z samego komputera, trzeba znać pewne pod-
stawy. Zakładam, że dobrze rozumiesz poniższe pojęcia i zagadnienia.

 Klikanie. W książce pojawiają się trzy rodzaje instrukcji wymagające użycia my-
szy lub touchpada. Kliknięcie oznacza najechanie wskaźnikiem myszy na ele-
ment widoczny na ekranie i wciśnięcie oraz zwolnienie przycisku myszy (lub

 W P R O W A D Z E N I E

Podstawy

31

touchpada w laptopie) bez poruszania wskaźnikiem. Kliknięcie prawym przy-
ciskiem myszy oznacza wykonanie tej operacji przy użyciu prawego przycisku.
Kliknięcie dwukrotne polega oczywiście na szybkim dwukrotnym kliknięciu
myszą bez poruszania jej wskaźnika. Przeciąganie wymaga przesunięcia kursora
przy wciśniętym przycisku myszy.

Wskazówka: Jeśli używasz komputera Mac i nie masz myszy z prawym przyciskiem, możesz uzyskać

taki sam efekt przez przytrzymanie klawisza Control w czasie kliknięcia.

Polecenie kliknięcia z przyciskiem  (komputery Mac) lub z przyciskiem Ctrl
(komputery PC) wymaga kliknięcia myszą przy wciśniętym odpowiednim kla-
wiszu, znajdującym się obok klawisza spacji.

 Menu. Na menu składają się słowa w górnej części ekranu lub okna: Plik, Edycja
i tak dalej. Kliknięcie jednego z nich powoduje wyświetlenie listy poleceń
w rozwiniętym okienku.

 Skróty klawiaturowe. Jeśli szybko wpisujesz kod w przypływie twórczej energii,
odrywanie dłoni od klawiatury i używanie myszy do wyboru polecenia z menu
(na przykład w celu włączenia pogrubienia) bywa rozpraszające. Dlatego wielu
doświadczonych programistów woli uruchamiać instrukcje za pomocą kom-
binacji klawiszy klawiatury. Na przykład w przeglądarce Firefox można wcisnąć
kombinację Ctrl-+ (Windows) lub -+ (Mac), aby powiększyć tekst strony
i poprawić jego czytelność. Jeśli natrafisz na polecenia typu „wciśnij kombinację
-B”, najpierw wciśnij klawisz  i — przytrzymując go — wybierz literę B.
Następnie możesz zwolnić oba klawisze.

 Podstawowe funkcje systemu operacyjnego. Zakładam też, że wiesz, jak uru-
chamiać programy, poruszać się w sieci WWW i pobierać pliki. Powinieneś
umieć korzystać z menu Start (Windows) i Dock lub (Macintosh), a także
z menu Panel sterowania (Windows) i Preferencje systemowe (Mac OS X).

Jeśli opanowałeś już te umiejętności, możesz rozpocząć przygodę z książką JavaScript
i jQuery. Nieoficjalny podręcznik.

O/tych/ukośnikach
W tej książce, a także w innych pozycjach z serii „Nieoficjalny podręcznik”, znaj-
dziesz zdania typu: „Otwórz katalog System/Biblioteka/Czcionki”. Jest to skrótowy
zapis znacznie dłuższego polecenia, które nakazuje otworzyć kolejno trzy katalogi:
„Znajdź na dysku twardym katalog System i otwórz go. Następnie znajdź w tym
katalogu folder Biblioteka. Kliknij go dwukrotnie, aby go otworzyć. W tym katalogu
znajduje się folder o nazwie Czcionki. Kliknij go dwukrotnie, aby go otworzyć”.

Podobny skrótowy zapis pomaga uprościć opis wyboru poleceń menu, co ilustruje
rysunek W.2.

J A V A S C R I P T I J Q U E R Y . N I E O F I C J A L N Y P O D RĘC Z N I K

Zasoby internetowe

32

Rysunek W.2. Zapis skrótowy pomaga uprościć wskazywanie poleceń menu. Na przykład Widok/Powiększenie/
Powiększ to zwięzła postać instrukcji: „Wybierz opcję Powiększenie z menu Widok. Pojawi się menu podrzędne,
w którym należy kliknąć opcję Powiększ”

Zasoby internetowe
Książka ma Ci pomóc w szybszym i bardziej profesjonalnym tworzeniu stron
WWW. Naturalne jest więc, że połowa wartości tej pozycji związana jest z siecią
WWW. W internecie możesz znaleźć kody przykładów do książki, które ułatwią Ci
zdobywanie doświadczenia. Możesz także napisać do zespołu zajmującego się two-
rzeniem serii książek „Nieoficjalny podręcznik” i przekazać informacje o tym, co Ci
się w tej książce podoba (lub co doprowadza Cię do szału).

Przykłady
W czasie czytania książki natrafisz na liczne przykłady — szczegółowo opisane strony,
które możesz przygotować samodzielnie z wykorzystaniem dostępnych materiałów
(grafiki i częściowo przygotowanych stron). Materiały te możesz pobrać ze strony
poświęconej książce w witrynie wydawnictwa Helion (helion.pl, bądź bezpośrednio
spod adresu ftp://ftp.helion.pl/przyklady/jsjqn3.zip). Prawdopodobnie nie nauczysz
się zbyt wiele, jeśli tylko przeczytasz tekst, leżąc wygodnie w hamaku. Jeśli jednak
prześledzisz przykłady przy komputerze, odkryjesz, że są doskonałym sposobem na
zrozumienie, jak profesjonalni projektanci tworzą strony WWW.

ftp://ftp.helion.pl/przyklady/jsjqn3.zip

 W P R O W A D Z E N I E

Zasoby internetowe

33

W poszczególnych przykładach znajdziesz też adresy URL prowadzące do angiel-
skich wersji gotowych stron, z którymi będziesz mógł porównać efekty swej pracy.
Oznacza to, że będziesz mógł zobaczyć nie tylko efekt działania kodu JavaScript na
kartach książki, ale też działające strony WWW w internecie.

Opinie i uwagi
Masz jakieś pytania? Potrzebujesz więcej informacji? Chciałbyś napisać recenzję
książki? Na stronie autorów możesz znaleźć eksperckie odpowiedzi na pytania, które
przyjdą Ci do głowy podczas lektury książki, podzielić się swoimi uwagami na jej
temat oraz znaleźć społeczność osób, które, podobnie jak Ty, interesują się językiem
JavaScript i biblioteką jQuery. Abyś mógł wyrazić swoją opinię, wejdź na stronę
http://helion.pl/user/opinie/jsjqn3.

Errata
Staramy się, by książka była możliwie najbardziej aktualna i dokładna, dlatego też
podczas dodrukowywania kolejnych egzemplarzy będziemy uwzględniali w jej tek-
ście wszystkie potwierdzone błędy i sugestie. Informacje o wszelkich takich zmia-
nach umieszczamy także na stronie poświęconej tej książce, abyś, jeśli tylko ze-
chcesz, mógł je zanotować we własnym egzemplarzu. Aby zgłosić poprawkę lub
przejrzeć listę już zgłoszonych błędów, zajrzyj na stronę książki.

http://helion.pl/user/opinie/jsjqn3

J A V A S C R I P T I J Q U E R Y . N I E O F I C J A L N Y P O D RĘC Z N I K

34

Wprowadzenie
do języka JavaScript

Rozdział 1. Pierwszy program w języku JavaScript

Rozdział 2. Gramatyka języka JavaScript

Rozdział 3. Dodawanie struktur logicznych i sterujących

I
CZĘŚĆ

Pierwszy program
w języku JavaScript

� S am język HTML nie ma dużych możliwości. Nie obsługu�1acji mate-
matycznych, nie wykrywa, czy użytkownik prawidłowo ��ił formularz,
i nie potrafi podejmować decyzji na podstawie działa��autów. HTML

umożliwia czytanie artykułów, oglądanie obrazków i kl��a i e �ośników do innych
stron WWW z tekstem i grafiką. Aby wzbogacić możl�SI ron WWW o uwzględ­
nianie zachowań użytkowników, należy użyć języka� cript.

JavaScript umożliwia reagowanie stron �AQałania internautów. Przy jego
użyciu można budować 11inteligentne" fo��� które informują użytkowników
o braku wymaganych informacji. Można t�wawić, że elementy będą się pojawiać,
znikać i poruszać na stronie (patrz�n�.l). Można nawet zaktualizować za­
wartość strony za pomocą informa 1 ranych z serwera sieciowego bez koniecz-
ności wczytywania całego now do zumentu. J avaScript umożliwia tworzenie
bardziej angażujących, efekt i użytecznych witryn.

Uwaga: W wersji 5. do języka dodano pewne "inteligentne" rozwiązania, takie jak podstawowe

mechanizmy weryfikacji danych wpisywanych w formularzach. Ponieważ jednak nie wszystkie

przeglądarki obsługują te możliwości Uak również dlatego, że przy użyciu zwyczajnych formularzy

i języka JavaScript można zrobić znacznie więcej), konieczne jest korzystanie z języka JavaScript

podczas tworzenia najlepszych, najbardziej przyjaznych dla użytkownika i w pełni interaktywnych

formularzy. Więcej informacji na temat języka HTML5 oraz formularzy internetowych można znaleźć

w książce Bena Henicka HTMLS Forms (O'Reilly) oraz Gaurava Gupty Mastering HTMLS Forms

(Packt Piublishing).

l
ROZDZIAŁ

Wprowadzenie
do programowania

Rysunek 1.1. Witryna The lnteractive Ear1
(ł�/www.amplifon.co.uk/interactive-ear/)jest interaktywnym

przewodnikiem po ludzkim uchu; um�żli ia p�znanie jego działania i elementów. Nowe informacje sq prezentowa-

ne w odpowiedzi na ruchy wskaźn· szy oraz kliknięcia. Zastosowanie JavaScriptu pozwala na tworzenie

własnych efektów interaktywnyc

Wpr�adzenie do programowania
Wielu osobom pojęcie 11programowanie komputerowe" przywodzi na myśl obraz
niezwykle inteligentnych "mózgowców", pochylonych nad klawiaturami i przez go­
dziny wpisujących niezrozumiałe znaczki. To prawda, czasem tak to wygląda. Pro­
gramowanie może sprawiać wrażenie zaawansowanej dziedziny, której opanowanie
wykracza poza możliwości przeciętnego śmiertelnika. Jednak wiele zagadnień z tego
obszaru jest stosunkowo łatwych do zrozumienia, a wśród języków programowania
JavaScript jest jednym z bardziej przyjaznych dla osób, które nie mają jeszcze żad­
nych doświadczei1 z progran1owaniem.

1 Interaktywne ucho-przyp. tłum.

CZĘŚĆ I + WPROWADZENIE DO JĘZYKA JAVASCRIPT

JavaScript jest jednak bardziej skmnplikowany od języków HTML i CSS, a progra­
ulowanie to zagadnienie często obce projektantom stron WWW . Dlatego jednym
z zadań tej książki jest pomóc Ci nauczyć się n1yśleć tak, jak robią to programiści.
Znajdziesz tu omówienie podstawowych technik, przydatnych przy pisaniu kodu
w języku JavaScript i ActionScript, a nawet przy tworzeniu tradycyjnych programów
w języku C++. Co jednak ważniejsze, zobaczysz, jak podchodzić do zadań progra­
mistycznych, dzięki czemu jeszcze przed dodaniem kodu JavaScript do strony bę­
dziesz dokładnie wiedział, jakich efektów oczekiwać.

Wielu projektantów stron WWW zniechęca się na widok dziwnych syn1boli i słów
używanych w języku JavaScript. Standardowy skrypt w tym języku jest pełen sym­
boli ({} [J;, ()! =) i nieznanych słów (var, null, else i f). Taki kod przypomina
tekst w języku obcym, a pod wieloma względami poznawanie nowych języków
programowania jest podobne do nauki języków naturalnych. Aby skutecznie się
komunikować, trzeba opanować zbiór nowych słów i znaków przestankowych oraz
zrozumieć, jak je łączyć.

Każdy język programowania ma własny zestaw słów lduczowych i znaków� spe­
cyficzne zasady ich łączenia. Te elementy to składnia języka. Trzeba .Qmiętać
pewne zwroty i reguły (lub przynajmniej mieć pod ręką tę ksią�Pr�osługi­
waniu się językiem obcym często położenie akcentu na złej sylz�woduje, że
słowo staje się niezrozumiałe. Podobnie prosta literówka, a��rak znaku prze­
stankowego mogą uniemożliwić działanie programu lub spov\'e'�.Y':ać błąd w przeglą­
darce. Będziesz prawdopodobnie popełniał wiele pomy�fu'Q rodzaju, co jest nor-
malne przy nauce programowania. ("'\V
Na początku programowanie w języku JavaScri�� Ci się wydać frustrujące.
Dużo czasu zajmie wykrywanie błędów po�� w czasie wpisywania skryp­
tów. Ponadto niektóre zagadnienia są począfir�i�rudne do zrozumienia. Nie martw
się jednak. Jeśli próbowałeś już nauczyć s�aScriptu i zrezygnowałeś, ponieważ

Wprowadzenie
do programowania

JavaScript jest nazywany leZ\�etN�kr\totc)W'v'm

nie jak języki PHP i ColdFusion.

Większość programów działających w komputerach jest

napisana w językach kompilowanych. Kompilacja to pro­

ces polegający na generowaniu pliku, który będzie mógł

być wykonywany na komputerze. Proces ten to prze­

kształcenie kodu napisanego przez programistę na in­

strukcje zrozumiałe dla komputera. Skompilowany pro­

gram można uruchomić na komputerze, a ponieważ kod

przekształcono na postać zrozumiałą dla maszyny, taka

aplikacja działa szybciej od programów napisanych

w języku skryptowym. Niestety, kompilacja kodu to cza­

sochłonny proces. Należy napisać program, skompilować

go, a następnie przetestować. Jeśli wystąpią problemy,

cały proces trzeba zacząć od początku.

Języki skryptowe są kompilowane dopiero przy ich odczy­

cie przez interpreter (program, który przekształca skrypt

na formę zrozumiałą dla komputera). Interpreter języka

JavaScript jest wbudowany w przeglądarki. Dlatego kiedy

przeglądarka wczytuje stronę z programem w języku

JavaScript, przekształca go na postać odpowiednią dla

maszyny. Ponieważ programy w językach skryptowych

wymagają przekształcania przy każdym ich uruchomieniu,

działają wolniej od kodu napisanego w językach kompi­

lowanych. Języki skryptowe to doskonałe rozwiązanie

dla projektantów stron WWW. Skrypty są zwykle dużo

mniejsze i prostsze od tradycyjnych programów, dlatego

niższa szybkość nie jest bardzo istotna. Ponadto z uwagi

na brak etapu kompilacji tworzenie i testowanie progra­

mów w językach skryptowych trwa dużo krócej.

ROZDZIAŁ 1. PIERWSZY PROGRAM W JĘZYKU JAVASCRIPT

Jak dodać kod JavaScript
do strony?

wydał Ci się zbyt trudny, dzięki tej książce pokonasz przeszkody, które często znie­
chęcają początkujących programistów. (Jeśli natomiast umiesz już progran1ować,
poznasz wyjątkowe cechy JavaScriptu i specyficzne zagadnienia związane z tworze­
niem programów działających w przeglądarkach).

Co więceL książka ta nie jest poświęcona wyłącznie językowi JavaScript-zajmu­
jemy się w niej talzże biblioteką jQuery-najpopularniejszą na świecie biblioteką
napisaną w JavaScripcie. Sprawia ona, że pisanie złożonych programów w tym ję­
zyku staje się prostsze ... znacznie prostsze. A zatem, dysponując pewną znajomo­
ścią języka JavaScript i korzystając z biblioteki jQuery, będziesz mógł bardzo szybko
tworzyć wyrafinowane, interaktywne witryny WWW .

Czym jest program komputerowy?
Kiedy dodajesz kod JavaScript do strony, tworzysz program komputerowy. To prawda,
większość progran1ów w tym języku jest dużo prosts�d aplikacji używanych do
czytania e-maili, retuszowania zdjęć i tworzenia stron . Jednak choć progra­
my w języku JavaScript (nazywane też skryptami) są os sze i krótsze, mają wiele
cech ich bardziej złożonych odpowiedników. � •

Każdy program komputerowy to zestaw in�� wykonywanych w określonej
kolejności. Jeśli chcesz wyświetlić komu��'-/<)witalny z imieniem interna u ty,
na przykład 11WitaL Janie!", musisz�f_o�zilka operacji:

l. Poprosić użytkownika o pod��enia.

2. Pobrać odpowiedź. {""\ \...}
3. Wyświetlić komuni�Vronie.

Możliwe, że nie chcesz �ietlać komunikatów powitalnych, jednak punkty te
ilustrują podstaw�p,oces programowania: określanie oczekiwanych efektów
i podział zadani tapy. Przy tworzeniu każdego programu w języku JavaScript
trzeba określić olu otrzebne do wykonania zadania. Następnie nwżna przystąpić
do pisania u, czyli przekształcania pomysłów nakod-słowa i znaki, które

rzeglądarka wykona pożądane operacje.

Jak dodać kod JavaScript do strony?
Przeglądarki rozumieją kod HTML i CSS oraz przekształcają go na strony widoczne
na ekranie. Część przeglądarki obsługująca języki HTML i CSS to silnik zarzą­

dzania układem (renderujący). Większość przeglądarek ma też interpreter języka

JavaScript. Ten n1echanizn1 przetwarza kod JavaScript i wykonuje operacje opisane
w programie. Przeglądarki obsługują domyślnie kod HTML, dlatego też trzeba po­
informować je o wystąpieniu kodu JavaScript za pomocą znacznika <script>.

Znacznik <script> to zwykły kod HTML. Działa jak przełącznik, który informuje:

"Przeglądarko, oto nadchodzi kod JavaScript. Nie wiesz, co z nim zrobić, dlatego
przekaż go interpreterowi języka J avaScript". Kiedy przeglądarka natrafi na znacznik
zamykający </script>, zakończy przetwarzanie programu JavaScript i wróci do
standardowego trybu działania.

CZĘŚĆ I + WPROWADZENIE DO JĘZYKA JAVASCRIPT

Jak dodać kod JavaScript
do strony?

Często znaczniki <script> mnieszczane są w sekcji <head> strony:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" http://www.w3.org/TR/
html4/strict.dtd">
<html>
<head>
<title>Strona WWW</title>
<script type="text/javascript">
</script>
</he ad>

WIEDZA W PIGUtCE

Skrypty po stronie klienta i serwera
JavaScript początkowo powstał jako język działający Na przykład witrynę Google Maps można utworzyć także

po stronie klienta. Pisany w nim kod jest przekazywa- we Flashu, a serwis Yahoo Maps był pierwotnie aplikacją

ny do przeglądarki przez serwer WWW. Osoby prze- flashową (dopiero później zastąpiono go wersją opartą

glądające naszą witrynę pobierają tworzące ją strony na języku JavaScript). Jest�·ednak szybki sposób na

WWW wraz z używanym na nich kodem JavaScript, sprawdzenie użytej technolo · Należy kliknąć stronę

a następnie ich przeglądarki- czyli klienty- przetwa- (samą mapę w witrynie � apsl prawym przy-

rzają pobrany kod i realizują wszystkie magiczne sztuczki. ciskiem myszy. Jeśli �o F��· pojawi się menu wyska-

JavaScript to język działający po stronie klienta, co po kujące z opcją A b��� F las h Player. · ·

polsku oznacza, że skrypty funkcjonują w przeglądarce. W części l�na�z omówienie Ajaksa, który łączy

Drugi typ języków programowania używanych w sieci stronę klien � �r
-
werową. W technologii tej wyko-

działa po stronie serwera. Do tej grupy należą: PHP, rzyst� �zy JavaScript do komunikacji z serwerem,

.NET, ASP, ColdFusion, Ruby on Rails i inne technologie po�i ��iego informacji i aktualizowania stron bez

serwerowe. Programy działające na serwerze mogą ko
·
ecz ości ich odświeżania. W witrynie Google Maps

wykonywać zaawansowane operacje, na przykład korzy- � a ta umożliwia przesuwanie mapy bez wczytywania

stać z baz danych, przetwarzać operacje z użyciem�Yych stron.
kredytm�ych i r�zsyłać e-ma ile po c�ły�

_
świecie;t>� Obecnie JavaScript znajduje także wiele zastosowań poza

blemem jest to, ze przeglądarka musi najpierw pr� przeglądarkami WWW. Przykładowo w serwerze WWW
żądanie na serwer, co zmusza odwiedzaj�cl_\�oe>cze- node js (http://nodejs.orgl) użyto właśnie języka Java-
kiwania na pobranie strony z nowymi in�ami. Script do nawiązywania połączeń z bazami danych, do-

Języki działające po stronie klient gą reagować stępu do systemu plików na serwerze oraz wykonywania

ności pobierania nowej stron .

i ukrywać, przenosić po ekran1 ·
wiedzi na działania użytkownika. Pozwala to tworzyć

witryny przypominające bardziej tradycyjne programy niż

statyczne strony WWW. JavaScript to nie jedyna tech­

nologia działająca w ten sposób. Do zwiększania moż­

liwości stron można użyć także wtyczek. Aplety języka

Java to jedno z takich rozwiązań. Są to małe, napisane

w Javie programy, które działają w przeglądarce. Zwykle

ich uruchamianie trwa długo i często powoduje awarie

przeglądarek.

Flash to następna technologia oparta na wtyczkach.

Pozwala dodawać złożone animacje, filmy, dźwięki oraz

interakcję. Czasem trudno ocenić, czy interaktywna

strona jest napisana w języku JavaScript, czy we Flashu.

wielu innych operacji. W tej książce nie będziemy zajmo­

wali się tymi aspektami wykorzystania języka JavaScript,

jednak osoby zainteresowane Node.js mogą obejrzeć

jego krótką prezentację, dostępną w serwisie YouTube

na stronie https:/ /www. youtube.com/watch ?v=hKQ­

-r2DGJjUQ.

Co więcej, w kilku stosunkowo nowych bazach danych

użyto JavaScriptu jako języka służącego do tworzenia,

pobierania i aktualizowania rekordów. Popularnymi przy­

kładami takich baz danych są MongoDB oraz CouchDB.

Można nawet spotkać się z terminem "pełen pakiet

JavaScriptu" oznaczającym wykorzystanie tego języka

w przeglądarce, na serwerze WWW oraz do obsługi baz

danych. Jeden język, by zarządzać wszystkim!

ROZDZIAŁ 1. PIERWSZY PROGRAM W JĘZYKU JAVASCRIPT

Jak dodać kod JavaScript
do strony?

Atrybut type znacznika <script> określa format i rodzaj danego skryptu. Kod
typ e= text!j avascript oznacza, że skrypt jest napisany jako zwykły tekst (podob­
nie jak kod HTML) w języku JavaScript.

Jeśli użyjesz języka HTMLS, Twoje zadanie będzie jeszcze łatwiejsze. Możesz cał­
kowicie pominąć atrybut typ e:

<!doctype html>
<html>
<head>
<meta charset="UTF-8">
<title>Strona WWW</title>
<script>

</script>
</he ad>

Przeglądarki pozwalają na pominięcie atrybutu typ e także wtedy, kiedy strony WWW
tworzone są w językach HTML 4.0 l oraz XHTML l. O - skrypty będą działały pra­
widłowo, choć gdy zabraknie atrybutu, sama strona ni�zejdzie procesu walidacji
(patrz ramka na stronie 23). W książce używamy delda���u dokumentu charak­
terystycznej dla języka HTMLS, jednak przedstawian iej skrypty JavaScript bę­
dą działać także na stronach WWW pisanych w j� � L 4.01 orazXHTML l. O.

Następnie między znacznikami <script�+jącym a zamykającym wpisz kod
JavaScript: �

<!doctype html> � �
<html> ,v <head>

O <meta charset="UTF-8"> o

<tit�e>Strona WWW</title>
<scrlpt> �

alert('Witaj, świ�� ;
<l script> "-.) </he ad>

•

z działa ten kod. Na razie przyjrzyj się znacznikom <script>.

Aby dodać s do strony, najpierw wstaw te znaczniki. Zwylde warto je zapisać
w sekcji �"acr co pozwala uporządkować kod JavaScript w jednym obszarze strony.

Jednal�i dopuszczalne jest umieszczanie znaczników <s er i p t> w dowolnym
miejscu strony. W dalszej części rozdziału poznasz polecenie języka JavaScript, które
umożliwia zapisywanie informacji bezpośrednio na stronie WWW. Przy stosowaniu
tego polecenia należy wstawić znaczniki <script> w ciele strony, tam gdzie skrypt
ma wyświetlić komunikat. Często zdarza się nawet, że kod JavaScript jest umiesz­
czany za zamykającym znacznikiem </body>- takie rozwiązanie daje pewność, że
przed wykonaniem skryptu strona zostanie w całości wczytana i wyświetlona.

Zewnętrzne pliki JavaScript
Znacznik <script> w postaci użytej w poprzednim punkcie pozwala dodać kod
JavaScript do jednej strony. Jednak wiele skryptów działa na wszystkich stronach
witryny. Może to być na przykład panel zawierający dodatkowe opcje nawigacyjne,
który pojawia się na stronie po umieszczeniu wskaźnika myszy na wybranym

CZĘŚĆ I + WPROWADZENIE DO JĘZYKA JAVASCRIPT

eletnencie (patrz rysunek 1.2). Ten sam wytnyślny pasek nawigacyjny powinien

znaleźć się na każdej stronie witryny, jednak rozwiązanie polegające na kopiowaniu

i wldejaniu kodu JavaScript we wszystkich plikach n1a wiele wad.

Jak dodać kod JavaScript
do strony?

NIKE+ SUBSKRYPCIA WIADOMOŚCI E MAIL "'w PD�OC

..........- __J_M_�_c zYŻNI • �TY · l DZIECI SPORIY ZALOGUJSIĘ·

NIKE+ ii!WHH i!j,j,j HH!ł 1!1* +;n !,IM
_..........-__ �-M�_ż c_zu _· N_ I ·�-KO-B I_ET_v _·��-D-Z IE-C I-·-� H IKESPO�,��-P-ER-SO -NA-liZ-U J_- �_Jl __ -����-il-UW--�-ZA-lO- GUJ-S-IĘ_· __

� �"Q � �
BIEGANIE

l A..._ �AIIIS� MESKI
PIŁKA NOŻNA �EN ING TRE.NING �.... 00" mooe<""'"''" '"OWOM'O

SKATEBDARD KOSZYKÓWKA

Rysunek 1.1. W witrynie Nike. com użyto języka JavaScript w celu utworzenia atrakcyjnych prezentacji swoich

produktów. Na stronie gfównej (pokazanej u góry) widoczny jest pasek przycisków nawigacyjnych, umieszczo­

nych na samej górze strony- Mężczyźni, Kobiety, Dzieci i tak dalej - które po wskazaniu myszą powodują

wyświetlenie panelu z dodatkowymi opcjami nawigacyjnymi. Wskazanie na przykfad przycisku Sporty (zakre­

ślonego u dofu) powoduje wyświetlenie panelu z listą różnych sportów, do uprawiania których sq przeznaczone

produkty firmy Nike

ROZDZIAŁ 1. PIERWSZY PROGRAM W JĘZYKU JAVASCRIPT

C ZĘŚĆ I  W P R O W A D Z E N I E D O JĘZ Y K A J A V A S C R I P T

Jak dodać kod JavaScript
do strony?

44

Po pierwsze, kopiowanie i wklejanie tego samego kodu wymaga dużo pracy, zwłasz-
cza jeśli witryna składa się z setek stron. Po drugie, jeśli zechcesz zmienić lub wzbo-
gacić skrypt, będziesz musiał znaleźć każdą stronę, na której go użyłeś, i poprawić
kod. Po trzecie, ponieważ cały kod programu JavaScript musi znaleźć się na wszyst-
kich stronach, każda z nich będzie dużo większa, a jej wczytywanie potrwa dłużej.

Lepsze podejście polega na użyciu zewnętrznego pliku JavaScript. Jeśli na stronach
korzystasz z zewnętrznych arkuszy CSS, technika ta nie będzie dla Ciebie niczym
nowym. Zewnętrzny plik JavaScript to po prostu plik tekstowy o rozszerzeniu .js, na
przykład navigation.js. Powinien on zawierać tylko kod JavaScript, a na stronie można
go wskazać za pomocą znacznika <script>. Aby na przykład dodać do strony głównej
plik JavaScript navigation.js, można użyć następującego kodu:

<!doctype html>
<html>
<head>
<meta charset="UTF-8">
<title>Strona WWW</title>
<script src="navigation.js"></script>
</head>

Atrybut src znacznika <script> działa podobnie jak atrybut src znacznika
lub atrybut href znacznika <a>. Wszystkie te atrybuty wskazują plik w tej samej lub
innej witrynie (patrz ramka na stronie 45).

Uwaga: Jeśli stosujesz atrybut src do wskazania zewnętrznego pliku JavaScript, nie umieszczaj

kodu JavaScript w użytych do tego znacznikach <script>. Jeżeli chcesz dołączyć zewnętrzny plik,

a ponadto dodać do strony niestandardowy kod JavaScript, użyj drugiej pary znaczników <script>.

Oto przykład:

 <script src="navigation.js"></script>
 <script>
 alert('Witaj, świecie!');
 </script>

Programiści często dołączają kilka zewnętrznych plików JavaScript do jednej strony.
Jeden plik może kontrolować rozwijany pasek nawigacji, a inny — umożliwiać do-
danie eleganckiego pokazu slajdów do strony ze zdjęciami. Na stronie z galerią po-
trzebne są oba programy JavaScript, dlatego należy dołączyć oba pliki.

Ponadto na tej samej stronie można umieścić kilka zewnętrznych plików JavaScript
i dodatkowo program w tym języku:

<!doctype html>
<html>
<head>
<meta charset="UTF-8">
<title>Strona WWW</title>
<script src="navigation.js"></script>
<script src="slideshow.js"></script>
<script>
 alert('Witaj, świecie!');
</script>
</head>

Należy pamiętać o użyciu otwierającego i zamykającego znacznika <script> przy
każdym zewnętrznym pliku JavaScript. Plik tego typu utworzysz w przykładzie roz-
poczynającym się na stronie 49.

R O Z D Z I AŁ 1 . P I E R W S Z Y P R O G R A M W JĘZ Y K U J A V A S C R I P T

Jak dodać kod JavaScript
do strony?

45

W I E D Z A W P I G U Ł C E

Rodzaje adresów URL
Przy dołączaniu zewnętrznego pliku JavaScript w atrybucie

src znacznika <script> trzeba podać adres URL (ang.

Uniform Resource Locator). Jest to ścieżka do pliku w sieci

WWW. Są trzy rodzaje takich ścieżek: bezwzględne,

podane względem katalogu głównego i podane wzglę-

dem dokumentu. Wszystkie trzy informują przeglądarkę

o lokalizacji danego pliku.

Ścieżka bezwzględna przypomina adres pocztowy —

zawiera wszystkie informacje potrzebne do znalezienia

pliku przeglądarce uruchomionej w dowolnym kom-

puterze. Taka ścieżka zawiera człon http:// oraz na-

zwę domeny, katalogu i pliku, na przykład http://www.

uptospeedguides.com/scripts/site js.

Ścieżka podana względem katalogu głównego określa

lokalizację pliku względem folderu z najwyższego poziomu.

Nie obejmuje ona członu http:// ani nazwy domeny. Roz-

poczyna się od ukośnika (/), który reprezentuje katalog

główny witryny (to w nim znajduje się strona główna). Na

przykład ścieżka /scripts/site js prowadzi do pliku site.js,

który znajduje się w katalogu scripts w katalogu głównym.

Łatwy sposób na utworzenie takiej ścieżki polega na

usunięciu członu http:// i nazwy domeny ze ścieżki bez-

względnej. Adres http://www.uptospeedguides.com/
index.html w formie ścieżki podanej względem katalogu

głównego to /index.html.

Ścieżka podana względem dokumentu prowadzi od danej

strony do pliku JavaScript. Jeśli witryna obejmuje kilka

poziomów katalogów, do tego samego pliku mogą pro-

wadzić różne ścieżki. Załóżmy, że plik site.js znajduje

się w katalogu scripts w katalogu głównym witryny.

Ścieżka podana względem dokumentu na stronie głównej

to scripts/site.js, jeśli jednak strona znajduje się w kata-

logu about, trzeba użyć ścieżki ../scripts/site.js. Sekwen-

cja ../ oznacza wyjście z katalogu about, a fragment

scripts/site.js powoduje przejście do katalogu scripts
i pobranie pliku site js.

Oto kilka wskazówek pomocnych przy wyborze typu

adresu.

 Jeśli podajesz adres pliku na innym serwerze, musisz
użyć ścieżki bezwzględnej. Tylko w ten sposób

można wskazać inną witrynę.

 Ścieżki podawane względem katalogu głównego

są dobre do wskazywania plików JavaScript zapi-

sanych w danej witrynie. Ponieważ adres URL zaw-

sze zaczyna się od katalogu głównego, będzie taki

sam dla wszystkich stron, nawet jeśli znajdują się

w odmiennych katalogach i podkatalogach witryny.

Jednak rozwiązanie to nie działa, jeżeli nie przeglą-

dasz stron za pośrednictwem serwera (albo serwera

działającego w internecie, albo serwera testowego

na własnym komputerze). Jeśli otwierasz strony

bezpośrednio na komputerze za pomocą polecenia

Plik/Otwórz, przeglądarka nie zdoła zlokalizować,

wczytać i uruchomić plików JavaScript, które wska-

zano za pomocą takiej ścieżki.

 Ścieżki podawane względem dokumentu są najlep-

sze, kiedy projektujesz witrynę na własnym kompu-

terze bez wykorzystania serwera. Możesz przygo-

tować zewnętrzny plik JavaScript, dołączyć go do

strony, a następnie sprawdzić jego działanie w prze-

glądarce przez otwarcie strony z dysku twardego.

Ścieżki tego typu działają poprawnie po przeniesieniu

działającej witryny do internetu, jednak przy zmianie

lokalizacji strony na serwerze trzeba zmienić rów-

nież adres pliku JavaScript. W tej książce używane

są właśnie takie ścieżki, ponieważ pozwalają urucha-

miać i testować przykłady przy użyciu komputerów

bez zainstalowanego serwera sieciowego.

Zewnętrzne pliki JavaScript można przechowywać w dowolnej lokalizacji w katalogu
głównym witryny lub w jednym z jego podkatalogów. Wielu programistów tworzy
w katalogu głównym specjalny folder na takie pliki. Jego standardowe nazwy to js
(od „JavaScript”) i libs (od ang. „libraries”, czyli biblioteki).

Uwaga: Czasem ważna jest kolejność dołączania zewnętrznych plików JavaScript. W dalszej części

książki zobaczysz, że niektóre skrypty korzystają z kodu umieszczonego w plikach zewnętrznych.

Zdarza się to często przy stosowaniu bibliotek JavaScript (zawierają one kod JavaScript upraszczający

wykonywanie złożonych zadań programistycznych). W przykładzie rozpoczynającym się na stro-

nie 49 zobaczysz, jak używać bibliotek JavaScript.

http://www.uptospeedguides.com/scripts/site.js
http://www.uptospeedguides.com/index.html
http://www.uptospeedguides.com/scripts/site.js
http://www.uptospeedguides.com/index.html

C ZĘŚĆ I  W P R O W A D Z E N I E D O JĘZ Y K A J A V A S C R I P T

Pierwszy program
w języku JavaScript

46

Pierwszy program w języku JavaScript

Najlepszy sposób na naukę programowania w języku JavaScript polega na… progra-
mowaniu. W dalszej części książki znajdziesz praktyczne przykłady, które przeprowa-
dzą Cię krok po kroku przez proces tworzenia programów JavaScript. Będziesz potrze-
bował edytora tekstu (na stronie 26 znajdziesz listę zalecanych aplikacji), przeglądarki
i plików dostępnych na stronie książki w witrynie helion.pl (dokładne instrukcje znaj-
dziesz w poniższej uwadze).

Uwaga: Przykłady z tego rozdziału wymagają pobrania plików ze strony poświęconej książce w witrynie

helion.pl. Kliknij odnośnik Przykłady na ftp, aby pobrać potrzebny kod. Jest on zapisany w jednym

pliku ZIP.

Użytkownicy systemu Windows powinni pobrać plik ZIP i dwukrotnie go kliknąć, aby otworzyć archiwum.

Następnie należy wybrać opcję Wyodrębnij pliki, wykonać instrukcje kreatora wyodrębniania i wybrać

miejsce na zapisanie plików w komputerze. Użytkownicy systemu Mac muszą tylko kliknąć archiwum

dwukrotnie, aby je rozpakować. Po pobraniu i wyodrębnieniu plików w komputerze powinien znaleźć

się katalog Przykłady z plikami z wszystkich przykładów omówionych w książce.

Pierwszy program jest bardzo prosty, co pozwala łagodnie zapoznać się z językiem
JavaScript.

 1. Otwórz w ulubionym edytorze tekstu plik hello.html.

Plik ten znajduje się w katalogu R01 w katalogu Przykłady, pobranym ze strony
poświęconej książce w witrynie helion.pl. Jest to bardzo prosta strona HTML
z zewnętrznym arkuszem CSS, który zwiększa atrakcyjność wizualną do-
kumentu.

 2. Kliknij pusty wiersz tuż przed zamykającym znacznikiem </head> i dodaj
poniższy kod:

<script>

Jest to kod w języku HTML, a nie JavaScript. Ten wiersz informuje przeglądarkę
o tym, że następny fragment to kod JavaScript.

 3. Wciśnij klawisz Enter, aby utworzyć nowy pusty wiersz. Wpisz w nim na-
stępujący kod:

alert('Witaj, świecie!');

Właśnie wpisałeś pierwszy wiersz kodu JavaScript. Funkcja alert() wyświetla
okno dialogowe z komunikatem podanym w nawiasach. Tu jest to tekst Witaj,
świecie!. Na razie nie przejmuj się znakami przestankowymi (nawiasami,
apostrofami i średnikiem). W następnym rozdziale dowiesz się, do czego służą.

 4. Wciśnij ponownie klawisz Enter i dodaj znacznik </script>. Kod powinien
wyglądać następująco:

<link href="../_css/site.css" rel="stylesheet">
<script>
alert('Witaj, świecie!');
</script>
</head>

R O Z D Z I AŁ 1 . P I E R W S Z Y P R O G R A M W JĘZ Y K U J A V A S C R I P T

Pierwszy program
w języku JavaScript

47

Tekst, który wpisałeś samodzielnie, jest wyróżniony pogrubieniem. Dwa znacz-
niki HTML znajdowały się już w pliku. Upewnij się, że kod wygląda dokładnie
tak, jak ten w tekście.

 5. Uruchom przeglądarkę i otwórz plik hello.html, aby zobaczyć jego podgląd.

Pojawi się okno dialogowe języka JavaScript (patrz rysunek 1.3). Zauważ, że
w momencie pojawienia się okna strona jest pusta. Jeśli nie widzisz okienka
przedstawionego na rysunku 1.3, możliwe, że w kodzie pojawił się błąd. Sprawdź
dokładnie kod i zapoznaj się z następną wskazówką.

Rysunek 1.3. Okno dialogowe języka JavaScript pozwala szybko przykuć uwagę internauty. Wyświetlające
je polecenie jest jednym z najprostszych w nauce i użytkowaniu

Wskazówka: W czasie nauki programowania będziesz zaskoczony, jak często programy JavaScript

w ogóle nie działają. Wśród początkujących programistów najczęstszą przyczyną błędów są zwykłe

literówki. Zawsze dokładnie sprawdź kod, aby się upewnić, że polecenia (takie jak alert w pierwszym

skrypcie) są zapisane poprawnie. Ponadto pamiętaj, że znaki przestankowe często pojawiają się

w parach (na przykład nawias otwierający i zamykający oraz apostrofy w przykładowym kodzie). Upewnij

się, że kod zawiera wszystkie potrzebne symbole początkowe i końcowe.

 6. Kliknij przycisk OK okna dialogowego, aby je zamknąć.

Kiedy okienko zniknie, w oknie przeglądarki pojawi się zawartość strony.

Choć pierwszy program nie jest zbyt złożony (a nawet interesujący), ilustruje
ważne zagadnienie: przeglądarka uruchamia programy JavaScript w momencie
wczytywania kodu. W przykładzie polecenie alert() zostało wykonane przed wy-
świetleniem strony w przeglądarce, ponieważ kod JavaScript znajdował się przed ko-
dem HTML zapisanym w znaczniku <body>. Będzie to istotne, kiedy zaczniesz pisać
programy manipulujące kodem HTML strony (nauczysz się tego w rozdziale 3.).

C ZĘŚĆ I  W P R O W A D Z E N I E D O JĘZ Y K A J A V A S C R I P T

Dodawanie tekstu
do stron

48

Uwaga: Niektóre wersje przeglądarki Internet Explorer nie lubią wykonywać programów JavaScript na

stronach otwieranych bezpośrednio z dysku twardego; istnieje obawa, że mogą być niebezpieczne.

Jeśli zatem będziesz próbował wyświetlać w tej przeglądarce przykładowe pliki dołączone do tej

książki, zapewne zobaczysz komunikat informujący o tym, że Internet Explorer zablokował umiesz-

czone w nich skrypty. Aby je wykonać, należy kliknąć przycisk „Zezwól na zablokowaną zawartość”.

To dosyć denerwujące zachowanie odnosi się wyłącznie do stron WWW otwieranych z dysku twardego

komputera, a nie z serwera WWW. Aby uniknąć konieczności ciągłego klikania powyższego przycisku,

warto przeglądać strony przy użyciu dowolnej innej przeglądarki, takiej jak Chrome lub Firefox.

Dodawanie tekstu do stron

Poprzedni skrypt wyświetlał okno dialogowe na środku monitora. Jak jednak za
pomocą języka JavaScript wyświetlić komunikat bezpośrednio na stronie? Istnieje
na to wiele sposobów, a w dalszej części książki poznasz kilka zaawansowanych
rozwiązań. Jednak ten prosty cel można zrealizować także dzięki wbudowanej
instrukcji języka JavaScript, której użyjesz w drugim skrypcie.

 1. Otwórz w edytorze plik hello2.html.
Choć znaczniki <script> znajdują się zwykle w sekcji <head> strony, można
umieszczać je i same skrypty także bezpośrednio w ciele strony.

 2. Bezpośrednio pod kodem <h1>Zapis w oknie dokumentu </h1> wpisz na-
stępujący fragment:

<script>
document.write('<p>Witaj, świecie!</p>');
</script>

Funkcja document.write(), podobnie jak alert(), to polecenie języka
JavaScript. Ta instrukcja powoduje dodanie do strony tekstu wpisanego w na-
wiasach. Tu jest to kod HTML <p>Witaj, świecie!</p>, który obejmuje
znaczniki akapitu i dwa słowa.

 3. Zapisz stronę i otwórz ją w przeglądarce.
Strona otworzy się, a pod niebieskim nagłówkiem pojawi się napis „Witaj,
świecie!” (patrz rysunek 1.4).

Uwaga: Wśród pobranych plików znajdziesz też gotową wersję każdego przykładu. Jeśli wpisany kod

JavaScript nie działa, porównaj własne rozwiązanie z plikiem ze słowem kompletny_ w nazwie, zapisanym

w tym samym katalogu, w którym znajduje się kod przykładów. Plik complete_hello2.html zawiera

działającą wersję skryptu dodanego do pliku hello2.html i tak dalej.

Po utworzeniu dwóch pierwszych skryptów możesz czuć się nieco zawiedziony
możliwościami języka JavaScript… lub tą książką. Nie zniechęcaj się — to jest
dopiero sam początek. Ważne, aby najpierw dobrze opanować podstawy. W ko-
lejnych rozdziałach nauczysz się wykonywać za pomocą języka JavaScript bardzo
przydatne i skomplikowane zadania. Kilka następnych punktów tego rozdziału
daje przedsmak zaawansowanych funkcji, które będziesz umiał dodać do stron po
zapoznaniu się z dwiema pierwszymi częściami książki.

R O Z D Z I AŁ 1 . P I E R W S Z Y P R O G R A M W JĘZ Y K U J A V A S C R I P T

Dołączanie zewnętrznych
plików JavaScript

49

Rysunek 1.4. Świetnie. Ten skrypt nie jest imponujący, ale pokazuje, jak używać języka JavaScript do dodawania
treści do stron. Jest to przydatne, kiedy chcesz wyświetlić komunikat (na przykład: „Witaj ponownie w witrynie,
Jacku”) po wczytaniu strony

Dołączanie zewnętrznych plików JavaScript
Na stronie 42 dowiedziałeś się, że jeśli ten sam skrypt ma działać na kilku stronach,
kod JavaScript zwykle warto umieścić w odrębnym pliku. Następnie można naka-
zać stronie wczytanie tego pliku i użycie zapisanego w nim kodu. Zewnętrzne pliki
JavaScript są przydatne także przy używaniu kodu napisanego przez innych pro-
gramistów. Dotyczy to przede wszystkim zbiorów kodu nazywanych bibliotekami.
Zwykle ułatwiają one wykonywanie trudnych zadań. Więcej informacji o bibliote-
kach JavaScript znajdziesz na stronie 133. Szczególnie dobrze poznasz bibliotekę
używaną w tej książce (oraz na bardzo wielu witrynach WWW), czyli jQuery.

Jednak na razie poszerzysz swą wiedzę przez dołączenie do strony zewnętrznego pliku
JavaScript i napisanie krótkiego programu, który będzie robił coś niesamowitego.

 1. Otwórz w edytorze plik slide.html.

Strona ta zawiera prosty kod HTML — kilka znaczników <div>, nagłówek
oraz parę akapitów tekstu. Już zaraz dodasz do niej prosty efekt wizualny,
który sprawi, że cała zawartość powoli stanie się widoczna.

 2. Kliknij pusty wiersz między znacznikiem <link> a zamykającym znaczni-
kiem </head> w górnej części strony i wpisz następujący kod:

<script src="../_js/jquery.min.js"></script>

Ten kod dołącza do dokumentu plik o nazwie jquery.min.js, znajdujący się
w katalogu js. Kiedy przeglądarka wczyta stronę, pobierze także plik jquery.min.js
i uruchomi zapisany w nim kod.

C ZĘŚĆ I  W P R O W A D Z E N I E D O JĘZ Y K A J A V A S C R I P T

Dołączanie zewnętrznych
plików JavaScript

50

Następnie trzeba dodać do strony własny kod JavaScript.

Uwaga: Słowo min oznacza, że plik został zminimalizowany, czyli specjalnie zmniejszony — poprzez

usunięcie wszelkich niepotrzebnych odstępów i zapisanie kodu w bardziej zwartej postaci — by jego

pobieranie zajmowało mniej czasu.

 3. Wciśnij klawisz Enter, aby dodać nowy wiersz, i wpisz w nim poniższy kod:
<script>

Znaczniki HTML zwykle występują w parach. Aby nie zapomnieć o dodaniu
znacznika zamykającego, warto dołączyć go bezpośrednio po wpisaniu znacz-
nika otwierającego, a następnie wpisać kod między tymi znacznikami.

 4. Wciśnij dwukrotnie klawisz Enter, aby dodać dwa puste wiersze, i wpisz
następujący kod:

</script>

To kończy blok kodu JavaScript. Teraz dodasz sam kod.

 5. Kliknij pusty wiersz między otwierającym a zamykającym znacznikiem
skryptu i dodaj poniższy kod:

$(document).ready(function() {

Prawdopodobnie zastanawiasz się, co to oznacza. Szczegółowy opis tego kodu
znajdziesz na stronie 141, a na razie zapamiętaj, że fragment ten wykorzystuje
kod z pliku jquery.min.js. Kod ten gwarantuje, że przeglądarka uruchomi na-
stępny wiersz w odpowiednim czasie.

 6. Wciśnij klawisz Enter, aby dodać nowy wiersz, i wpisz w nim poniższy kod:
$('header').hide().slideDown(3000);

Wyniki wykonania tej instrukcji są magiczne. Sprawia ona, że zawartość strony
najpierw znika, a następnie, powoli, wsunie się do góry na stronę (co zajmuje
3 sekundy, czyli 3000 milisekund). W jaki sposób to się dzieje? Cóż, to wła-
śnie próbka magicznych możliwości biblioteki jQuery, która pozwala tworzyć
złożone efekty przy użyciu jednego wiersza kodu.

 7. Wciśnij klawisz Enter po raz ostatni, a następnie wpisz następujące znaki:
});

Ta sekwencja kończy kod JavaScript, podobnie jak zamykający znacznik
</script> oznacza koniec programu JavaScript. Nie przejmuj się na razie
dziwnymi znakami przestankowymi. W dalszej części książki dowiesz się,
jak działają. Na razie upewnij się, że dokładnie przepisałeś kod. Jedna literówka
może sprawić, że skrypt nie będzie działał.

Kod, który należy dodać do strony, jest wyróżniony pogrubieniem:
<link href="../css/global.css" rel="stylesheet">
<script src="../_js/jquery.min.js"></script>
<script>
$(document).ready(function() {
 $('header').hide().slideDown(3000);
});
</script>
</head>

R O Z D Z I AŁ 1 . P I E R W S Z Y P R O G R A M W JĘZ Y K U J A V A S C R I P T

Wykrywanie błędów

51

Wskazówka: Aby poprawić czytelność kodu, warto stosować wcięcia. Wiersze kodu JavaScript

umieszczone wewnątrz bloku można wcinać, tak samo jak wcinamy znaczniki HTML, by pokazać

które z nich znajdują się wewnątrz innych. Przykładowo wiersz kodu dodany w kroku 6. jest umiesz-

czony wewnątrz kodu dodanego w krokach 5. i 7., zatem naciśnięcie klawisza tabulacji lub kilka-

krotne naciśnięcie klawisza spacji przed dodaniem kodu poprawią jego czytelność i ułatwią zrozumienie

(co widać na przykładzie kodu przedstawionego w kroku 7.).

 8. Zapisz plik HTML i otwórz go w przeglądarce.

Powinieneś zobaczyć nagłówek — zsuwający się nagłówek — i akapit tekstu,
a u dołu strony stopkę oraz powoli wsuwający się od góry na stronę nagłówek
„JavaScript i jQuery. Nieoficjalny podręcznik”. Spróbuj wpisać inną liczbę za-
miast 3000 (na przykład 250 lub 10000), by przekonać się, jaki to będzie miało
wpływ na sposób działania strony.

Uwaga: Jeśli spróbujesz wyświetlić tę stronę w Internet Explorerze i okaże się, że nic się nie dzieje,

będziesz musiał kliknąć napis Zezwalaj na zablokowaną zawartość, wyświetlony u dołu okna programu

(przeczytaj także uwagę zamieszczoną na stronie 48).

Jak widać, krótki fragment kodu JavaScript pozwala uzyskać niezwykłe efekty na
stronach WWW. Dzięki bibliotekom języka JavaScript, takim jak jQuery, możesz
tworzyć złożone, interaktywne witryny bez zaawansowanych umiejętności progra-
mistycznych. Pomocna jest jednak podstawowa wiedza z obszaru języka JavaScript
i programowania. W rozdziałach 2. i 3. poznasz podstawy JavaScriptu oraz opanu-
jesz główne zagadnienia i składnię tego języka.

Wykrywanie błędów
Najbardziej frustrujący przy programowaniu w języku JavaScript jest moment,
kiedy programista próbuje uruchomić w przeglądarce stronę z kodem JavaScript, ale
nic się nie dzieje. Programiści bardzo często spotykają się z taką sytuacją. Nawet
doświadczeni profesjonaliści nie zawsze od razu piszą poprawny kod, dlatego wykry-
wanie usterek jest nieodłącznym elementem programowania.

Większość przeglądarek ignoruje błędy w kodzie JavaScript, dlatego zwykle nie
zobaczysz nawet okienka z informacją: „Ten program nie działa!”. Przeważnie jest
to korzystne, ponieważ błędy w kodzie JavaScript nie powinny zakłócać przeglą-
dania stron.

Jak więc można wykryć, gdzie wystąpił błąd? Jest wiele sposobów wyszukiwania
usterek w programach JavaScript. W rozdziale 13. poznasz zaawansowane techniki
diagnostyczne, jednak najprostszą metodą jest użycie przeglądarki. Większość prze-
glądarek śledzi błędy w kodzie JavaScript i zapisuje je w odrębnym oknie — w kon-
soli JavaScript. Kiedy wczytasz stronę, która zawiera błąd, możesz wyświetlić kon-
solę, aby uzyskać pomocne informacje na temat usterki, na przykład numer wiersza
strony, w którym wystąpił błąd, i opis problemu.

Często, korzystając z konsoli JavaScript, uda Ci się znaleźć przyczynę problemu,
naprawić kod JavaScript i strona zacznie działać. Konsola ta pomaga dostrzec pro-
ste literówki typowe dla początkujących, na przykład brakujące końcowe znaki

C ZĘŚĆ I  W P R O W A D Z E N I E D O JĘZ Y K A J A V A S C R I P T

Wykrywanie błędów

52

przestankowe lub błędne nazwy poleceń języka JavaScript. Możesz używać konsoli
w swoim ulubionym programie. Jednak czasem skrypty działają tylko w niektórych
przeglądarkach, zatem w tym podrozdziale dowiesz się, jak uruchomić konsolę
JavaScript we wszystkich popularnych przeglądarkach, aby wykryć błędy w każdej
z nich.

Konsola JavaScript w przeglądarce Chrome
Przeglądarka Chrome napisana w firmie Google jest ulubioną przeglądarką wielu
twórców stron WWW. Dostępne w niej narzędzia dla programistów zapewniają
wiele możliwości rozwiązywania problemów z kodami HTML, CSS oraz JavaScript.
Dodatkowo dostępna w niej konsola JavaScript jest miejscem, które idealnie nadaje
się do rozpoczęcia odnajdywania błędów w kodzie — nie tylko opisuje błędy, które
wystąpiły, lecz także podaj plik i numer wiersza, w którym błąd się pojawił.

Aby wyświetlić konsolę, należy kliknąć przycisk Dostosowywanie i kontrolowanie
Google Chrome (zakreślony na rysunku 1.5), a następnie wybrać opcję Więcej na-
rzędzi/Konsola JavaScript. Można także użyć kombinacji klawiszy Ctrl+Shift+J
(w systemie Windows) lub +Option+J (w systemie Mac OS).

Rysunek 1.5. Kliknij menu Dostosowywanie (zakreślone), aby uzyskać dostęp do konsoli JavaScript oraz wielu
innych, przydatnych narzędzi. Innym sposobem uzyskania dostępu do konsoli jest wybranie opcji Narzędzia dla
programistów, gdyż stanowi ona element większego zestawu narzędzi o tej właśnie nazwie. Narzędzia te poznasz
dokładniej w rozdziale 17.

R O Z D Z I AŁ 1 . P I E R W S Z Y P R O G R A M W JĘZ Y K U J A V A S C R I P T

Wykrywanie błędów

53

Po wyświetleniu konsoli można obejrzeć wszystkie błędy, które wystąpiły na
aktualnie wyświetlonej stronie. Przykładowo w konsoli przedstawionej na ry-
sunku 1.6 określono napotkany błąd jako „Uncaught SyntaxError: Unexpected
token ILLEGAL”. No dobrze, być może znaczenie tego błędu nie jest od razu
oczywiste, jednak wraz z odnajdywaniem (i poprawianiem) kolejnych błędów na
pewno przyzwyczaisz się do tych lakonicznych opisów. Najprościej rzecz ujmując,
błąd syntaktyczny informuje o jakimś problemie typograficznym, związanym ze
składnią lub językiem programu. Fragment „Unexpected token ILLEGAL” oznacza,
że przeglądarka odnalazła niedozwolony znak bądź też (i to już jest nieco trudniej-
szy problem) czegoś w kodzie brakuje. W naszym przypadku po dokładniejszym
przeanalizowaniu kodu przykładu można zauważyć, że przed słowem slow jest
umieszczony cudzysłów, lecz za nim cudzysłowu nie ma.

Konsola wyświetla także nazwę pliku, w którym wystąpił błąd (w tym przypadku
jest to complete_slide.html) oraz numer wiersza (wiersz 10.). Wystarczy kliknąć
nazwę pliku, by Chrome wyświetliła plik powyżej konsoli i przez chwilę podświe-
tliła odpowiedni wiersz kodu (patrz rysunek 1.6).

Rysunek 1.6. Konsola JavaScript przeglądarki Chrome wyświetla błędy, które wystąp ły w kodzie. Można klik-
nąć nazwę pliku wyświetloną z prawej strony opisu błędu, a przeglądarka pokaże kod strony i na chw lę pod-
świetli wiersz kodu, w którym wystąp ł błąd

Wskazówka: Ponieważ konsola wyświetla numery wierszy, w których występują błędy, zatem warto

używać także edytora numerującego wiersze kodu. Wtedy bez trudu będzie można przejść z konsoli

JavaScript do edytora i odszukać w nim problematyczny wiersz, który należy pobrać.

C ZĘŚĆ I  W P R O W A D Z E N I E D O JĘZ Y K A J A V A S C R I P T

Wykrywanie błędów

54

Niestety, w skrypcie może wystąpić wiele usterek — od prostych literówek po zło-
żone błędy w logice kodu. Osoby poznające dopiero język JavaScript popełniają
wiele błędów przy wpisywaniu kodu: zapominają o średnikach, cudzysłowach
i nawiasach lub błędnie wpisują polecenia języka. Literówki pojawiają się szcze-
gólnie często przy przepisywaniu przykładów z książek. Poniżej znajduje się li-
sta często popełnianych błędów oraz (niezbyt oczywistych) komunikatów, które
o nich informują.

 Brakujące znaki interpunkcyjne. W kodzie JavaScript występuje bardzo wiele
symboli, takich jak otwierające i zamykające nawiasy oraz nawiasy klamrowe.
Przykładowo w kodzie alert('Witaj'; brakuje nawiasu zamykającego po
słowie Witaj, przez co podczas próby obejrzenia takiej strony Chrome wy-
świetli komunikat „Unexpected token ;”, informując, że oczekiwała innego
znaku niż wyświetlony w komunikacie. W tym przypadku zamiast nawiasu
zamykającego został odnaleziony średnik.

 Brakujący znak cudzysłowu lub apostrofu. Łańcuch znaków to zbiór znaków
umieszczony w cudzysłowach lub apostrofach (więcej informacji na temat
znajdziesz na stronie 61), na przykład słowo Witaj w kodzie alert('Witaj');.
Łatwo zapomnieć o dodaniu otwierającego lub zamykającego cudzysłowu.
Można też pomieszać cudzysłowy i apostrofy; na przykład przez nieuwagę
można napisać alert(Witaj');. W obu tych przypadkach zostanie zapewne
wyświetlony błąd „Uncaught SyntaxError: Unexpected token ILLEGAL”.

 Nieprawidłowo zapisane polecenia. Jeśli nieprawidłowo zapiszemy na-
zwę polecenia JavaScript, na przykład: aler(Witaj);, zostanie wyświe-
tlony błąd informujący o tym, że podane polecenie nie zostało zdefiniowane.
Przykładowo w przedstawionym przykładzie nieprawidłowo zapisanego pole-
cenia alert komunikat może mieć postać: „Uncaught ReferenceError: aler is
not defined”. Błędy będą także zgłaszane w przypadku nieprawidłowego zapisa-
nia nazw funkcji biblioteki jQuery (takich jak .hide() lub .slideDown()
używanych w przedstawionym wcześniej programie przykładowym). W tym
przypadku będzie im jednak towarzyszył inny komunikat. Jeśli w poprzednim
przykładzie, w kroku 6. na stronie 50 zamiast hide napiszemy hid, Chrome
wyświetli komunikat o treści: „Uncaught TypeError: Object [object Object]
has no method ‘hid’”.

 Błąd składni. Czasem Chrome nie potrafi zrozumieć znaczenia kodu i wyświe-
tla ogólny komunikat o błędzie. Błąd składni wskazuje na usterkę w kodzie. Może
to być na przykład połączenie poleceń JavaScript w niedozwolony sposób, a nie
prosta literówka. Należy wtedy dokładnie przyjrzeć się wierszowi z błędem i spró-
bować ustalić przyczynę problemu. Niestety, naprawa usterek tego typu często
wymaga doświadczenia i zrozumienia kodu JavaScript.

Powyższa lista pokazuje, że wiele błędów wynika po prostu z pominięcia znaku
przestankowego, na przykład cudzysłowu lub nawiasu. Na szczęście takie usterki
można łatwo naprawić, a wraz z nabywaniem doświadczenia prawie przestaniesz
popełniać podobne pomyłki (żaden programista nie jest całkowicie bezbłędny).

R O Z D Z I AŁ 1 . P I E R W S Z Y P R O G R A M W JĘZ Y K U J A V A S C R I P T

Wykrywanie błędów

55

Konsola przeglądarki Internet Explorer
Przeglądarka Internet Explorer udostępnia zbiór wyszukanych narzędzi programi-
stycznych, służących nie tylko do odnajdywania błędów w kodzie JavaScript, lecz
także do analizowania kodów CSS, HTML oraz przesyłu danych siecią. Po otworzeniu
okno narzędzi programistycznych jest widoczne w dolnej części okna przeglądarki.
Okno narzędzi programistycznych można wyświetlić, naciskając klawisz F12; po-
nowne naciśnięcie tego samego klawisza spowoduje jego zamknięcie. Błędy odnale-
zione w kodzie JavaScript są wyświetlane na karcie Konsola (patrz rysunek 1.7).

Rysunek 1.7. Okno narzędzie deweloperskich w przeglądarce Internet Explorer zapewnia dostęp do błędów
w kodzie JavaScript, a także do bardzo wielu innych informacji

Uwaga: Jeśli najpierw otworzymy stronę WWW, a dopiero potem konsolę JavaScript, Internet Explo-

rer nie wyświetli w niej żadnych błędów (nawet jeśli takie na stronie występują). Aby je pokazać, konieczne

jest ponowne wyświetlenie strony. Kiedy konsola będzie już wyświetlona, błędy będą w niej widoczne

podczas oglądania strony.

Konsola przeglądarki IE wyświetla komunikaty błędów, podobne do prezentowa-
nych w przedstawionej wcześniej przeglądarce Chrome. Jednak czasami wyświetlane
komunikaty są nieco inne. Przykładowo błąd „Unexpected token ILLEGAL” w prze-
glądarce Chrome w Internet Explorerze jest prezentowany jako „Brak zakończenia
stałej znakowej”. Podobnie jak Chrome, także Internet Explorer wyświetla informa-
cje o miejscu wystąpienia błędu w kodzie dokumentu HTML i pozwala kliknąć, by
go wyświetlić.

C ZĘŚĆ I  W P R O W A D Z E N I E D O JĘZ Y K A J A V A S C R I P T

Wykrywanie błędów

56

Konsola JavaScript w przeglądarce Firefox
Także przeglądarka Firefox fundacji Mozilla udostępnia konsolę pozwalającą na
przeglądanie błędów JavaScript. Aby ją wyświetlić, należy kliknąć przycisk Otwórz
menu widoczny w prawym górnym rogu okna przeglądarki, a następnie wybrać opcję
Narzędzia i Konsola WWW.Na komputerach Mac trzeba wybrać opcję Narzędzia/
Dla twórców witryn/Konsola przeglądarki. Można także skorzystać z kombinacji
klawiszy Ctrl+Shift+I (w systemie Windows) oraz +Option+K (Mac).

Po wyświetleniu konsoli widoczna w niej będzie strona z błędami JavaScript.
Niestety, w przypadku przeglądarki Firefox konsola WWW to prawdziwa skarbnica
danych, a nie zwyczajne narzędzie do wyświetlania błędów JavaScriptu (patrz rysu-
nek 1.8). Dzieje się tak dlatego, że udostępnia ona informacje o wielu różnych zda-
rzeniach: pobranych plikach, napotkanych błędach CSS, HTML i tym podobnych.

Rysunek 1.8. Jeśli nie chcemy oglądać wszystkich komunikatów widocznych w konsoli WWW przeglądarki
Firefox, wystarczy kliknąć przycisk odpowiadający typowi komunikatów, które chcemy ukryć. I tak kliknięcie
przycisku CSS spowoduje ukrycie komunikatów o błędach CSS, a przycisku Bezpieczeństwo — o błędach
bezpieczeństwa. Wyłączone przyciski można poznać po tym, że są jaśniejsze, tak jak przedstawione na tym
rysunku przyciski CSS i Bezpieczeństwo. Przycisk jest włączony, jeśli jest ciemniejszy i wygląda jakby był
„wciśnięty”, jak widoczne przyciski Sieć, JS (skrót od JavaScript) oraz Wpisy dziennika

Uwaga: Wtyczka Firebug (http://getfirebug.com) znacznie rozszerza możliwości standardowej

konsoli WWW przeglądarki Firefox. W rzeczywistości wtyczka ta stanowiła wzór dla narzędzi pro-

gramistycznych dostępnych obecnie w przeglądarkach Internet Explorer, Chrome oraz Safari (przed-

stawionej w następnym punkcie rozdziału).

http://getfirebug.com

R O Z D Z I AŁ 1 . P I E R W S Z Y P R O G R A M W JĘZ Y K U J A V A S C R I P T

Wykrywanie błędów

57

Konsola błędów w przeglądarce Safari
Konsolę błędów w przeglądarce Safari można otworzyć przy użyciu opcji Pro-
gramowanie/Pokaż konsolę błędów (na komputerach Mac można użyć skrótu
Option++C, a na komputerach z systemem Windows skrótu Ctrl+Alt+C).
Jednak po zainstalowaniu Safari menu Programowanie jest zwykle wyłączone, dla-
tego aby uruchomić konsolę JavaScript, trzeba zwykle wykonać kilka operacji.

Aby wyświetlić menu Programowanie na komputerach Mac, wybierz opcję Safari/
Preferencje. Po wyświetleniu okna dialogowego kliknij przycisk Zaawansowane,
a następnie zaznacz pole wyboru Pokazuj menu Programowanie w pasku menu
i zamknij okno dialogowe.

Kiedy ponownie uruchomisz Safari, menu Programowanie pojawi się na pasku
menu między opcjami Zakładki a Okno. Aby uruchomić konsolę, wybierz opcję
Programowanie/Pokaż konsolę błędów (patrz rysunek 1.9).

Rysunek 1.9. Konsola błędów w Safari wyświetla nazwę błędu JavaScript, nazwę i lokalizację pliku oraz wiersz,
w którym przeglądarka natrafiła na problem. Każda zakładka i okno przeglądarki ma odrębną konsolę, dlatego
jeśli już otworzyłeś okno błędów, a chcesz zobaczyć informacje dotyczące innej strony, musisz ponownie wybrać
opcję Programowanie/Pokaż konsolę błędów. Co więcej, jeśli odświeżysz stronę, starsze wersje Safari nie wy-
czyszczą błędów wyświetlonych dla poprzedniej strony, dlatego może się okazać, że lista zawiera komunikaty
dotyczące już poprawionych błędów. Rozwiązaniem tego problemu jest kliknięcie przycisku zakazu wjazdu
(zakreślonego), który czyści listę, oraz ponowne wyświetlenie strony

Uwaga: Użytkownicy systemu Windows mogą aktualnie dysponować starą wersją przeglądarki Safari.

Firma Apple zaniechała rozwoju wersji programu dla systemu Windows, dlatego zamieszczone tu

informacje mogą być nieaktualne.

C ZĘŚĆ I  W P R O W A D Z E N I E D O JĘZ Y K A J A V A S C R I P T

58

Gramatyka
języka JavaScript

oznawanie języka programowania przypomina naukę nowego języka natu-
ralnego. Trzeba nauczyć się słówek, zrozumieć zasady dodawania znaków
przestankowych i opanować nowy zestaw reguł. Podobnie jak trzeba poznać

gramatykę języka francuskiego, aby się nim posługiwać, należy nauczyć się gra-
matyki języka JavaScript, aby w nim programować. W tym rozdziale opisano pod-
stawy, na których oparte są wszystkie programy w języku JavaScript.

Jeśli programowałeś już w języku JavaScript, prawdopodobnie znasz wiele omawia-
nych tu zagadnień, dlatego możesz pobieżnie przejrzeć ten rozdział. Jeśli jednak do-
piero poznajesz ten język lub wciąż nie znasz wszystkich jego podstaw, znajdziesz tu
wprowadzenie do kluczowych zagadnień.

Instrukcje
Instrukcja języka JavaScript to podstawowa jednostka programowania, zwykle repre-
zentująca jeden krok programu. Możesz traktować instrukcje jak zdania. Podobnie
jak łańcuch zdań tworzy akapit (lub rozdział albo książkę), tak instrukcje składają się
na program w języku JavaScript. W poprzednim rozdziale zobaczyłeś kilka instrukcji,
na przykład:

alert('Witaj, świecie!');

Ta pojedyncza instrukcja otwiera okno dialogowe z wiadomością „Witaj, świecie!”.
Instrukcje to często pojedyncze wiersze kodu. Każda instrukcja kończy się średni-
kiem, który działa podobnie jak kropka w zdaniu. Średnik jednoznacznie określa,
że dany etap jest zakończony, a interpreter JavaScript powinien przejść do następ-
nego wiersza. Proces tworzenia programów w języku JavaScript polega — ogólnie
rzecz biorąc — na wpisaniu instrukcji, dodaniu średnika, wciśnięciu klawisza Enter
w celu utworzenia nowego, pustego wiersza, wpisaniu następnej instrukcji ze śred-
nikiem i tak dalej do momentu ukończenia skryptu.

P

2
ROZDZIAŁ

C ZĘŚĆ I  W P R O W A D Z E N I E D O JĘZ Y K A J A V A S C R I P T

Typy danych

60

Uwaga: Przejrzenie bardziej zaawansowanych przykładów kodu JavaScript (takich jak zamieszczone

dalej w tej książce) pozwoli zauważyć, że średniki nie są umieszczane na końcu każdego z wierszy.

Czasami może się zdarzyć, że średniki będą się pojawiać co kilka, kilkanaście lub nawet wiele wier-

szy. Jednak nawet tak wiele wierszy może tworzyć jedną instrukcję — należy je sobie wyobrazić jako

jedną, naprawdę długą instrukcję zawierającą wiele znaków przestankowych (czyli trochę tak, jak

w tym zdaniu).

Oficjalnie umieszczanie średników po instrukcjach jest opcjonalne, a niektórzy programiści pomijają

je, aby skrócić kod, jednak nie należy ich naśladować. Pomijanie średników utrudnia czytanie kodu,

a w pewnych warunkach powoduje błędy w programach. Jeśli chcesz skrócić kod JavaScript, aby przy-

spieszyć jego pobieranie, zapoznaj się ze wskazówkami ze strony 609.

Wbudowane funkcje
JavaScript i przeglądarki umożliwiają używanie różnych poleceń do wykonywania
zadań w programach i na stronach. Polecenia te, nazywane funkcjami, można porów-
nać z czasownikami w zdaniach. Na przykład przedstawione już polecenie alert()
powoduje otwarcie okna dialogowego w przeglądarce i wyświetlenie komunikatu.

Niektóre polecenia, na przykład alert() i document.write() użyte na stronie 48,
są specyficzne dla przeglądarek. Oznacza to, że działają tylko na stronach WWW
i nie są dostępne w innych środowiskach, w których można używać języka
JavaScript (na przykład w skryptach dla Node.js lub aplikacjach firmy Adobe,
takich jak Photoshop, oraz w używanym we Flashu języku ActionScript, którego
podstawą jest JavaScript).

Inne polecenia są uniwersalne i działają wszędzie tam, gdzie można korzystać z ję-
zyka JavaScript. Na przykład polecenie isNaN() sprawdza, czy dana wartość jest liczbą,
czy nie. Jest ono przydatne, kiedy trzeba sprawdzić, czy użytkownik wpisał wartość
odpowiedniego typu w polu na dane liczbowe (na przykład przy pytaniu „Ilu kontro-
lek chcesz użyć?”). Więcej o poleceniu isNaN() i sposobach jego używania dowiesz
się na stronie 589.

JavaScript udostępnia wiele różnych poleceń, które poznasz na kartach tej książki.
Szybkim sposobem na znalezienie poleceń w programach jest zwrócenie uwagi na
nawiasy. Można łatwo stwierdzić, że isNaN() to polecenie, ponieważ po nazwie isNaN
występują nawiasy.

Ponadto JavaScript umożliwia tworzenie własnych funkcji, dlatego skrypty mogą
wykonywać operacje wykraczające poza możliwości standardowych poleceń języka
JavaScript. Szczegółowy opis funkcji znajdziesz w rozdziale 3., na stronie 115.

Uwaga: Niektórzy funkcje języka JavaScript nazywają metodami.

Typy danych
Każdego dnia stykasz się z informacjami różnego typu. Nazwisko, cena posiłku, ad-
res gabinetu doktora i data urodzin — to wszystko istotne dane. Na ich podstawie
podejmujesz decyzje związane z tym, co robić. Programy komputerowe funkcjonują
podobnie — także przy wykonywaniu zadań polegają na informacjach. Aby na

R O Z D Z I AŁ 2 . G R A M A T Y K A JĘZ Y K A J A V A S C R I P T

Typy danych

61

przykład obliczyć łączną cenę zakupów z koszyka, potrzebne są cena i liczba
wszystkich produktów. Aby wyświetlić na stronie imię użytkownika („Witaj po-
nownie, Aniu”), trzeba je ustalić.

W językach programowania informacje są zwykle pokategoryzowane według typu,
a przetwarzanie danych każdego rodzaju przebiega w odmienny sposób. W języku
JavaScript są trzy podstawowe typy danych: liczbowe, łańcuchowe i logiczne.

Liczby
Liczby służą do odliczania i obliczeń. Można ich użyć do odliczania liczby dni do
letnich wakacji lub obliczenia ceny zakupu dwóch biletów do kina. Liczby są bardzo
ważne w programach w języku JavaScript. Można ich używać do przechowywania
liczby odwiedzin użytkownika na stronie, określania w pikselach pozycji elementu
lub ustalania liczby produktów zamawianych przez klienta.

W języku JavaScript liczby są reprezentowane przez cyfry. Na przykład cyfra 5 odpo-
wiada liczbie pięć. Można też przedstawiać liczby dziesiętne: 5.25 lub 10.3333333.
JavaScript pozwala również stosować liczby ujemne, na przykład -130 lub -459.67.

Ponieważ liczby są często używane w obliczeniach, w programach pojawia się wiele
operacji matematycznych. Szczegółowy opis operatorów znajdziesz na stronie 67,
natomiast poniższy wiersz wyświetla sumę liczb 5 i 15 oraz ilustruje, jak używać liczb
w kodzie JavaScript:

document.write(5 + 15);

Ten wiersz dodaje dwie liczby i wyświetla ich sumę (20) na stronie WWW. Liczb
można używać na wiele różnych sposobów, których omówienie rozpoczyna się na
stronie 67.

Łańcuchy znaków
Do wyświetlania imion, zdań i serii znaków służą łańcuchy znaków. Łańcuch zna-
ków to po prostu ciąg znaków (liter i innych symboli) umieszczonych w cudzy-
słowach lub apostrofach. Na przykład 'Witaj, Hal' i Jesteś tutaj to łańcuchy
znaków. Danych tego typu użyłeś w poprzednim rozdziale w poleceniu alert
— alert('Witaj, świecie!');.

Cudzysłów otwierający informuje interpreter języka JavaScript o tym, że zaraz natrafi
na łańcuch znaków, czyli sekwencję symboli. Interpreter traktuje te znaki dosłow-
nie i nie próbuje interpretować ich jako słów specyficznych dla języka JavaScript (na
przykład poleceń). Kiedy interpreter natrafi na cudzysłów zamykający, wykrywa ko-
niec łańcucha znaków i przechodzi do analizy dalszej części programu.

Łańcuchy znaków można umieszczać zarówno w cudzysłowach (Witaj, świecie),
jak i w apostrofach ('Witaj, świecie'), przy czym symbol otwierający i zamyka-
jący musi być taki sam. Na przykład kod to nie jest poprawny zapis' nie jest
prawidłowym łańcuchem znaków, ponieważ rozpoczyna się od cudzysłowu, a kończy
apostrofem.

C ZĘŚĆ I  W P R O W A D Z E N I E D O JĘZ Y K A J A V A S C R I P T

Typy danych

62

Dlatego aby wyświetlić komunikat „Uwaga, uwaga!”, można użyć zapisu:
alert('Uwaga, uwaga!');

lub:
alert("Uwaga, uwaga!");

Łańcuchy znaków są często używane w programach. Służą między innymi do wy-
świetlania komunikatów w oknach dialogowych, pobierania danych w formularzach
i manipulowania zawartością stron WWW. Łańcuchy znaków są tak ważne, że na
stronie 69 znajduje się ich szczegółowe omówienie.

Wartości logiczne
Podczas gdy liczby i łańcuchy znaków dają niemal nieskończone możliwości, typ lo-
giczny jest prosty. Ma tylko dwie wartości: true (prawda) i false (fałsz). Typy lo-
giczne są potrzebne przy tworzeniu w języku JavaScript programów reagujących na
działania użytkowników i wprowadzone przez nich dane. Jeśli przed przesłaniem
formularza chcesz się upewnić, że użytkownik podał adres e-mail, możesz dodać do
strony kod sprawdzający odpowiedź na proste pytanie: „Czy użytkownik wprowadził
prawidłowy adres e-mail?”. Odpowiedź na to pytanie to wartość logiczna. Adres

C Z Ę S T O Z A D A W A N E P Y T A N I A

Umieszczanie cudzysłowów w łańcuchach znaków
Kiedy próbuję utworzyć łańcuch znaków zawierający

cudzysłów, program nie działa. Dlaczego tak się dzieje?

W języku JavaScript cudzysłowy oznaczają początek

i koniec łańcucha znaków, choć nie zawsze jest to pożą-

dane. Kiedy interpreter natrafi na pierwszy cudzysłów,

wie, że jest to początek łańcucha znaków. Gdy dojdzie

do drugiego cudzysłowu, uznaje, że oznacza on koniec

łańcucha. Dlatego nie można utworzyć łańcucha o treści

"Jan powiedział: "Witaj"". Pierwszy cudzysłów

(przed słowem "Jan") oznacza początek łańcucha, a kiedy

interpreter natrafi na drugi cudzysłów (przed słowem

"Witaj"), uzna, że łańcuch się skończył. Dlatego w pro-

gramie znajdzie się łańcuch "Jan powiedział: " i słowo

Witaj, które spowoduje błąd i przerwanie działania

programu.

Ten problem można rozwiązać na kilka sposobów. Najła-

twiejsza metoda polega na użyciu apostrofów do wydzie-

lenia łańcucha znaków, który ma zawierać cudzysłowy.

Na przykład 'Jan powiedział: "Witaj"' to prawidłowy

łańcuch. Apostrofy ograniczają łańcuch znaków, a cudzy-

słowy wewnątrz niego są częścią tego łańcucha. Można

też użyć cudzysłowów do wyodrębnienia łańcucha zawie-

rającego apostrofy, na przykład "pana Moore'a".

Inne rozwiązanie polega na nakazaniu interpreterowi

dosłownego traktowania cudzysłowów w łańcuchu, czyli

interpretowania ich jako części łańcucha, a nie jego

końca. Służy do tego sekwencja ucieczki. Jeśli umieścisz

przed cudzysłowem ukośnik odwrotny (\), cudzysłów

zostanie potraktowany jak zwykły znak. Wcześniejszy

fragment można zapisać również w następujący sposób:

"Jan powiedział: \"Witaj\"". Czasem użycie sekwen-

cji ucieczki to jedyna możliwość, przykładem jest kod:

'Jan powiedział: "Witam pana Moore\'a"'. Ponie-

waż łańcuch jest ograniczony apostrofami, apostrof

w zwrocie „pana Moore’a” trzeba poprzedzić ukośnikiem

odwrotnym: pana Moore\'a.

Sekwencji ucieczki można użyć nawet wtedy, kiedy nie

jest konieczna. Pozwala to podkreślić, że cudzysłów należy

traktować dosłownie. Choć w kodzie 'Jan powiedział:

"Witaj"' nie trzeba używać sekwencji ucieczki, ponieważ

łańcuch jest ograniczony przez apostrofy, niektórzy pro-

gramiści dodadzą ukośniki, aby zaznaczyć, że cudzysłowy

są częścią łańcucha.

R O Z D Z I AŁ 2 . G R A M A T Y K A JĘZ Y K A J A V A S C R I P T

Zmienne

63

e-mail jest albo prawidłowy (true), albo nieprawidłowy (false). Strona może na-
stępnie odpowiednio zareagować na uzyskaną odpowiedź. Jeśli na przykład adres
jest prawidłowy (true), formularz zostanie przesłany. Jeżeli adres nie jest prawidłowy
(false), strona wyświetli komunikat o błędzie i zablokuje wysyłanie formularza.

Okazuje się, że wartości logiczne są tak ważne dla języka JavaScript, iż dodano do
niego dwa specjalne, reprezentujące je słowa kluczowe:

true

oraz
false.

Stosowania wartości logicznych nauczysz się przy dodawaniu logiki do programów,
co opisano w ramce na stronie 99.

Zmienne
Liczby, łańcuchy znaków i wartości logiczne można umieszczać bezpośrednio
w programie JavaScript, jednak tylko wtedy, kiedy informacje są już dostępne. Moż-
na na przykład wyświetlić łańcuch znaków Witaj, Robercie w oknie dialogowym
za pomocą następującego kodu:

alert("Witaj, Robercie");

Jednak ta instrukcja ma sens tylko wtedy, jeśli wszyscy użytkownicy strony mają na
imię Robert. Jeżeli strona ma wyświetlać komunikat dostosowany do internautów,
imię powinno się zmieniać w zależności od tego, kto odwiedził stronę: „Witaj, Mario”,
„Witaj, Józefie”, „Witaj, Kasiu”. Na szczęście wszystkie języki programowania udo-
stępniają narzędzie pomocne w takich sytuacjach; są to zmienne.

Zmienna pozwala zapisać informacje, które można następnie wykorzystać lub
zmienić. Wyobraź sobie napisaną w języku JavaScript grę w pinball, w której należy
uzyskać jak największą liczbę punktów. Kiedy gracz rozpoczyna pierwszą rozgrywkę,
jego wynik to 0, jednak później trafia kulką w elementy planszy, a liczba punktów
rośnie. Wynik to w tym przypadku zmienna. Początkowo ma ona wartość 0, jednak
rośnie wraz z przebiegiem gry. Zmienne przechowują więc informacje, które mogą
się zmieniać zależnie od okoliczności. Na rysunku 2.1 widoczna jest inna gra,
w której wykorzystano zmienne.

Możesz traktować zmienne jak specyficzny koszyk. Możesz umieszczać przedmioty
w koszyku, zajrzeć do niego, opróżnić go, a także zmienić jego zawartość. Jednak choć
koszyk przechowuje różne elementy, wciąż pozostaje taki sam.

Tworzenie zmiennych
W języku JavaScript zmienną o nazwie score można utworzyć w następujący sposób:

var score;

Pierwsza część, var, to słowo kluczowe języka JavaScript, które tworzy lub — jak moż-
na powiedzieć w języku technicznym — deklaruje zmienną. Druga część instrukcji,
score, to nazwa zmiennej.

C ZĘŚĆ I  W P R O W A D Z E N I E D O JĘZ Y K A J A V A S C R I P T

Zmienne

64

Rysunek 2.1. W witrynie Supe Spice Dash (http://mcbites sh75.net) używa się języka JavaScript do utworzenia gry
przypominającej nieco Super Monkey Ball, promującej oferowane w restauracjach McDonalds superkąski. Ste-
rujemy (to nie żart) superkąskiem, prowadząc go po trasie, gromadząc okruchy złota i papryczki chili, a jedno-
cześnie unikając innych przeszkód i przeskakując nad szczelinami. Podczas gry aktualny wynik jest prezento-
wany w prawym, górnym rogu okna przeglądarki. W tej grze do przechowywania wyniku jest używana zmienna,
gdyż wartość wyniku nieustannie się zmienia

Zmienne można nazwać w dowolny sposób, jednak trzeba przestrzegać kilku reguł.

 Nazwy zmiennych muszą zaczynać się od litery, znaku $ lub _. Nie można
umieścić na początku nazwy zmiennej liczby ani znaku przestankowego. Dlatego
nazwy 1thing i &thing są nieprawidłowe, natomiast score, $score i _score
— poprawne.

 Nazwy zmiennych mogą zawierać wyłącznie litery, cyfry oraz znaki $ i _. Nie
można używać odstępów ani innych znaków specjalnych. Nazwy fish&chips
i fish and chips są niedozwolone, natomiast fish_n_ships i plan9 — pra-
widłowe.

 W nazwach zmiennych istotna jest wielkość znaków. Interpreter języka
JavaScript traktuje duże i małe litery jako różne od siebie, dlatego zmienna
SCORE nie jest zmienną score, a nazwy sCoRE i Score wskazują na jeszcze inne
zmienne.

 Należy unikać słów kluczowych. Niektóre słowa są specyficzne dla samego ję-
zyka. Na przykład słowo var służy do tworzenia zmiennych, dlatego nie można
nadać zmiennej nazwy var. Ponadto niektóre słowa, na przykład alert, document

http://mcbites.sh75.net

R O Z D Z I AŁ 2 . G R A M A T Y K A JĘZ Y K A J A V A S C R I P T

Zmienne

65

i window, mają specjalne znaczenie w przeglądarkach. Próba użycia tych słów
jako nazw zmiennych wywoła błąd w kodzie JavaScript. Listę słów zarezerwo-
wanych przedstawiono w tabeli 2.1. Nie wszystkie te słowa powodują problemy
w każdej przeglądarce, jednak najlepiej unikać ich przy nazywaniu zmiennych.

Tabela 2.1. Niektóre słowa są zarezerwowane do użytku w języku JavaScript i przeglądarkach.
Należy unikać ich przy wymyślaniu nazw zmiennych

Słowa kluczowe
języka JavaScript

Słowa zarezerwowane
do przyszłego użytku

Słowa zarezerwowane
na potrzeby przeglądarek

break

case

catch

continue

debugger

default

delete

do

else

false

finally

for

function

if

in

instanceof

new

null

return

switch

this

throw

true

try

typeof

var

void

while

with

abstract

boolean

byte

char

class

const

double

enum

export

extends

final

float

goto

implements

import

int

interface

let

long

native

package

private

protected

public

short

static

super

synchronized

throws

transient

volatile

yield

alert

blur

closed

document

focus

frames

history

innerHeight

innerWidth

length

location

navigator

open

outerHeight

outerWidth

parent

screen

screenX

screenY

statusbar

window

Oprócz przestrzegania tych reguł należy pamiętać o tym, aby nazwy zmiennych były
jasne i znaczące. Nazywanie zmiennych zgodnie z rodzajem przechowywanych
danych znacznie ułatwia analizę kodu. Na przykład wynik to doskonała nazwa

C ZĘŚĆ I  W P R O W A D Z E N I E D O JĘZ Y K A J A V A S C R I P T

Zmienne

66

zmiennej przechowującej liczbę punktów gracza. Można użyć także nazwy w, jednak
pojedyncza litera „w” nie pozwala domyślić się, jakie dane przechowuje zmienna.

Nazwy zmiennych powinny być też czytelne. Jeśli nazwa składa się z kilku członów,
należy albo rozdzielić wyrazy podkreśleniem, albo rozpoczynać słowa dużymi literami.
Na przykład bardziej czytelna jest postać sciezka_do_rysunku lub sciezkaDoRysunku
niż sciezkadorysunku.

Używanie zmiennych
Po utworzeniu zmiennej można zapisać w niej dane dowolnego typu. Do przypisy-
wania wartości służy znak =. Aby zapisać liczbę 0 w zmiennej o nazwie score, można
użyć następującego kodu:

var score;
score = 0;

Pierwszy wiersz tego kodu tworzy zmienną, a drugi zapisuje w niej liczbę 0. Znak
równości to operator przypisania, ponieważ służy do przypisywania wartości do
zmiennych. Można też utworzyć zmienną i zapisać w niej wartość w jednej instrukcji
języka JavaScript:

var score = 0;

W zmiennych można zapisywać łańcuchy znaków, liczby i wartości logiczne:
var firstName = 'Piotr';
var lastName = 'Nowak';
var age = 22;
var isSuperHero = true;

Wskazówka: Aby skrócić kod, można zadeklarować kilka zmiennych przy użyciu jednego słowa

kluczowego var:

 var x, y, z;

W jednej instrukcji języka JavaScript można nawet zadeklarować kilka zmiennych i przypisać im wartości:

 var isSuperHero=true, isAfraidOfHeights=false;

Wartość zapisaną w zmiennej można pobrać za pomocą nazwy tej zmiennej.
Aby na przykład wyświetlić w oknie dialogowym wartość umieszczoną w zmiennej
score, należy użyć następującego kodu:

alert(score);

Warto zauważyć, że nazw zmiennych nie należy podawać w cudzysłowach. Cudzy-
słowy są potrzebne przy łańcuchach znaków, dlatego kod alert('score') wyświetli
słowo „score”, a nie wartość zapisaną w zmiennej score. Pomaga to zrozumieć,
dlaczego łańcuchy znaków należy umieszczać w cudzysłowach — interpreter języka
JavaScript traktuje słowa bez cudzysłowów jako specjalne obiekty języka (takie jak
funkcja alert()) lub nazwy zmiennych.

Uwaga: Słowo kluczowe var jest potrzebne tylko raz — przy tworzeniu zmiennej. Następnie można

przypisywać do zmiennej nowe wartości bez używania tego słowa.

R O Z D Z I AŁ 2 . G R A M A T Y K A JĘZ Y K A J A V A S C R I P T

Używanie typów danych
i zmiennych

67

C Z Ę S T O Z A D A W A N E P Y T A N I A

Odstępy, znaki tabulacji i znaki karetki w języku JavaScript
Język JavaScript jest najwyraźniej wrażliwy na literówki.
Kiedy mogę używać w kodzie odstępów, a kiedy jest

to niedozwolone?

Ogólnie rzecz biorąc, język JavaScript traktuje znaki od-

stępu, nowego wiersza i tabulacji w sposób dosyć po-

błażliwy. Bardzo często można pozostawiać znaki odstę-

pu i nowego wiersza, a nawet je dodawać, i nie będzie to

powodować żadnych problemów. Interpreter JavaScript

ignoruje wszystkie nadmiarowe znaki, można zatem do-

dawać odstępy, znaki nowego wiersza i tabulacji, by od-

powiednio formatować kod. Na przykład nie trzeba do-

dać odstępów po obu stronach operatora przypisania,

ale może to poprawić czytelność kodu. Oba poniższe

wiersze są prawidłowe:

 var formName='signup';
 var formRegistration = 'newsletter';

Można dodać dowolną liczbę odstępów, a nawet wsta-

wić w instrukcji znak karetki. Dlatego poprawne są też

następujące wersje:

 var formName = 'signup';
 var formRegistration
 =
 'newsletter';

Oczywiście, możliwość wstawiania dodatkowych odstę-

pów nie oznacza, że należy to robić. Dwie ostatnie in-

strukcje są mało czytelne i zrozumiałe. Zgodnie z ogólną

zasadą należy wstawiać dodatkowe odstępy, jeśli popra-

wia to czytelność kodu. Przykładowo zastosowanie zna-

ków nowego wiersza pozwala poprawić czytelność kodu

w przypadku deklarowania wielu zmiennych w jednej in-

strukcji. Poniższy kod został zapisany w jednym wierszu:

 var score=0, highScore=0, player='';

Niektórzy programiści uważają jednak, że taki kod będzie

bardziej przejrzysty, jeśli poszczególne zmienne zostaną

zapisane w osobnych wierszach:

 var score=0,
 highScore=0,
 player='';

Samodzielnie należy ocenić, czy taki sposób zapisu bę-

dzie bardziej przejrzysty, bo interpreter JavaScriptu i tak

zignoruje znaki nowego wiersza. Przykłady pokazujące,

jak korzystanie ze znaków odstępu może poprawić przej-

rzystość kodu, znajdziesz w podrozdziałach poświęco-

nych literałom obiektowym (patrz strona 165) oraz ta-

blicom (patrz strona 77).

Istnieje kilka ważnych odstępstw od omówionych reguł

— nie można używać znaku nowego wiersza w łańcu-

chach znaków. Oznacza to, że nie należy dzielić łańcuchów

znaków na dwa wiersze:

 var name = 'Jan
 Kowalski';

Wstawienie w takim miejscu znaku nowego wiersza przez

wciśnięcie klawisza Enter wywoła błąd języka JavaScript

i awarię programu.

Co więcej, konieczne jest dodawanie znaków odstępu

pomiędzy słowami kluczowymi. Przykładowo varscore=0
to nie to samo co var score=0. Ten drugi przykład two-

rzy nową zmienną o nazwie score, natomiast pierwszy

przypisuje wartość 0 zmiennej o nazwie varscore. Inter-

preter JavaScript potrzebuje znaku odstępu pomiędzy

var i score, aby rozpoznać var jako słowo kluczowe: var

score=0. Niemniej jednak nie trzeba umieszczać odstę-

pów pomiędzy słowami kluczowymi i symbolami, takimi jak

operator przypisania (=) lub średnik kończący instrukcję.

Używanie typów danych i zmiennych

Zapisanie w zmiennej informacji, na przykład liczby lub łańcucha znaków, to zwykle
tylko pierwsza operacja w programie. Większość skryptów manipuluje danymi, aby
uzyskać nowe wyniki. Programy dodają wartość punktową do wyniku, mnożą liczbę
produktów przez ich cenę, aby obliczyć koszt zakupów, lub personalizują ogólne
komunikaty przez dodanie imienia na końcu łańcucha znaków: „Miło znów Cię wi-
dzieć, Igorze”. JavaScript udostępnia zestaw operatorów do manipulowania danymi.
Operatory to symbole i słowa, które umożliwiają modyfikację wartości zmiennej.
Na przykład symbol +, operator dodawania, dodaje liczby do siebie. Dostępne są
różne operatory przeznaczone dla różnych typów danych.

C ZĘŚĆ I  W P R O W A D Z E N I E D O JĘZ Y K A J A V A S C R I P T

Używanie typów danych
i zmiennych

68

Podstawowe operacje matematyczne
JavaScript obsługuje podstawowe operacje matematyczne, na przykład dodawanie,
dzielenie, odejmowanie i tak dalej. W tabeli 2.2 przedstawiono najprostsze opera-
tory matematyczne i sposób ich używania.

Tabela 2.2. Podstawowe operacje matematyczne w języku JavaScript

Operator Działanie Sposób używania

+ Dodaje dwie liczby. 5 + 25

- Odejmuje jedną liczbę od drugiej. 25 – 5

* Mnoży dwie liczby. 5 * 10

/ Dzieli jedną liczbę przez drugą. 15/5

Wiele osób jest przyzwyczajonych do używania przy mnożeniu symbolu × (na przy-
kład 4×5), jednak w języku JavaScript służy do tego znak *.

W operacjach matematycznych można używać zmiennych. Ponieważ zmienna to
tylko kontener na inne wartości, na przykład liczby i łańcuchy znaków, użycie zmien-
nej odpowiada użyciu jej zawartości:

var price = 10;
var itemsOrdered = 15;
var totalCost = price * itemsOrdered;

Dwa pierwsze wiersze tworzą dwie zmienne (price i itemsOrdered) i zapisują w nich
liczby. Trzeci wiersz tworzy następną zmienną (totalCost) i zapisuje w niej wynik
pomnożenia wartości zmiennej price (10) przez wartość zmiennej itemsOrdered.
Powoduje to zapisanie w zmiennej totalCost liczby 150.

Ten przykładowy kod ilustruje przydatność zmiennych. Wyobraź sobie, że masz
napisać program do obsługi koszyka zakupów w sklepie internetowym. W programie
do wielu obliczeń potrzebna będzie cena określonego produktu. Można ją zapisać
w kilku miejscach (na przykład jeśli przedmiot kosztuje 10 złotych, należy wpisać tę
wartość wszędzie tam, gdzie potrzebna jest cena). Jednak jeśli cena się zmieni, trzeba
będzie znaleźć i zmodyfikować każdy wiersz, w którym jej użyto. Przy korzystaniu
ze zmiennej wystarczy określić cenę jeden raz na początku programu. Następnie
trzeba zmodyfikować tylko jeden wiersz kodu, aby zaktualizować wartość w całym
programie:

var price = 20;
var itemsOrdered = 15;
var totalCost = price * itemsOrdered;

Z liczb można korzystać także na wiele innych sposobów (liczne z nich poznasz
w omówieniu rozpoczynającym się na stronie 587), jednak najczęściej używane są
podstawowe operatory wymienione w tabeli 2.2.

R O Z D Z I AŁ 2 . G R A M A T Y K A JĘZ Y K A J A V A S C R I P T

Używanie typów danych
i zmiennych

69

Kolejność wykonywania operacji
Przy przeprowadzaniu kilku operacji matematycznych — na przykład sumowaniu kil-
ku liczb i mnożeniu ich wszystkich przez 10 — trzeba pamiętać o kolejności, w jakiej
interpreter wykonuje działania. Niektóre operatory mają pierwszeństwo przed in-
nymi, dlatego brak staranności może prowadzić do powstawania niepożądanych wy-
ników, na przykład:

4 + 5 * 10

Może się wydawać, że program wykona operacje od lewej do prawej: 4+5 to 9,
a 9*10 to 90. Jednak to nieprawda. Najpierw wykonywane jest mnożenie, dlatego
wynik instrukcji to 54 (5*10, czyli 50, plus 4). Mnożenie (znak *) i dzielenie (znak /)
mają pierwszeństwo przed dodawaniem (+) i odejmowaniem (-).

Aby mieć pewność, że program wykona działania zgodnie z oczekiwaniami, należy
pogrupować operacje za pomocą nawiasów. Poprzednią instrukcję można zapisać
w następujący sposób:

(4 + 5) * 10

Działania w nawiasach są wykonywane jako pierwsze, dlatego program doda liczby
4 i 5, a wynik (9) pomnoży przez 10. Jeśli jednak programista chce wykonać mno-
żenie jako pierwsze, bardziej jednoznaczny będzie następujący zapis:

4 + (5*10);

Łączenie łańcuchów znaków
Łączenie łańcuchów znaków w jeden ciąg to standardowa operacja programistyczna.
Jeśli na przykład strona zawiera formularz, który w jednym polu pobiera imię użyt-
kownika, a w innym — jego nazwisko, można połączyć zawartość obu pól. Ponadto
jeżeli program ma wyświetlać wiadomość informującą o przesłaniu danych, należy
połączyć imię i nazwisko z ogólnym komunikatem: „Użytkownik Jan Kowalski
przesłał dane”.

Łączenie łańcuchów znaków to tak zwana konkatenacja, a służy do niej operator +.
Jest to ten sam operator, który pozwala dodawać liczby, jednak w przypadku łańcu-
chów znaków działa nieco inaczej. Oto przykład:

var firstName = 'Jan';
var lastName = 'Kowalski';
var fullName = firstName + lastName;

W ostatnim wierszu powyższego kodu zawartość zmiennej firstName jest łączona
z wartością zmiennej lastName. Program dosłownie łączy je ze sobą i umieszcza
wynik w zmiennej fullName. Tu nowy łańcuch ma wartość JanKowalski. Brakuje
w niej odstępu między imieniem a nazwiskiem, ponieważ konkatenacja polega tylko
na łączeniu łańcuchów. W wielu programach (na przykład w tym) trzeba dodać od-
stęp między łączonymi łańcuchami:

var firstName = 'Jan';
var lastName = 'Kowalski';
var fullName = firstName + ' ' + lastName;

C ZĘŚĆ I  W P R O W A D Z E N I E D O JĘZ Y K A J A V A S C R I P T

Używanie typów danych
i zmiennych

70

Fragment ' ' w ostatnim wierszu to apostrof, odstęp i apostrof. Jest to po prostu
łańcuch znaków zawierający odstęp. Umieszczenie go między zmiennymi użytymi
w przykładzie powoduje utworzenie łańcucha Jan Kowalski . Ten kod ilustruje
też, że jednocześnie można połączyć więcej niż dwa łańcuchy znaków, tak jak w
przedstawionym przypadku, gdzie były trzy.

Uwaga: Trzeba pamiętać, że zmienna jest jedynie pojemnikiem, który może zawierać dane dowolne-

go typu, na przykład łańcuch znaków lub liczbę. Jeśli zatem łączymy dwie zmienne zawierające łańcu-

chy znaków (na przykład firstName + lastName), w rzeczywistości odpowiada to połączeniu dwóch

łańcuchów ('Jan' + 'Kowalski').

Łączenie liczb i łańcuchów znaków
Większość operatorów matematycznych działa tylko na liczbach. Na przykład nie ma
sensu mnożenie liczby 2 przez słowo 'pies'. Próba wykonania takiej operacji spo-
woduje zwrócenie specjalnej wartości języka JavaScript, NaN (ang. not a number, czyli
nie liczba). Jednak czasem programista chce połączyć łańcuch znaków z liczbą, na
przykład aby wyświetlić, ile razy użytkownik odwiedził witrynę. Ta wartość to liczba,
a treść wiadomości to łańcuch znaków. Operator + wykonuje w takim działaniu dwie
operacje: przekształca liczbę na łańcuch znaków i łączy ją z drugim łańcuchem:

var numOfVisits = 101;
var message = 'Liczba odwiedzin: ' + numOfVisits + ' razy.';

Zmienna message przyjmuje wartość „Liczba odwiedzin: 101 razy.”. Interpreter wy-
krywa obecność łańcucha znaków i na tej podstawie ustala, że nie są potrzebne
działania matematyczne (dodawanie). W zamian traktuje znak + jak operator
konkatenacji i przekształca liczbę na łańcuch znaków.

Na pozór kod ten ilustruje wygodny sposób wyświetlania słów i liczb w jednym ko-
munikacie. W tym przykładzie oczywiste jest, że liczba to część łańcucha znaków
i wiadomości, dlatego interpreter przekształca liczbę na łańcuch.

Ten mechanizm, nazywany automatyczną konwersją typów, może jednak prowa-
dzić do problemów. Jeśli użytkownik wpisze w formularzu w odpowiedzi na pytanie
„Ile par butów chcesz zamówić?” liczbę (na przykład 2), program potraktuje dane jak
łańcuch znaków. Przyjrzyj się następnemu fragmentowi kodu:

var numOfShoes = '2';
var numOfSocks = 4;
var totalItems = numOfShoes + numOfSocks;

Można się spodziewać, że zmienna totalItems przyjmie wartość 6 (2 pary butów+
4 pary skarpet). Jednak ponieważ zmienna numOfShoes zawiera łańcuch znaków,
interpreter przekształci na łańcuch także wartość zmiennej numOfSocks i zapisze
w zmiennej totalItems tekst '24'. Istnieje kilka rozwiązań tego problemu.

Po pierwsze, można dodać znak + przed łańcuchem znaków zawierającym liczbę:
var numOfShoes = '2';
var numOfSocks = 4;
var totalItems = +numOfShoes + numOfSocks;

R O Z D Z I AŁ 2 . G R A M A T Y K A JĘZ Y K A J A V A S C R I P T

Używanie typów danych
i zmiennych

71

Dodanie znaku + przed zmienną (elementów tych nie może oddzielać odstęp) naka-
zuje interpreterowi próbę konwersji łańcucha znaków na liczbę. Jest to możliwe,
jeśli łańcuch zawiera liczbę, na przykład '2'. Wynikiem dodawania będzie
wtedy 6 (2+4). Inna technika polega na użyciu polecenia Number():

var numOfShoes = '2';
var numOfSocks = 4;
var totalItems = Number(numOfShoes) + numOfSocks;

Polecenie Number() przekształca łańcuch na liczbę (jeśli jest to możliwe). Jeżeli łań-
cuch zawiera same litery, polecenie to zwróci wartość NaN, aby poinformować, że nie
może przekształcić liter na liczbę.

Liczby w łańcuchach znaków najczęściej pojawiają się przy pobieraniu danych od
użytkowników za pomocą formularza. Dlatego jeśli program ma dodawać wartości
wpisane przez internautów, warto najpierw przekazać pobrane dane do polecenia
Number().

Uwaga: Problem ten pojawia się wyłącznie w przypadku dodawania liczby do łańcucha znaków za-

wierającego liczbę. Przy próbie pomnożenia zmiennej numOfShoes przez zmienną zawierającą liczbę

— shoePrice — interpreter JavaScript skonwertuje łańcuch przechowywany w zmiennej numOfShoes

na liczbę i pomnoży ją przez wartość zmiennej shoePrice.

Zmienianie wartości zmiennych
Zmienne są przydatne, ponieważ mogą przechowywać wartości zmieniające się w cza-
sie działania programu, na przykład wynik gry. Jak można zmodyfikować wartość
zmiennej? Jeśli ma to być nowa wartość, można po prostu przypisać ją do zmiennej:

var score = 0;
score = 100;

Jednak często programista chce zachować wartość zmiennej i dodać coś do niej lub
zmodyfikować ją w inny sposób. W czasie gry zwykle nie należy przypisywać do
zmiennej nowego wyniku, a jedynie dodawać punkty do poprzedniej wartości lub
odejmować je. Aby dodać liczbę do zmiennej, należy w działaniu użyć jej nazwy:

var score = 0;
score = score + 100;

Ostatni wiersz kodu może wydawać się skomplikowany, jednak użyto tu bardzo po-
pularnej techniki. Wszystkie operacje zachodzą najpierw po prawej stronie znaku
=. Program pobiera wartość zapisaną w zmiennej score (0) i dodaje do niej 100. Wynik
tej operacji jest następnie zapisywany w zmiennej score. Efekt działania tego kodu
to przypisanie wartości 100 do zmiennej score.

W ten sam sposób działają też inne operacje matematyczne, na przykład odejmowa-
nie, dzielenie i mnożenie:

score = score – 10;
score = score * 10;
score = score / 10;

Programiści niezwykle często wykonują działania na zmiennej i zapisują w niej wy-
nik, dlatego dostępny jest skrócony zapis tego procesu dla czterech podstawowych
operatorów matematycznych. Opis tych skrótów znajdziesz w tabeli 2.3.

C ZĘŚĆ I  W P R O W A D Z E N I E D O JĘZ Y K A J A V A S C R I P T

Przykład — tworzenie
komunikatów

72

Tabela 2.3. Skróty do wykonywania operacji matematycznych na zmiennych

Operator Działanie Jak go używać Odpowiednik

+= Dodaje wartość podaną
po prawej stronie znaku
równości do zmiennej podanej
po stronie lewej.

score += 10; score = score + 10;

-= Odejmuje wartość podaną
po prawej stronie znaku
równości od zmiennej podanej
po stronie lewej.

score -= 10; score = score – 10;

*= Mnoży wartość podaną
po prawej stronie znaku
równości przez zmienną
podaną po stronie lewej.

score *= 10; score = score * 10;

/= Dzieli wartość podaną
po prawej stronie znaku
równości przez zmienną
podaną po stronie lewej.

score /= 10; score = score / 10;

++ Jeśli znajduje się bezpośrednio
przed nazwą zmiennej, dodaje
do niej 1.

score++; score = score + 1;

-- Jeśli znajduje się bezpośrednio
przed nazwą zmiennej,
odejmuje od niej 1.

score--; score = score - 1;

Te same reguły obowiązują przy dołączaniu do zmiennej łańcucha znaków. Jeśli
na przykład zmienna zawiera łańcuch, można dodać do niej kilka następnych
łańcuchów znaków:

var name = 'Maciej';
var message = 'Witaj';
message = message + ' ' + name;

Podobnie jak przy operacjach na liczbach, dostępny jest operator skrócony, który służy
do dołączania łańcuchów znaków do zmiennej. Operator += dodaje łańcuch znaków
podany po prawej stronie znaku = na koniec łańcucha zapisanego w danej zmien-
nej. Dlatego ostatni wiersz ostatniego przykładu można zapisać także w następujący
sposób:

message += ' ' + name;

Z operatora += będziesz często korzystał przy używaniu łańcuchów znaków i w trakcie
czytania tej książki.

Przykład — używanie zmiennych
do tworzenia komunikatów

W tym przykładzie użyjesz zmiennych do wyświetlenia (czyli zapisania) komunika-
tu na stronie WWW.

R O Z D Z I AŁ 2 . G R A M A T Y K A JĘZ Y K A J A V A S C R I P T

Przykład — tworzenie
komunikatów

73

Uwaga: Aby wykonać przykłady z tego rozdziału, pobierz pliki ze strony poświęconej książce w witrynie

helion.pl. Szczegółowe informacje o tych plikach znajdziesz na stronie 46.

 1. W edytorze tekstu otwórz plik use_variable.html z katalogu R02.

Ta strona to prosty plik HTML wzbogacony o styl CSS. Dokument nie zawiera
jeszcze kodu JavaScript. W następnych krokach użyjesz zmiennych, aby wyświe-
tlić komunikat na stronie.

 2. Znajdź znacznik <h1> (na początku drugiej połowy pliku), a następnie dodaj
otwierający i zamykający znacznik <script>:

<h1>Używanie zmiennych</h1>
<script>

</script>

Prawdopodobnie znasz już ten kod HTML. Przygotowuje on na stronie miejsce
na skrypt.

Uwaga: Na tej stronie korzystamy z deklaracji doctype typowej dla języka HTML5. Gdybyśmy uży-

wali języków XHTML 1.0 lub HTML 4.01, konieczne byłoby dodanie do znacznika <script> atrybutu

type="text/javascript": <script type="text/javascript">. Modyfikacja ta nie jest konieczna do za-

pewnienia poprawności działania skryptu, a jedynie po to, by strona przechodziła testy zgodności

ze standardem wykonywane przy użyciu narzędzia W3C Validator (więcej informacji na ten temat

można znaleźć na stronie 23).

 3. Między znacznikami <script> wpisz następujący kod:
var firstName = 'Ciasteczkowy';
var lastName = 'Potwór';

Właśnie utworzyłeś dwie pierwsze zmienne — firstName i lastName — oraz
zapisałeś w nich łańcuchy znaków. Później dodasz do siebie (lub połączysz) te
łańcuchy i wyświetlisz wynik na stronie.

 4. Pod deklaracjami zmiennych wpisz następujący kod:
document.write('<p>');

Jak dowiedziałeś się w rozdziale 1., polecenie document.write() dodaje tekst
bezpośrednio do strony. Tu posłużyło ono do zapisania znacznika HTML. Do po-
lecenia należy przekazać łańcuch ('<p>'), a zostanie on zapisany na stronie, tak
jakbyś sam umieścił go w kodzie HTML. Umieszczanie znaczników HTML
w poleceniu document.write() jest poprawną techniką. Tu JavaScript doda
otwierający znacznik akapitu, w którym znajdzie się wyświetlany na stronie tekst.

Uwaga: Polecenie document.write() stanowi prosty sposób, by przyzwyczaić się do progra-

mowania w języku JavaScript, choć istnieją inne, bardziej wydajne metody dodawania kodu HTML do

stron. Kiedy zdobędziesz nieco więcej doświadczenia, będziesz mógł przejść do bardziej zaawan-

sowanych technik, w tym także kilku naprawdę wygodnych, udostępnianych przez bibliotekę jQuery

(poznasz je na stronie 157).

 5. Wciśnij klawisz Enter i wpisz następujący kod JavaScript:
document.write(firstName + ' ' + lastName);

W tej instrukcji wykorzystano wartości zapisane w zmiennych w kroku 3. Ope-
rator + umożliwia połączenie kilku łańcuchów znaków w jeden długi łańcuch,

C ZĘŚĆ I  W P R O W A D Z E N I E D O JĘZ Y K A J A V A S C R I P T

Przykład — tworzenie
komunikatów

74

który polecenie document.write() zapisuje w kodzie HTML strony. Tu program
łączy wartość zmiennej firstName ('Ciasteczkowy') z odstępem i wartością
zmiennej lastName ('Potwór'). Wynik to jeden łańcuch znaków: 'Ciasteczkowy
Potwór'.

 6. Ponownie wciśnij klawisz Enter i wpisz instrukcję
document.write('</p>');.

Gotowy skrypt powinien wyglądać następująco:
<script type="text/javascript">
var firstName = 'Ciasteczkowy';
var lastName = 'Potwór';
document.write('<p>');
document.write(firstName + ' ' + lastName);
document.write('</p>');
</script>

 7. Wyświetl stronę w przeglądarce, aby zobaczyć efekty swej pracy (patrz
rysunek 2.2).

Słowa „Ciasteczkowy Potwór” powinny pojawić się pod nagłówkiem „Uży-
wanie zmiennych”. Jeśli nie widzisz tekstu, prawdopodobnie w kod wkradła
się literówka. Porównaj przedstawiony wcześniej skrypt z wprowadzonym kodem
i przypomnij sobie wskazówki ze strony 51, dotyczące diagnozowania skryptów
w przeglądarkach Firefox, Safari, Chrome oraz IE9.

Rysunek 2.2. Choć pewnie nie sięgnąłeś po tę książkę, aby nauczyć się wyświetlać tekst „Ciasteczkowy Potwór”,
przykładowy skrypt lustruje ważne zagadnienie — tworzenie i używanie zmiennych w języku JavaScript

 8. Ponownie otwórz edytor tekstu i zmień drugi wiersz skryptu na:
var lastName = 'Wieczór';

Zapisz stronę i wyświetl ją w przeglądarce. Gotowe. Teraz komunikat to „Cia-
steczkowy Wieczór”. Działająca wersja tego skryptu z komunikatem „Ciastecz-
kowy Potwór” znajduje się w pliku complete_use_variable.html.

R O Z D Z I AŁ 2 . G R A M A T Y K A JĘZ Y K A J A V A S C R I P T

Przykład — pobieranie
informacji

75

Przykład — pobieranie informacji
Poprzedni skrypt ilustrował tworzenie zmiennych, jednak nie dowiedziałeś się, jak
za pomocą zmiennych wyświetlać użytkownikom wyjątkowe, dopasowane wiado-
mości. W tym przykładzie zobaczysz, jak używać polecenia prompt() do pobierania
danych od użytkownika i zmieniać treść strony na podstawie uzyskanych informacji.

 1. Otwórz w edytorze tekstu plik prompt.html z katalogu R02.

Aby przyspieszyć pracę, w pliku umieszczono już znaczniki <script>. Zauważ,
że dokument zawiera dwie pary takich znaczników. Jedna znajduje się w sekcji
nagłówkowej, a druga — w ciele strony. Kod JavaScript ma wykonywać dwie ope-
racje. Po pierwsze, otwierać okno dialogowe z prośbą do użytkownika o udziele-
nie odpowiedzi. Po drugie, wyświetlać w ciele strony komunikat dostosowany do
odpowiedzi internauty.

 2. Między pierwszymi znacznikami <script> (w sekcji nagłówkowej) wpisz po-
grubiony kod:

<script>
var name = prompt('Jak masz na imię?', '');
</script>

Funkcja prompt() wyświetla okno dialogowe podobne do okienka otwieranego
przez funkcję alert(). Jednak funkcja prompt() nie tylko wyświetla komunikat,
ale też pobiera odpowiedź (patrz rysunek 2.3). Ponadto aby użyć funkcji prompt(),
należy podać w nawiasach dwa łańcuchy znaków rozdzielone przecinkiem. Na
rysunku 2.3 pokazano, do czego służą te łańcuchy. Pierwszy pojawia się jako py-
tanie (tu jest to „Jak masz na imię?”).

Rysunek 2.3. Wydanie polecenia prompt() to
jeden ze sposobów na pobranie danych od użyt-
kownika. W tym poleceniu należy podać dwa
łańcuchy znaków. Pierwszy z nich pojawia się jako
pytanie, a drugi jest widoczny w polu odpowiedzi

Drugi łańcuch pojawia się w polu, w którym użytkownik wprowadza dane. Tu użyto
pustego łańcucha znaków, czyli dwóch apostrofów, dlatego pole tekstowe jest puste
(zgodnie z informacjami podanymi na stronie 61, łańcuchy znaków można zapisy-
wać zarówno w apostrofach, jak i cudzysłowach). Można jednak podać przydatne in-
strukcje, na przykład: „Tu wpisz swoje imię”, a program wyświetli je we wspomnia-
nym polu. Niestety, użytkownik będzie musiał najpierw usunąć ten tekst przed
podaniem odpowiedzi.

C ZĘŚĆ I  W P R O W A D Z E N I E D O JĘZ Y K A J A V A S C R I P T

Przykład — pobieranie
informacji

76

Funkcja prompt() pobiera łańcuch znaków z tekstem wprowadzonym przez użyt-
kownika w oknie dialogowym. Dodany wiersz kodu JavaScript zapisuje ten tekst
w nowej zmiennej — name.

Uwaga: Wiele funkcji zwraca wartość. Po polsku oznacza to, że funkcja przekazuje pewne informacje

po zakończeniu działania. Można pominąć te dane lub zapisać je w zmiennej w celu ich późniejszego

wykorzystania. Tu funkcja prompt() zwraca łańcuch znaków, a program zapisuje go w zmiennej name.

 3. Zapisz stronę i wyświetl ją w przeglądarce.

W czasie wczytywania strony zobaczysz okno dialogowe. Do momentu jego wy-
pełnienia i kliknięcia przycisku OK nic się nie stanie — nie pojawi się nawet
strona WWW. Ponadto także po kliknięciu przycisku OK program nie wykonuje
na razie żadnych operacji, ponieważ wprowadzony fragment tylko pobiera i zapi-
suje odpowiedź. Teraz trzeba dodać kod, który wykorzystuje te dane na stronie.

 4. Wróć do edytora tekstu. Znajdź drugą parę znaczników <script> i dodaj kod
wyróżniony pogrubieniem:

<script>
document.write('<p>Witaj, ' + name + '</p>');
</script>

Ten wiersz używa informacji podanych przez użytkownika. Podobnie jak skrypt
ze strony 73, ten kod łączy kilka łańcuchów znaków — otwierający znacznik
akapitu, tekst, wartość zmiennej i zamykający znacznik akapitu — i wyświetla
efekt tej operacji na stronie.

 5. Zapisz stronę i wyświetl ją w przeglądarce.

Kiedy zobaczysz okno dialogowe, podaj imię, a następnie kliknij przycisk OK.
Tym razem wpisany tekst pojawi się na stronie (patrz rysunek 2.4). Odśwież
stronę i wprowadź nowe dane, a tekst się zmieni. Właśnie tak powinny działać
zmienne.

Rysunek 2.4. Oto s ła
zmiennych — strona
dostosowuje tekst do
odpowiedzi użytkownika

R O Z D Z I AŁ 2 . G R A M A T Y K A JĘZ Y K A J A V A S C R I P T

Tablice

77

Tablice
Proste zmienne, takie jak opisane w poprzednim podrozdziale, przechowują tylko
pojedyncze informacje, na przykład liczby lub łańcuchy znaków. Takie zmienne do-
skonale nadają się do zapisywania pojedynczych wartości, na przykład wyniku, wieku
lub łącznej ceny zakupów. Jednak jeśli program ma przechowywać grupę powiązanych
elementów, na przykład nazwy dni tygodnia lub listę rysunków na stronie WWW,
proste zmienne nie są zbyt wygodne.

Wyobraź sobie, że masz utworzyć w języku JavaScript system obsługi koszyka za-
kupów, który zapisuje produkty zamawiane przez użytkownika. Gdyby program miał
przechowywać każdy towar za pomocą prostych zmiennych, kod wyglądałby na-
stępująco:

var item1 = 'Xbox 360';
var item2 = 'Buty do tenisa';
var item3 = 'Bony podarunkowe';

Co się jednak stanie, jeśli użytkownik zechce kupić więcej rzeczy? Trzeba wtedy do-
dać następne zmienne — item4, item5 i tak dalej. Ponieważ nie wiadomo, ile produk-
tów internauta zechce kupić, nie można ustalić, ile zmiennych będzie potrzebnych.

Na szczęście JavaScript udostępnia tablice, które umożliwiają wygodne przecho-
wywanie list elementów. Tablica pozwala zapisać w jednym miejscu więcej niż jedną
wartość i przypomina nieco listę zakupów. Kiedy idziesz do sklepu, siadasz i przygo-
towujesz listę produktów. Kilka dni wcześniej lista mogła zawierać tylko kilka rzeczy,
ale jeśli lodówka jest pusta, liczba pozycji na liście może być dość duża. Zawsze jed-
nak lista jest tylko jedna.

Bez tablic każdemu elementowi listy musi odpowiadać odrębna zmienna. Wyobraź
sobie, że nie możesz zapisać wszystkich produktów na jednej liście, ale musisz nosić
stos kartek z zapisanymi pojedynczymi rzeczami. Jeśli chcesz dodać nowy produkt,
musisz użyć następnej kartki. Musisz też kontrolować je wszystkie w trakcie zaku-
pów (patrz rysunek 2.5). W ten sposób działają proste zmienne, natomiast tablice
umożliwiają utworzenie jednej listy elementów oraz dodawanie, usuwanie i mody-
fikowanie ich w dowolnym momencie.

Rysunek 2.5. Tablica umożliwia
przechowywanie listy powiąza-
nych elementów w prosty i upo-
rządkowany sposób. Dodanie no-
wej pozycji przypomina dopisanie
nowego produktu na końcu listy

C ZĘŚĆ I  W P R O W A D Z E N I E D O JĘZ Y K A J A V A S C R I P T

Tablice

78

Tworzenie tablic
Aby utworzyć tablicę i zapisać w niej elementy, trzeba najpierw zadeklarować nazwę
tablicy (podobnie jak przy tworzeniu zmiennych), a następnie podać listę oddzielo-
nych przecinkami wartości. Każda wartość reprezentuje jeden element listy. Tablicę
możesz nazwać w dowolny sposób (podobnie jak zmienną), jednak musisz prze-
strzegać reguł podanych na stronie 71. Przy tworzeniu tablicy należy umieścić listę
elementów między otwierającym a zamykającym nawiasem kwadratowym — [].
Aby na przykład przygotować tablicę ze skrótowymi nazwami dni tygodnia, można
użyć następującego kodu:

var days = ['Pn.', 'Wt.', 'Śr.', 'Czw.', 'Pt.', 'Sob.', 'Ndz.'];

Nawiasy kwadratowe — [] — są tu bardzo istotne. Informują interpreter o tym, że
natrafił na tablicę. Można też utworzyć pustą tablicę, która nie zawiera żadnych
elementów:

var playList = [];

Tworzenie pustych tablic przypomina deklarowanie zmiennych w sposób opisany na
stronie 63. Pusta tablica powstaje, jeśli program nie dodaje do niej elementów do
momentu uruchomienia kodu. Powyższa tablica może posłużyć na przykład do zapi-
sywania piosenek wybranych z listy na stronie WWW. Nie wiadomo z góry, które
utwory zaznaczy użytkownik, dlatego należy przygotować pustą tablicę, a następnie
zapełnić ją elementami. (Dodawanie danych do tablic opisano na stronie 80).

Uwaga: W czasie analizy cudzych programów w języku JavaScript możesz natrafić na inny sposób

tworzenia tablic, który wymaga użycia słowa kluczowego Array:

 var days = new Array('Pn.', 'Wt.', 'Śr.');

To prawidłowa metoda, jednak technikę użytą w tej książce (literały tablicowe) preferują profesjo-

naliści, gdyż jest bardziej zwięzła, wymaga mniej pisania, a dodatkowo jest elegantsza.

W tablicach można przechowywać wartości różnego typu. Oznacza to, że w jednej
tablicy mogą znajdować się liczby, łańcuchy znaków i wartości logiczne:

var prefs = [1, -30.4, 'www.oreilly.com', false];

Uwaga: W tablicy można umieszczać nawet inne tablice i obiekty. Technika ta pomaga przechowywać

złożone dane.

Wcześniejsze tablice tworzył jeden wiersz kodu. Jednak jeśli programista chce dodać
wiele pozycji lub elementy to długie łańcuchy znaków, umieszczenie całej instrukcji
w jednym wierszu utrudni czytanie programu. Dlatego wielu programistów tworzy
tablice w kilku wierszach:

var authors = ['Ernest Hemingway',
 'Charlotte Bronte',
 'Dante Alighieri',
 'Emily Dickinson'
];

Jak wspomniano w ramce na stronie 67, interpreter pomija dodatkowe odstępy
i znaki karetki, dlatego choć kod zajmuje pięć wierszy, jest traktowany jak instrukcja
jednowierszowa, na co wskazuje średnik na jej końcu.

http://www.oreilly.com

R O Z D Z I AŁ 2 . G R A M A T Y K A JĘZ Y K A J A V A S C R I P T

Tablice

79

Wskazówka: Aby zapisać imiona i nazwiska jedno pod drugim, wpisz pierwszy wiersz (var authors

= ['Ernest Hemingway',), wciśnij klawisz Enter, a następnie wciśnij kilka razy klawisz spacji, aby

odpowiednio umiejscowić następną wartość ('Charlotte Bronte',).

Używanie elementów tablicy
Dostęp do zawartości prostych zmiennych można uzyskać przez podanie ich nazw.
Na przykład instrukcja alert(lastName) otwiera okno dialogowe z wartością zapi-
saną w zmiennej lastName. Jednak tablica może zawierać wiele wartości, zatem nie
wystarczy użyć jej nazwy, aby uzyskać dostęp do poszczególnych elementów. Po-
zycję każdego elementu w tablicy określa niepowtarzalna liczba — indeks. Aby uzy-
skać dostęp do wybranego elementu, należy podać jego indeks. W celu wyświetlenia
okna dialogowego z pierwszym elementem tablicy ze skrótami nazw dni tygodnia
należy użyć następującego kodu:

var days = ['Pn.', 'Wt.', 'Śr.', 'Czw.', 'Pt.', 'Sob.', 'Ndz.'];
alert(days[0]);

Ten kod otwiera okno dialogowe ze skrótem „Pn.”. Tablice są indeksowane od zera,
co oznacza, że pierwszy element ma indeks 0, a drugi — indeks 1. Dlatego trzeba
odjąć 1 od miejsca elementu na liście, aby uzyskać jego indeks. Indeks elementu
piątego to 5 – 1, czyli 4. Indeksowanie od zera może być mylące dla początkujących
programistów, dlatego w tabeli 2.4 znajdziesz indeksy i wartości elementów tablicy
days z poprzedniego przykładu oraz sposób uzyskania do nich dostępu.

Tabela 2.4. Aby uzyskać dostęp do elementów tablicy, należy użyć indeksu. Odpowiada on pozycji
elementu na liście pomniejszonej o 1

Wartość indeksu Element Dostęp do elementu

0 Pn. days[0]

1 Wt. days[1]

2 Śr. days[2]

3 Czw. days[3]

4 Pt. days[4]

5 Sob. days[5]

6 Ndz. days[6]

Aby zmodyfikować element tablicy, należy przypisać mu nową wartość za pomocą
indeksu. Na przykład w celu umieszczenia nowej wartości w pierwszym elemencie
tablicy days trzeba użyć następującej instrukcji:

days[0] = 'Poniedziałek';

Ponieważ indeks ostatniego elementu jest zawsze o 1 mniejszy od liczby wszystkich
pozycji tablicy, aby uzyskać dostęp do ostatniej wartości, wystarczy ustalić długość
tablicy. Jest to łatwe zadanie, ponieważ każda tablica ma właściwość length (dłu-
gość), określającą liczbę elementów. Aby uzyskać dostęp do tej właściwości, należy
dodać kropkę i słowo length po nazwie tablicy. Na przykład wyrażenie days.length

C ZĘŚĆ I  W P R O W A D Z E N I E D O JĘZ Y K A J A V A S C R I P T

Tablice

80

zwraca liczbę elementów tablicy o nazwie days. Jeśli utworzyłeś tablicę o innej
nazwie, takiej jak playList, możesz sprawdzić jej długość za pomocą instrukcji
playList.length. Dlatego aby uzyskać dostęp do wartości ostatniego elementu li-
sty, można użyć pomysłowego kodu:

days[days.length-1]

Ten fragment pokazuje, że indeks nie musi być literałem liczbowym, takim jak 0
w instrukcji days[0]. Można też podać równanie, które zwraca poprawną liczbę.
Takim krótkim równaniem jest na przykład days.length – 1. Program najpierw
pobiera liczbę elementów tablicy days (tu jest to 7), a następnie odejmuje od niej 1.
Dlatego instrukcja days[days.length-1] oznacza days[6].

Jako indeksu można też użyć zmiennej liczbowej:
var i = 0;
alert(days[i]);

Ostatni wiersz tego kodu to odpowiednik instrukcji alert(days[0]);. Technika
ta jest szczególnie przydatna w pętlach, co opisano w następnym rozdziale (patrz
strona 111).

Dodawanie elementów do tablicy
Załóżmy, że program zawiera tablicę do zapisywania elementów klikniętych
przez użytkownika na stronie WWW. Każde kliknięcie ma powodować dodanie
elementu do tablicy. JavaScript umożliwia dodawanie danych do tablicy na kilka
sposobów.

Dodawanie elementów na koniec tablicy

Aby dodać element na koniec tablicy, można użyć notacji indeksowej omówionej
na stronie 79 i podać indeks o 1 większy od ostatniej pozycji. Przyjrzyj się tablicy
properties:

var properties = ['red', '14px', 'Arial'];

Na tym etapie tablica ma trzy elementy. Pamiętaj, że ostatni element ma indeks
o 1 mniejszy od liczby wszystkich wartości. W przykładowej tablicy dostęp do takiego
elementu zapewnia instrukcja properties[2]. Aby dodać nową wartość, należy użyć
poniższej składni:

properties[3] = 'bold';

Ten wiersz kodu przypisuje wartość 'bold' do czwartej pozycji, co powoduje utworze-
nie tablicy o czterech elementach: ['red', '14px', 'Arial', 'bold']. Zauważ,
że do dodania nowego elementu posłużył indeks o wartości równej liczbie wszystkich
elementów tablicy. Dlatego można zawsze dodać wartość na koniec tablicy przez
podanie jako indeksu właściwości length. Ostatnią instrukcję można przekształcić
w następujący sposób:

properties[properties.length] = 'bold';

Można też użyć polecenia push(), które dodaje na koniec tablicy wartość podaną
w nawiasach. Polecenie push(), podobnie jak właściwość length, należy podać po
nazwie tablicy i kropce. Oto następny sposób na dodanie elementu na koniec tablicy
properties:

R O Z D Z I AŁ 2 . G R A M A T Y K A JĘZ Y K A J A V A S C R I P T

Tablice

81

properties.push('bold');

Ta instrukcja dodaje wartość umieszczoną w nawiasach (tu jest to łańcuch znaków
'bold') na koniec tablicy. W ten sposób można dodać wartość dowolnego rodzaju:
łańcuch znaków, liczbę, wartość logiczną, a nawet zmienną.

Zaletą polecenia push() jest to, że umożliwia dodanie grupy elementów. Jeśli chcesz
wstawić na koniec tablicy properties trzy nowe wartości, możesz to zrobić w na-
stępujący sposób:

properties.push('bold', 'italic', 'underlined');

Dodawanie elementów na początek tablicy

Jeśli chcesz dodać element na początek tablicy, możesz użyć polecenia unshift().
Poniższy kod dodaje wartość 'bold' na początek tablicy properties:

var properties = ['red', '14px', 'Arial'];
properties.unshift('bold');

Po wykonaniu tego kodu tablica properties będzie zawierać cztery elementy:
['bold', 'red', '14px', 'Arial']. Polecenie unshift(), podobnie jak push(),
pozwala dodać kilka elementów:

properties.unshift('bold', 'italic', 'underlined');

Uwaga: Pamiętaj o podaniu nazwy tablicy i kropki przed metodą, której chcesz użyć. Instrukcja

push('nowy element') jest nieprawidłowa, gdyż interpreter JavaScriptu nie otrzymał informacji, do

której tablicy należy dodać element. Trzeba najpierw podać nazwę tablicy, następnie kropkę, a dopiero

na końcu metodę, na przykład authors.push('Stephen King');.

Wybór sposobu dodawania elementów

Do tej pory poznałeś trzy sposoby dodawania elementów do tablicy. W tabeli 2.5
znajduje się porównanie tych technik. Wszystkie pełnią podobne funkcje, dlatego wy-
bór jednej z nich zależy od specyfiki programu. Jeśli kolejność elementów w tablicy jest
nieistotna, można użyć dowolnej metody. Wyobraź sobie stronę ze zdjęciami pro-
duktów, które należy kliknąć, aby dodać przedmiot do koszyka zakupów i zapisać go
w tablicy. Kolejność produktów w koszyku (i tablicy) nie ma znaczenia, dlatego można
użyć każdej z omówionych technik.

Tabela 2.5. Różne sposoby dodawania elementów do tablicy

Metoda Wyjściowa
tablica

Przykładowy
kod

Wynikowa
tablica Opis

Właściwość
length

var p =
[0,1,2,3]

p[p.length]=4 [0,1,2,3,4] Dodaje jedną wartość
na koniec tablicy.

push() var p =
[0,1,2,3]

p.push(4,5,6) [0,1,2,3,4,5,6] Dodaje jeden lub więcej
elementów na koniec
tablicy.

unshift() var p =
[0,1,2,3]

p.unshift(4,5) [4,5,0,1,2,3] Wstawia jeden lub
więcej elementów
na początek tablicy.

C ZĘŚĆ I  W P R O W A D Z E N I E D O JĘZ Y K A J A V A S C R I P T

Tablice

82

P O R A D N I A D L A Z A A W A N S O W A N Y C H

Tworzenie kolejek
Metody używane do dodawania (push() i unshift())

oraz usuwania (pop() i shift()) elementów są często

stosowane razem, aby zapewnić dostęp do elemen-

tów w kolejności dołączania ich do tablicy. Klasycznym

przykładem jest lista odtwarzania. Powstaje ona przez

dodawanie utworów, a każda wysłuchana piosenka jest

usuwana z listy. Nagrania są odtwarzane w kolejno-

ści dodawania do listy, dlatego program najpierw uru-

chamia pierwszy utwór, a następnie go usuwa. W taki

sposób funkcjonują kolejki, na przykład w kinie. Kiedy

widz przychodzi do kina, zajmuje miejsce na końcu ko-

lejki. Gdy drzwi się otwierają, pierwsza osoba w kolejce

jako pierwsza wchodzi na salę.

W świecie programowania to podejście ma nazwę kolejka

FIFO (ang. First In, First Out, czyli pierwszy wchodzi —

pierwszy wychodzi). Można zasymulować taki system za

pomocą poleceń push() i shift(). Aby na przykład

dodać nowy utwór na koniec tablicy playlist, można

użyć polecenia push():

 playlist.push('Yellow Submarine');

Aby przejść do piosenki, którą program ma odtworzyć

jako następną, należy pobrać pierwszy element listy:

 nowPlaying = playlist.shift();

Ten kod powoduje usunięcie z tablicy pierwszego ele-

mentu i zapisanie go w zmiennej nowPlaying. Kolejki

FIFO są przydatne przy tworzeniu różnych kolejek i za-

rządzaniu nimi; przykładem mogą być listy odtwarza-

nia, zadania do wykonania lub pokazy slajdów.

Jeśli jednak w tablicy trzeba uwzględnić kolejność elementów, używana metoda
jest istotna. Załóżmy, że strona umożliwia użytkownikom tworzenie list odtwa-
rzania przez wybór na stronie tytułów piosenek. Ponieważ takie listy zawierają utwory
podane w kolejności ich odtwarzania, uporządkowanie elementów jest istotne.
Dlatego za każdym razem, kiedy użytkownik kliknie tytuł nagrania, piosenkę należy
umieścić na końcu listy (aby był to ostatni odtwarzany utwór). Wymaga to użycia me-
tody push().

Polecenia push() i unshift() zwracają wartość. Po wykonaniu zadania przekazują
nową liczbę elementów w tablicy:

var p = [0,1,2,3];
var totalItems = p.push(4,5);

Ten fragment przypisze do zmiennej totalItems wartość 6, ponieważ w tablicy p
znajdzie się sześć elementów.

Usuwanie elementów z tablicy
Do usuwania elementów z początku i końca tablicy służą polecenia pop() i shift().
Oba usuwają z tablicy jedną wartość, przy czym polecenie pop() z końca, a polece-
nie shift() — z początku. Porównanie tych metod znajduje się w tabeli 2.6.

Tabela 2.6. Dwa sposoby usuwania elementów z tablicy

Metoda Wyjściowa
tablica

Przykładowy
kod Wynikowa tablica Opis

pop() var p =
[0,1,2,3]

p.pop() [0,1,2] Usuwa z tablicy
ostatni element.

shift() var p =
[0,1,2,3]

p.shift() [1,2,3] Usuwa z tablicy
pierwszy element.

R O Z D Z I AŁ 2 . G R A M A T Y K A JĘZ Y K A J A V A S C R I P T

Przykład — zapisywanie
danych na stronie

83

Polecenia pop() i shift() po zakończeniu działania zwracają wartość. Co więcej,
okazuje się, że jest to wartość elementu usuniętego z tablicy. Dlatego poniższy
kod usuwa wartość i zapisuje ją w zmiennej removedItem:

var p = [0,1,2,3];
var removedItem = p.shift();

Po zakończeniu działania kodu wartość zmiennej removedItem to 0, a tablica p
zawiera liczby [1,2,3].

Uwaga: Wśród przykładowych plików do tego rozdziału znajduje się strona, która umożliwia prze-

testowanie różnych poleceń związanych z tablicami. Jej nazwa to array_methods.html, a plik ten

znajduje się w katalogu Przykłady/testy. Możesz otworzyć ten plik w przeglądarce i wypróbować

różne przyciski, aby zobaczyć, jak działają poszczególne metody. (Przy okazji, interaktywność tej

strony to efekt zastosowania języka JavaScript oraz biblioteki jQuery).

Przykład — zapisywanie danych
na stronie za pomocą tablic

Tablice są częścią wielu skryptów omawianych w dalszej części książki. Aby szybko
zapoznać się z tworzeniem i używaniem tablic, prześledź ten krótki przykład.

Uwaga: Informacje o przykładowych plikach znajdziesz w uwadze na stronie 46.

 1. Otwórz w edytorze tekstu plik arrays.html z katalogu R02.

Najpierw utworzysz tablicę zawierającą cztery łańcuchy znaków. Plik, podobnie
jak w poprzednim przykładzie, zawiera już znaczniki <script> w sekcji nagłów-
kowej i ciele strony.

 2. Między pierwszą parą znaczników <script> wpisz kod wyróżniony pogru-
bieniem:

<script>
var authors = ['Ernest Hemingway',
 'Charlotte Bronte',
 'Dante Alighieri',
 'Emily Dickinson'
];
</script>

Ten kod zawiera jedną instrukcję języka JavaScript, jednak zajmuje pięć wier-
szy. Aby go wprowadzić, wpisz pierwszy wiersz (var authors = ['Ernest
Hemingway',), wciśnij klawisz Enter, a następnie wciskaj klawisz spacji do
momentu umieszczenia kursora pod znakiem ' (16 uderzeń) i wpisz łańcuch
'Charlotte Bronte',.

Uwaga: Większość edytorów wyświetla kody HTML i JavaScript za pomocą czcionek o stałej szeroko-
ści znaków. Są to na przykład czcionki Courier i Courier New. Wszystkie znaki mają w nich iden-

tyczną szerokość, dlatego wyrównywanie kolumn (nazwisk autorów w przykładowym kodzie)

jest łatwe. Jeśli edytor nie udostępnia czcionki Courier lub podobnej, precyzyjne wyrównanie tekstu

może być niemożliwe.

C ZĘŚĆ I  W P R O W A D Z E N I E D O JĘZ Y K A J A V A S C R I P T

Przykład — zapisywanie
danych na stronie

84

Na stronie 78 dowiedziałeś się, że przy tworzeniu tablic o wielu elementach
można zwiększyć czytelność kodu przez podział instrukcji na kilka wierszy.
O tym, że instrukcja jest tylko jedna, informuje brak średników po czterech
pierwszych wierszach.

Podana instrukcja tworzy tablicę authors i zapisuje w niej nazwiska czterech au-
torów (cztery łańcuchy znaków). Następny fragment kodu użyje tych elementów.

 3. Znajdź drugą parę znaczników <script> i dodaj kod wyróżniony pogru-
bieniem:

<script>
document.write('<p>Pierwszy autor to ');
document.write(authors[0] + '</p>');
</script>

Pierwszy wiersz rozpoczyna nowy akapit z tekstem i otwierającym znaczni-
kiem . Znajduje się tu tylko zwykły kod HTML. Następny wiersz do-
daje wartość pierwszego elementu tablicy authors oraz zamykające znaczniki
 i </p>, co tworzy kompletny akapit w kodzie HTML. Aby uzyskać do-
stęp do pierwszego elementu tablicy, należy użyć indeksu 0 (authors[0]), a nie 1.

Na tym etapie możesz zapisać plik i wyświetlić go w przeglądarce. Na ekranie
powinien pojawić się tekst „Pierwszy autor to Ernest Hemingway”. Jeśli ten frag-
ment jest niewidoczny, możliwe, że w kodzie wprowadzonym w krokach 2. i 3.
pojawiły się literówki.

Uwaga: Pamiętaj, że do zlokalizowania źródła błędów w kodzie JavaScript możesz użyć opisanej na

stronie 51 konsoli błędów przeglądarki.

 4. Ponownie otwórz edytor tekstu i dodaj do skryptu dwa poniższe wiersze kodu:
document.write('<p>Ostatni autor to ');
document.write(authors[4] + '</p>');

Ten krok przypomina poprzedni, jednak tym razem skrypt wyświetla inny
element tablicy. Zapisz stronę i wyświetl ją w przeglądarce. Zamiast imie-
nia i nazwiska autora zobaczysz wartość „undefined” (patrz rysunek 2.6).
Nie przejmuj się — kod powinien tak działać. Czy potrafisz wyjaśnić, dlaczego
ten kod nie działa?

Pamiętaj, że indeksy tablicy rozpoczynają się od 0, dlatego indeks ostatniej warto-
ści to liczba wszystkich elementów minus 1. Używana tablica ma cztery warto-
ści, dlatego dostęp do ostatniego elementu da wyrażenie authors[3].

Uwaga: Jeśli spróbujesz wczytać wartość za pomocą nieistniejącego indeksu, otrzymasz wartość

undefined języka JavaScript. Oznacza ona, że na pozycji określonej przez indeks nie ma zapisanej

wartości.

Na szczęście istnieje łatwa technika dostępu do ostatniej wartości tablicy — nie-
zależnie od liczby jej elementów.

 5. Wróć do edytora tekstu i zmodyfikuj wprowadzony wcześniej kod. Usuń
indeks 4 i wpisz zamiast niego kod wyróżniony pogrubieniem:

document.write('<p>Ostatni autor to ');
document.write(authors[authors.length-1] + '</p>');

R O Z D Z I AŁ 2 . G R A M A T Y K A JĘZ Y K A J A V A S C R I P T

Przykład — zapisywanie
danych na stronie

85

Rysunek 2.6.
Jeśli spróbujesz
uzyskać dostęp
do nieistniejącego
elementu tablicy,
otrzymasz war-
tość „undefined”

W punkcie „Dodawanie elementów do tablicy” na stronie 80. dowiedziałeś
się, że właściwość length tablic przechowuje liczbę elementów. Dlatego
kod authors.length zwraca sumę elementów tablicy authors. W tym miejscu
skryptu jest to liczba 4.

Ponieważ indeks ostatniej wartości tablicy jest zawsze o 1 mniejszy od liczby
elementów, wystarczy odjąć od tej liczby 1 (authors.length-1), aby uzyskać po-
trzebny indeks. Przy próbie dostępu do ostatniej wartości tablicy można podać to
krótkie działanie jako wartość indeksu — authors[authors.length-1].

Teraz dodasz nowy element na początek tablicy.

 6. Dodaj następny wiersz kodu po fragmencie wprowadzonym w 5. kroku:
authors.unshift('Stan Lee');

Na stronie 81 napisano, że metoda unshift() dodaje elementy na początek
tablicy. Po wykonaniu tej instrukcji tablica authors będzie rozpoczynała się od
wartości ['Stan Lee', 'Ernest Hemingway', 'Charlotte Bronte', 'Dante
Alighieri', 'Emily Dickinson'].

Kolejny fragment skryptu wyświetli nowy element na stronie.

 7. Dodaj trzy wyróżnione pogrubieniem wiersze, aby kod wyglądał następująco:
document.write('<p>Pierwszy autor to ');
document.write(authors[0] + '</p>');
document.write('<p>Ostatni autor to ');
document.write(authors[authors.length-1] + '</p>');
authors.unshift('Stan Lee');
document.write('<p>Prawie zapomniałem o autorze ');
document.write(authors[0]);
document.write('</p>');

Zapisz plik i wyświetl go w przeglądarce. Efekt powinien przypominać stronę
z rysunku 2.7. Jeśli ekran wygląda inaczej, pamiętaj, że konsola błędów prze-
glądarki pomoże Ci znaleźć błąd (patrz strona 51).

C ZĘŚĆ I  W P R O W A D Z E N I E D O JĘZ Y K A J A V A S C R I P T

Krótka lekcja o obiektach

86

Rysunek 2.7.
To prawda, Stan
Lee może nie jest
wielkim pisarzem,
ale pomaga zro-
zumieć, jak dzia-
łają tablice

Krótka lekcja o obiektach
Dotychczas dowiedziałeś się, że na stronie można coś zapisywać przy użyciu funkcji
document.write(). Wiesz także, że w celu sprawdzenia liczby elementów tablicy
należy podać jej nazwę, kropkę oraz słowo length, tak jak w days.length. Zasta-
nawiasz się zapewne, po co te kropki. Do tej pory uczyłeś się języka JavaScript bez
wchodzenia w szczegóły tego elementu składni, jednak właśnie nadszedł czas, by przyj-
rzeć mu się dokładniej.

Wiele elementów języka JavaScript, podobnie jak wiele elementów stron WWW,
można sobie wyobrazić w postaci obiektów. Oczywiście, nasz rzeczywisty świat tak-
że jest wypełniony obiektami, takimi jak psy czy samochody. Większość z nich
składa się z różnych części. Każdy pies ma ogon, głowę i cztery łapy; a samochody
mają drzwi, koła, światła, klaksony i tak dalej. Obiekty mogą także wykonywać pewne
czynności — samochód może transportować pasażerów, a pies — szczekać. Co więcej,
nawet poszczególne części obiektów mogą coś robić; na przykład ogon psa może
machać, a klakson może trąbić. W tabeli 2.7 zaprezentowano jeden ze sposobów
przedstawienia związków pomiędzy obiektami, ich częściami oraz wykonywanymi
przez nie akcjami.

Tabela 2.7. Uproszczona prezentacja świata

Obiekt Części Akcje

pies szczekaj

ogon machaj

samochód transportuj

klakson trąb

R O Z D Z I AŁ 2 . G R A M A T Y K A JĘZ Y K A J A V A S C R I P T

Krótka lekcja o obiektach

87

Także świat języka JavaScript jest wypełniony obiektami, takimi jak okno przeglą-
darki, dokument, łańcuchy znaków, liczby oraz daty. Podobnie jak obiekty w rze-
czywistym świecie, także obiekty języka JavaScript składają się z wielu różnych
części. W terminologii programistycznej te części obiektów to właściwości. Z kolei
akcje, które obiekty mogą wykonywać, są nazywane metodami; to funkcje (podobne
do wbudowanej funkcji alert()) charakterystyczne dla konkretnego obiektu (patrz
tabela 2.8).

Tabela 2.8. Przykładowe metody i właściwości dwóch obiektów JavaScript: document oraz array

Obiekt Właściwość Metoda

document title

url

write()

['Kasia', 'Edward', 'Janek'] length

push()

pop()

unshift()

Uwaga: Metody można bardzo łatwo odróżnić od właściwości obiektów, gdyż zawsze kończą się

parą nawiasów, na przykład tak jak write().

Każdy obiekt w języku JavaScript ma własne właściwości i metody. Przykładowo
obiekt tablicy dysponuje właściwością length, a obiekt document udostępnia metodę
write(). Aby odwołać się do właściwości obiektu lub wywołać jego metodę, używa
się zapisu z kropką — i właśnie stąd te kropki! Łączą one obiekty z ich właściwo-
ściami lub metodami. Przykładowy fragment kodu w postaci document.write()
oznacza: wykonaj metodę write() obiektu document. Gdyby podobnie można było
korzystać z obiektów w rzeczywistym świecie, machanie przez psa ogonem zapisa-
libyśmy w następujący sposób: pies.ogon.machaj(). (Oczywiście, psi sposób ma-
chania ogonem działa znacznie lepiej).

Podobnie jak można posiadać kilka psów, tak i w programach JavaScript może być
używanych wiele wersji tego samego obiektu. Załóżmy na przykład, że przy użyciu
poniższego fragmentu kodu utworzymy dwie proste zmienne:

var first_name = 'Jacek';
var last_name = 'Kowalski';

W rzeczywistości utworzyliśmy dwa różne obiekty łańcuchów znaków. Obiekty te
dysponują zbiorem własnych właściwości i metod, różniących się od właściwości
i metod innych obiektów, takich jak daty (niektóre z nich zostały przedstawione na
stronie 593). Po utworzeniu obiektu (czasami operację tę nazywa się także tworze-
niem egzemplarza lub instancji obiektu) można uzyskać dostęp do wszystkich jego
właściwości i metod.

C ZĘŚĆ I  W P R O W A D Z E N I E D O JĘZ Y K A J A V A S C R I P T

Komentarze

88

Uwaga: Miałeś już okazję spotkać się z innym obiektem — obiektem window — reprezentującym

okno przeglądarki. Można by go uznać za rodzaj pojemnika, przechowującego stronę WWW wraz z całą

zawartością. Przykładowo alert() oraz prompt() są metodami obiektu window i można je także wy-

woływać w następujący sposób: window.alert() oraz window.prompt(). Niemniej jednak, ze względu

na to, że obiekt window zawsze jest dostępny na stronie WWW, odwołanie do niego można pominąć;

a zatem wywołania alert('Witamy') oraz window.alert('Witamy') będą miały taki sam efekt.

Podczas tworzenia nowej zmiennej i zapisywania w niej wartości powstaje nowy
egzemplarz konkretnego obiektu. A zatem każda z poniższych instrukcji JavaScript
tworzy obiekty różnych typów:

var first_name = "Janek"; // obiekt łańcucha znaków (String)
var age = 32; // obiekt liczby
var valid = false; // obiekt Boolean (wartość logiczna)

Jeśli zmieni się typ informacji przechowywanej w zmiennej, zmianie ulegnie także
typ obiektu. Kiedy na przykład utworzymy zmienną o nazwie data, zawierającą po-
czątkowo tablicę, a następnie zapiszemy w niej liczbę, zmienimy typ zmiennej z obiek-
tu tablicy na obiekt liczby:

var data = false; // obiekt Boolean
data = 32; // zmiana na obiekt liczby

Na pierwszy rzut oka pojęcia obiektów, właściwości, metod oraz zapisu z kropką mogą
się wydawać dosyć dziwne i trudne. Ponieważ jednak należą one do podstawowych
zagadnień związanych z działaniem języka JavaScript, a dodatkowo są powszechnie
używane w skryptach korzystających z biblioteki jQuery, bardzo szybko się do nich
przyzwyczaisz.

Wskazówka: Język JavaScript definiuje specjalne słowo kluczowe służące do określania typu obiektu

(łańcuchów znaków — String, liczb — number, wartości logicznych — Boolean i tak dalej). Jest to

operator typeof. Umieszcza się go przed nazwą zmiennej, której typ zawartości chcemy poznać.

Oto przykład:

 var data = 32;
 alert(typeof data); // w okienku dialogowym zostanie wyświetlone
 // słowo "number"
 data = 'Potwierdzam, zrozumiałem';
 alert(typeof data); // w okienku dialogowym zostanie wyświetlone
 // słowo "string"

Podczas dalszej lektury książki powinieneś pamiętać o kilku następujących zagad-
nieniach.

 W świecie języka JavaScript używanych jest wiele różnych rodzajów obiektów.

 Każdy obiekt ma swoje własne właściwości i metody.

 W celu odwołania się do właściwości obiektu lub wywołania jednej z jego
metod używany jest zapis z kropką, na przykład document.write().

Komentarze
Zazwyczaj podczas tworzenia kodu doskonale rozumiesz, jak działa program.
Każdy wiersz kodu ma sens i — co najważniejsze — działa! Jednak po miesiącu lub
dwóch, kiedy przełożony albo klient proszą o wprowadzenie zmian i dodanie nowych

R O Z D Z I AŁ 2 . G R A M A T Y K A JĘZ Y K A J A V A S C R I P T

Komentarze

89

funkcji do świetnego skryptu, niegdyś znajomy kod JavaScript będzie mniej zrozu-
miały. Możesz się zastanawiać, do czego służy dana zmienna, dlaczego napisałeś
kod w taki, a nie inny sposób, lub co dzieje się w określonym fragmencie programu.

Łatwo zapomnieć, jak działa program lub dlaczego napisałeś skrypt w dany sposób.
Na szczęście większość języków programowania umożliwia dodawanie do kodu no-
tatek na użytek własny i innych programistów analizujących skrypt. JavaScript
pozwala dodawać do kodu komentarze. Jeśli używałeś ich w kodach HTML i CSS,
znasz już tę funkcję. Komentarz to po prostu wiersz (lub kilka wierszy) uwag. In-
terpreter języka JavaScript ignoruje je, jednak można w nich umieścić przydatne
informacje na temat działania programu.

Aby utworzyć komentarz jednowierszowy, należy poprzedzić go dwoma ukośnikami:
// To komentarz.

Można też dodać komentarz po instrukcji języka JavaScript:
var price = 10; // Ustawianie początkowego kosztu kontrolki.

Interpreter JavaScript ignoruje wszystkie znaki zaczynające do dwóch ukośników
(//), aż do końca wiersza.

Można też tworzyć komentarze wielowierszowe, które rozpoczynają się od sekwencji
/*, a kończą sekwencją */. (Dokładnie takie same komentarze są używane w arku-
szach stylów CSS). Interpreter ignoruje cały tekst między tymi symbolami. Załóżmy,
że chcesz na początku kodu opisać działanie programu. Możesz to zrobić w nastę-
pujący sposób:

/*
 Pokaz slajdów w języku JavaScript
 Program automatyzuje wyświetlanie
 rysunków w oknie wyskakującym.
*/

Sekwencji /* i */ nie trzeba umieszczać w odrębnych wierszach. Przy ich użyciu
można też utworzyć komentarz jednowierszowy:

/* To komentarz jednowierszowy. */

Jeśli chcesz dodać krótki, jednowierszowy komentarz, powinieneś raczej użyć se-
kwencji //. Do tworzenia komentarzy wielowierszowych warto stosować kombi-
nację /* i */.

Kiedy używać komentarzy?
Komentarz to nieocenione narzędzie w długich lub złożonych programach, których
chcesz używać (lub je modyfikować) w przyszłości. Choć proste skrypty przedsta-
wione do tej pory składają się z tylko kilku wierszy kodu, wkrótce zaczniesz tworzyć
dłuższe i dużo bardziej skomplikowane programy. Aby szybko sobie przypomnieć,
jak działa skrypt, warto dodać komentarze. Pomogą one zrozumieć ogólną logikę
programu i jego szczególnie skomplikowane fragmenty.

Wielu programistów dodaje blok komentarzy na początku zewnętrznych plików
JavaScript. Takie komentarze informują o przeznaczeniu skryptu, dacie jego utwo-
rzenia, numerze wersji (jeśli kod często się zmienia) i prawach autorskich.

C ZĘŚĆ I  W P R O W A D Z E N I E D O JĘZ Y K A J A V A S C R I P T

Komentarze

90

Uwaga: Dodawanie wielu komentarzy zwiększa rozmiar skryptu i wydłuża jego wczytywanie.

Jednak ogólnie rzecz biorąc, komentarze dodawane do skryptów nie będą się znacząco przyczy-

niać do wzrostu wielkości plików JavaScript. Jeśli jednak chcesz usunąć ze swych plików każdy nie-

potrzebny bajt, informacje na temat zmniejszania plików JavaScript i skracania czasu ich pobierania

znajdziesz na stronie 609.

Na przykład w pliku JavaScript biblioteki jQuery znajduje się następujący komentarz:
/*!
 * jQuery JavaScript Library v1.11.0
 * http //jquery.com/
 *
 * Includes Sizzle.js
 * http //sizzlejs.com/
 *
 * Copyright 2005, 2014 jQuery Foundation, Inc. and other contributors
 * Released under the MIT license
 * http //jquery.org/license
 *
 * Date 2014-01-23T21 02Z
 */

Na początku skryptu można też zamieścić instrukcję jego używania, obejmującą
zmienne, które trzeba ustawić, wymagane specjalne elementy w kodzie HTML
i tak dalej.

Komentarz warto dodać także przed grupą skomplikowanych operacji programi-
stycznych. Jeśli na przykład skrypt wyświetla animowany rysunek, poruszający
się w oknie przeglądarki, fragment programu musi określać aktualną pozycję ob-
razka. Może to wymagać umieszczenia kilku skomplikowanych wierszy kodu.
Warto dodać komentarz przed taką sekcją programu, aby w przyszłości można było
ustalić, do czego służy dany fragment:

// Określanie współrzędnych x i y rysunku na ekranie.

Zgodnie z praktyczną regułą należy dodawać komentarze wszędzie tam, gdzie mogą
być w przyszłości przydatne. Jeśli dany wiersz jest w pełni zrozumiały, prawdopo-
dobnie nie wymaga opisu. Nie ma sensu dodawanie komentarzy do prostego kodu,
na przykład alert('Witaj'), ponieważ jego działanie jest oczywiste (instrukcja ta
wyświetla okno dialogowe ze słowem „Witaj”).

Komentarze w tej książce
Komentarze są bardzo przydatne także przy objaśnianiu kodu JavaScript. W tej książce
często opisują, do czego służy dany wiersz lub jaki jest efekt wykonania instrukcji.
Komentarz w poniższym fragmencie określa wynik działania polecenia alert:

var a = 'Jan';
var b = 'Kowalski';
alert(a + ' ' + b); // 'Jan Kowalski'

Trzeci wiersz kończy się komentarzem, który informuje, jaki tekst kod wyświetli
w oknie przeglądarki. Jeśli chcesz przetestować kod z tej książki przez umieszczenie
go na stronie i wyświetlenie w przeglądarce, możesz pominąć podobne komentarze
przy przepisywaniu instrukcji. Uwagi tego rodzaju mają jedynie pomóc zrozumieć
działanie kodu w trakcie czytania książki.

http://jquery.com/
http://sizzlejs.com/
http://jquery.org/license

R O Z D Z I AŁ 2 . G R A M A T Y K A JĘZ Y K A J A V A S C R I P T

Komentarze

91

Kiedy zaczniesz poznawać bardziej złożone polecenia języka JavaScript, nauczysz
się manipulować danymi zapisanymi w zmiennych. Komentarze do takiego kodu
często informują, jaką wartość powinna zawierać zmienna po wykonaniu instrukcji.
Na przykład polecenie charAt() umożliwia pobranie znaku z określonego miejsca
łańcucha. Przy opisie tego polecenia możesz natrafić na kod podobny do poniższego:

var x = "Nadszedł czas dobrych programistów.";
alert(x.charAt(2)); // 'd'

Komentarz // 'd' na końcu drugiego wiersza określa, co powinieneś zobaczyć
w oknie dialogowym po uruchomieniu kodu w przeglądarce. Naprawdę jest to litera
„d”. Gdy liczymy litery w łańcuchu znaków, pierwsza z nich ma numer 0, a zatem
wywołanie charAt(2) pobiera trzeci znak łańcucha. Czasem programowanie jest
trudne do zrozumienia.

C ZĘŚĆ I  W P R O W A D Z E N I E D O JĘZ Y K A J A V A S C R I P T

Komentarze

92

Dodawanie struktur
logicznych i sterujących

oznałeś już podstawowe cegiełki języka JavaScript. Jednak samo tworzenie
zmiennych oraz zapisywanie w nich łańcuchów znaków i liczb nie daje zbyt
wielu możliwości. Także wieloelementowa tablica nie będzie przydatna, jeśli

nie będziesz mógł wygodnie poruszać się po wszystkich jej wartościach. W tym
rozdziale dowiesz się, jak sprawić, aby programy inteligentnie reagowały na zdarzenia
i działały bardziej wydajnie dzięki instrukcjom warunkowym, pętlom i funkcjom.

Programy reagujące inteligentnie
W życiu nieustannie stajemy przed wyborami. „W co powinienem się ubrać?”, „Co
mam zjeść na obiad?”, „Gdzie spędzić piątkowy wieczór?”. Wiele decyzji zależy od
sytuacji. Załóżmy, że na piątkowy wieczór planujesz wyjście do kina. Prawdopodob-
nie zadasz sobie kilka pytań: „Czy grają jakiś dobry film?”, „Czy seans rozpoczyna się
o odpowiedniej godzinie?”, „Czy mam wystarczająco dużo pieniędzy, aby kupić bilet
(no i dużą porcję popcornu)?”.

Załóżmy, że film jest wyświetlany o odpowiedniej godzinie. Następne pytanie to:
„Czy mam wystarczającą ilość pieniędzy?”. Jeśli tak, możesz wyruszać do kina.
Jeżeli nie, zostaniesz w domu. Gdy do następnego piątku zgromadzisz fundusze, wy-
bierzesz się do kina. Ten scenariusz to po prostu ilustracja wpływu warunków na
podejmowane decyzje.

JavaScript udostępnia podobną funkcję podejmowania decyzji — instrukcje wa-
runkowe. W najprostszej wersji taka instrukcja sprawdza odpowiedź na pytanie typu
„tak-nie”. Jeśli odpowiedź jest twierdząca, program wykona określone operacje. Jeżeli
odpowiedź to „nie”, skrypt wykona inne polecenia. Instrukcje warunkowe to jeden
z najbardziej użytecznych elementów programistycznych. Umożliwiają one pro-
gramom reagowanie na różne sytuacje i działanie w inteligentny sposób. W swoich
programach będziesz ich używał niezliczoną ilość razy. A poniżej znajdziesz kilka
przykładów i przekonasz się, jak bardzo są użyteczne.

P

3
ROZDZIAŁ

C ZĘŚĆ I  W P R O W A D Z E N I E D O JĘZ Y K A J A V A S C R I P T

Programy reagujące
inteligentnie

94

 Walidacja formularzy. Jeśli program ma sprawdzić, czy użytkownik wypełnił
wszystkie pola formularza („Nazwisko”, „Adres”, „E-mail” i tak dalej), moż-
na użyć do tego instrukcji warunkowych, na przykład: „Jeśli pole »Nazwisko«
jest puste, nie przesyłaj formularza”.

 Przeciąganie i upuszczanie. Jeśli strona umożliwia przenoszenie jej części, warto
sprawdzać, gdzie użytkownik umieścił dany element. Na przykład po prze-
ciągnięciu rysunku na ikonę kosza należy usunąć zdjęcie ze strony.

 Sprawdzanie wprowadzonych danych. Jeśli program wyświetla w oknie wyska-
kującym pytanie typu „Czy zechcesz odpowiedzieć na kilka pytań na temat
jakości strony?”, powinien reagować w różny sposób — w zależności od udzielo-
nej odpowiedzi.

Na rysunku 3.1 przedstawiono przykładową aplikację, w której wykorzystano in-
strukcje warunkowe.

Rysunek 3.1. Zabawa wymaga czasem dużo pracy. Podobna do pasjansa gra napisana w języku JavaScript
(http://worldofsolitaire.com) dostosowuje swe działanie do warunków. Kiedy na przykład gracz przeciągnie
kartę, skrypt musi określić miejsce jej upuszczenia, a następnie wykonać odpowiednie operacje

Podstawy instrukcji warunkowych
Instrukcje warunkowe są także nazywane instrukcjami „jeśli, to”, ponieważ wy-
konują operacje tylko wtedy, gdy odpowiedź na pytanie jest twierdząca: „Jeśli mam
pieniądze, to pójdę do kina”. Podstawowa struktura takich instrukcji wygląda
następująco:

http://worldofsolitaire.com

R O Z D Z I AŁ 3 . D O D A W A N I E S T R U K T U R L O G I C Z N Y C H I S T E R U JĄC Y C H

Programy reagujące
inteligentnie

95

if (warunek) {
 // Tu operacje.
}

Ta instrukcja składa się z trzech części. Słowo kluczowe if informuje, że dalszy kod
to instrukcja warunkowa. Nawiasy zawierają pytanie typu „tak-nie”, nazywane
warunkiem (więcej na ten temat dowiesz się już za chwilę). Nawiasy klamrowe ({})
wyznaczają początek i koniec kodu JavaScript, wykonywanego, jeśli warunek jest
spełniony.

Uwaga: W podanym kodzie fragment „// Tu operacje.” to komentarz w języku JavaScript. Nie jest

to uruchamiany kod, a jedynie uwaga w programie, która w tym przypadku informuje Cię o tym, co

powinno znaleźć się w danym miejscu. Więcej wiadomości o komentarzach znajdziesz na stronie 89.

Warunek to często porównanie dwóch wartości. Załóżmy, że gracz wygrywa, jeśli
osiągnie wynik wyższy niż 100 punktów. W takim programie potrzebna jest zmienna
przechowująca wynik i instrukcja sprawdzająca, czy liczba zdobytych punktów prze-
kroczyła 100. Potrzebny kod JavaScript może wyglądać następująco:

if (score > 100) {
 alert('Wygrałeś!');
}

Zwróć uwagę na fragment score > 100. Jest to warunek, który sprawdza, czy war-
tość zmiennej score jest większa od 100. Jeśli tak jest, pojawi się okno dialogowe
z informacją „Wygrałeś!”. Jeżeli gracz nie przekroczył jeszcze 100 punktów, inter-
preter pominie polecenie alert i przejdzie do następnej części programu. Na rysunku
3.2 przedstawiono cały ten proces graficznie.

Rysunek 3.2. Przy użyciu prostej instrukcji warunkowej kod
umieszczony wewnątrz nawiasów klamrowych zostanie wy-
konany wyłącznie wtedy, gdy podany warunek przyjmie wartość
true. Jeśli warunek będzie mieć wartość false, kod zostanie
pominięty i będzie wykonywana dalsza część programu

Obok symbolu > (większy niż) w porównaniach można używać także kilku innych
operatorów (patrz tabela 3.1).

Wskazówka: Przed każdym wierszem kodu JavaScript w nawiasach klamrowych dodaj dwa odstępy

(lub kliknij raz klawisz tabulacji). Wcięcia w wierszach ułatwiają dostrzeżenie początkowego i końco-

wego nawiasu oraz ustalenie, który fragment kodu należy do instrukcji warunkowej. Stosowanie

dwóch odstępów to standardowe rozwiązanie, jednak możesz używać także wcięć o długości na przy-

kład czterech odstępów, jeśli uznasz, że poprawiają czytelność kodu. W przykładach w tej książce kod

w nawiasach klamrowych zawsze ma wcięcia.

C ZĘŚĆ I  W P R O W A D Z E N I E D O JĘZ Y K A J A V A S C R I P T

Programy reagujące
inteligentnie

96

Tabela 3.1. Operatory porównywania służą do oceny wartości w instrukcjach warunkowych

Operator
porównywania Działanie

== Równa się. Sprawdza, czy dwie wartości są takie same.
Służy do porównywania liczb i łańcuchów znaków.

!= Nie równa się. Sprawdza, czy dwie wartości są różne.
Służy do porównywania liczb i łańcuchów znaków.

=== Identyczny. Operator porównuje nie tylko wartości, lecz także typy
wartości. Innymi słowy, aby operator uznał, że porównywane elementy są
sobie równe, muszą one mieć także te same typy (oba muszą być liczbami,
łańcuchami znaków lub wartościami logicznymi). Choć na przykład wyrażenie
'2' == 2 będzie prawdziwe, to wyrażenie '2' === 2 już nie będzie, gdyż
pierwsza wartość została zapisana w apostrofach (czyli jest łańcuchem
znaków), natomiast druga jest liczbą. Wielu programistów preferuje ten
operator, gdyż gwarantuje on, że porównywane będą dane tych samych
typów. Jednak w przypadku pobierania wartości liczbowej z pola tekstowego
(na przykład z okna dialogowego wyświetlanego przez metodę prompt()),
uzyskamy łańcuch znaków, taki jak '2', a nie liczbę. Dlatego przed
porównywaniem takiej wartości należy ją skonwertować na liczbę — więcej
informacji o konwertowaniu łańcuchów znaków na liczby znajdziesz na
stronie 70.

!== Nieidentyczny. Podobnie jak opisany powyżej operator dokładnie równy,
także i ten porównuje zarówno wartości, jak i typy, na przykład wyrażenie
'2' != 2 zwraca wartość false, natomiast '2' !== 2 zwraca true,
bo choć porównywane wartości są takie same, to jednak ich typy są różne.

> Większy niż. Sprawdza, czy liczba po lewej stronie znaku jest większa
od liczby po prawej stronie. Wyrażenie 2 > 1 jest prawdziwe, ponieważ
liczba 2 jest większa od 1, jednak warunek 2 > 3 jest fałszywy, ponieważ
liczba 2 nie jest większa od 3.

< Mniejszy niż. Sprawdza, czy liczba po lewej stronie znaku jest mniejsza
od liczby po prawej stronie. Wyrażenie 2 < 3 jest prawdziwe, ponieważ
liczba 2 jest mniejsza od 3, jednak warunek 2 < 1 jest fałszywy,
ponieważ liczba 2 nie jest mniejsza od 1.

>= Większy lub równy. Sprawdza, czy liczba po lewej stronie znaku jest
większa od liczby po prawej stronie lub jej równa. Wyrażenie 2 >= 2
jest prawdziwe, ponieważ liczba 2 jest równa 2, jednak warunek 2 >= 3
jest fałszywy, ponieważ liczba 2 nie jest większa od 3 ani jej równa.

<= Mniejszy lub równy. Sprawdza, czy liczba po lewej stronie znaku jest
mniejsza od liczby po prawej stronie lub jej równa. Wyrażenie 2 <= 2
jest prawdziwe, ponieważ liczba 2 jest równa 2, jednak warunek 2 <= 1
jest fałszywy, ponieważ liczba 2 nie jest mniejsza od 1 ani jej równa.

Częściej warunki służą do sprawdzania, czy dwie wartości są sobie równe.
Na przykład w quizie napisanym w języku JavaScript może znaleźć się pytanie:
„Ile księżyców ma Saturn?”. Jeśli program zapisuje odpowiedź w zmiennej answer,
można użyć następującej instrukcji warunkowej:

if (answer == 31) {
 alert('Prawidłowa odpowiedź. Saturn ma 31 księżyców.');
}

R O Z D Z I AŁ 3 . D O D A W A N I E S T R U K T U R L O G I C Z N Y C H I S T E R U JĄC Y C H

Programy reagujące
inteligentnie

97

Dwa znaki równości (==) to nie literówka. Ta sekwencja nakazuje interpreterowi
porównanie dwóch wartości i sprawdzenie, czy są sobie równe. Zgodnie z tym, czego
dowiedziałeś się w poprzednim rozdziale, w języku JavaScript jeden znak równości
to operator przypisania, który służy do zapisywania wartości w zmiennych:

var score = 0; // Zapisuje 0 w zmiennej score.

Ponieważ jeden znak równości ma dla interpretera specjalne znaczenie, trzeba użyć
dwóch takich symboli przy sprawdzaniu, czy dwie wartości są sobie równe.

Sekwencji == (operatora równości) można użyć także do sprawdzenia, czy dwa
łańcuchy znaków są takie same. Załóżmy, że użytkownik może wpisać w formula-
rzu nazwę koloru. Jeśli wpisze 'red', program zmieni kolor tła strony na czerwony.
Można to zrobić za pomocą instrukcji warunkowej:

if (enteredColor == 'red') {
 document.body.style.background='red';
}

Uwaga: Nie musisz na razie wiedzieć, jak przebiega zmiana koloru w powyższym kodzie. Dynamiczne

modyfikowanie właściwości stylów CSS za pomocą kodu JavaScript opisane jest na stronie 163.

Możesz też sprawdzić, czy dwie wartości różnią się od siebie. Służy do tego operator
nierówności:

if (answer != 31) {
 alert("Błąd! Liczba księżyców Saturna jest inna.");
}

Wykrzyknik odpowiada tu słowu „nie”, dlatego sekwencja != oznacza „nie równa się”.
Jeśli w zmiennej answer zapisana jest wartość różna od 31, uczestnik gry zobaczy
nieprzyjemny komunikat.

Kod wykonywany przy spełnionym warunku w poprzednich przykładach miał tylko
jeden wiersz, jednak między otwierającym i zamykającym nawiasem klamrowym
można umieścić dowolną liczbę wierszy kodu JavaScript. W przykładowym quizie
można też przechowywać liczbę prawidłowych odpowiedzi udzielonych przez gracza.

A zatem, kiedy użytkownik poprawnie poda liczbę księżyców Saturna, należy zwięk-
szyć sumę jego punktów o 1. Można to zrobić w instrukcji warunkowej:

if (answer == 31) {
 alert('Prawidłowa odpowiedź. Saturn ma 31 księżyców.');
 numCorrect += 1;
}

Uwaga: Zgodnie z informacjami podanymi na stronie 72 drugi wiersz kodu umieszczony w instrukcji

warunkowej — numCorrect += 1 — dodaje 1 do aktualnej wartości zmiennej numCorrect.

Między nawiasy można wstawić więcej dodatkowych wierszy kodu, który program
ma uruchomić, jeśli warunek będzie spełniony.

C ZĘŚĆ I  W P R O W A D Z E N I E D O JĘZ Y K A J A V A S C R I P T

Programy reagujące
inteligentnie

98

Uwzględnianie planu awaryjnego
Co zrobić, jeśli warunek nie jest spełniony? Podstawowa instrukcja warunkowa
z poprzedniego punktu nie obejmuje planu awaryjnego, używanego, jeśli warunek
jest fałszywy. Kiedy zastanawiasz się, co robić w piątkowy wieczór, i nie masz pienię-
dzy na kino, prawdopodobnie wymyślisz coś innego. W instrukcjach if można
użyć podobnego planu awaryjnego, nazywanego klauzulą else. Załóżmy, że pro-
gram do obsługi quizu ma powiadamiać gracza, czy udzielił dobrej, czy złej od-
powiedzi. Można to zrobić w następujący sposób:

if (answer == 31) {
 alert('Prawidłowa odpowiedź. Saturn ma 31 księżyców.');
 numCorrect = numCorrect + 1;
} else {
 alert("Błąd! Liczba księżyców Saturna jest inna.");
}

W tym kodzie występuje sytuacja „albo-albo”. Może się pojawić tylko jeden z dwóch
komunikatów (co pokazano na rysunku 3.3). Jeśli zmienna answer ma wartość 31,
użytkownik dowie się, że podał prawidłową odpowiedź. Inna wartość spowoduje
wyświetlenie informacji o błędzie.

Rysunek 3.3. Podczas stosowania instrukcji warunkowej z klauzulą else konieczne jest poda-
nie dwóch bloków kodu, przy czym zostanie wykonany tylko jeden z nich. Jeśli warunek przyj-
mie wartość true, zostanie wykonany fragment podany w nawiasach klamrowych umieszczo-
nych bezpośrednio za instrukcją if (lewa gałąź na rysunku); gdy natomiast warunek przyjmie
wartość false, zostanie wykonany blok kodu umieszczony wewnątrz nawiasów klamrowych
za słowem kluczowym else (prawa gałąź na rysunku)

Aby utworzyć klauzulę else, wystarczy wpisać słowo „else” po zamykającym nawia-
sie klamrowym instrukcji warunkowej, a następnie dodać drugą parę takich na-
wiasów. W nowych nawiasach należy umieścić kod wykonywany wtedy, gdy warunek
nie jest spełniony. Także w klauzuli else można wpisać dowolną liczbę wierszy kodu.

Sprawdzanie kilku warunków
Czasem trzeba sprawdzić kilka warunków i powiązać z nimi różne operacje. Wyobraź
sobie grę, w której prezenter pyta uczestnika: „Czy wybiera pan bramkę numer 1, 2
czy 3?”, przy czym można wskazać tylko jedną nagrodę. W życiu ludzie często sty-
kają się z podobnymi wyborami.

R O Z D Z I AŁ 3 . D O D A W A N I E S T R U K T U R L O G I C Z N Y C H I S T E R U JĄC Y C H

Programy reagujące
inteligentnie

99

P O R A D N I A D L A Z A A W A N S O W A N Y C H

Jeszcze o wartościach logicznych
Na stronie 63 poznałeś wartości logiczne — true i false.

Na pozór nie są one zbyt przydatne, jednak w instruk-

cjach warunkowych odgrywają kluczową rolę. Ponieważ

warunek to pytanie typu „tak-nie”, odpowiedzią na nie jest

wartość logiczna. Przyjrzyj się poniższemu fragmentowi:

var x = 4;
if (x == 4) {
 // Instrukcje.
}

Pierwszy wiersz kodu zapisuje w zmiennej x liczbę 4.

Warunek w następnym wierszu to proste pytanie: „Czy

wartość zmiennej x jest równa 4?”. Warunek ten jest

spełniony, dlatego skrypt wykona kod JavaScript w nawia-

sach klamrowych. Interpreter przekształca warunek

podany w nawiasach na wartość logiczną. (W żargonie

programistycznym można powiedzieć, że interpreter

sprawdza warunek). Jeśli warunek ma wartość true

(odpowiedź na pytanie to „tak”), uruchamiany jest kod

w nawiasach klamrowych. Jeżeli jednak warunek ma war-

tość false, program pomija instrukcje w nawiasach

klamrowych.

Jednym ze standardowych zastosowań wartości logicz-

nych jest tworzenie flag, czyli zmiennych, które określają,

czy dany warunek jest spełniony. Na przykład na potrzeby

walidacji formularza można utworzyć zmienną valid

o wartości logicznej true. Programista używa tej war-

tości, ponieważ początkowo zakłada, iż formularz jest

wypełniony prawidłowo. Jeśli przy analizie pól formularza

okaże się, że nie zawierają informacji lub podane wartości

mają niewłaściwy typ, należy zmienić wartość zmiennej

valid na false. Po przejrzeniu wszystkich pól formula-

rza należy sprawdzić zmienną valid. Jeśli ma ona war-

tość true, można przesłać formularz. Jeżeli ma wartość

false, przynajmniej jedno pole formularza zawiera

błędne dane, dlatego trzeba wyświetlić komunikat

o błędzie i wstrzymać przesyłanie formularza:

var valid = true;
// Tu liczne operacje.
/* Jeśli dane są błędne, należy
ustawić wartość zmiennej valid
na false. */
if (valid) {
 // Przesyłanie formularza.
} else {
 // Wyświetlanie komunikatów o błędzie.
}

Przypomnij sobie rozważania nad piątkowym wieczorem. Możesz zwiększyć liczbę
możliwych rozrywek i uzależnić wybór jednej z nich od ilości pieniędzy i humoru.
Możesz na przykład zacząć od stwierdzenia: „Jeśli mam ponad 100 złotych, wybiorę
się na dobrą kolację i film (i wystarczy mi na popcorn)”. Jeśli nie masz 100 złotych,
możesz postawić następny warunek: „Jeśli mam ponad 50 złotych, pójdę na dobrą
kolację”. Jeżeli nie masz 50 złotych, możesz stwierdzić: „Jeśli mam ponad 25 złotych,
pójdę do kina”. Jeżeli nie możesz wydać 25 złotych, uznajesz, że zostaniesz w domu
i pooglądasz telewizję. Piątek otwiera przed Tobą naprawdę wiele możliwości!

JavaScript umożliwia sprawdzenie serii warunków za pomocą instrukcji else if.
Struktura ta działa w następujący sposób: instrukcja if jest powiązana z możliwo-
ścią numer 1, a dalsze instrukcje else if pozwalają zadać dodatkowe pytania, które
prowadzą do dodatkowych operacji. Na końcu jako możliwość rezerwową można
umieścić klauzulę else. Podstawowa postać tej struktury w języku JavaScript wygląda
następująco:

if (warunek) {
 // Bramka 1.
} else if (warunek2) {
 // Bramka 2.
} else {
 // Bramka 3.
}

C ZĘŚĆ I  W P R O W A D Z E N I E D O JĘZ Y K A J A V A S C R I P T

Programy reagujące
inteligentnie

100

Ta struktura wystarczy do zbudowania w języku JavaScript programu do planowania
piątkowego wieczoru. Skrypt ten pyta użytkownika o ilość pieniędzy, a następnie
określa możliwe rozrywki na piątkowy wieczór (brzmi znajomo, prawda?). Do pobra-
nia odpowiedzi można użyć polecenia prompt(), które poznałeś na stronie 74, a do
ustalenia planu wieczoru posłuży seria instrukcji if i else if:

var fridayCash = prompt('Ile chcesz wydać?', '');
if (fridayCash >= 100) {
 alert('Możesz iść na kolację i do kina.');
} else if (fridayCash >= 50) {
 alert('Możesz iść na dobrą kolację.');
} else if (fridayCash >= 25) {
 alert('Możesz iść do kina.');
} else {
 alert('Spędzisz wieczór przed telewizorem.');
}

Pierwszy wiersz programu otwiera okno dialogowe z pytaniem o ilość pieniędzy.
Dane podane przez użytkownika są zapisywane w zmiennej fridayCash. Następny
wiersz sprawdza warunek: czy użytkownik wpisał wartość równą 100 lub większą?
Jeśli tak, pojawia się okno dialogowe z informacją, że użytkownik może iść na kolację
i do kina. W tym momencie cała instrukcja warunkowa jest już wykonana. Inter-
preter pomija dwie instrukcje else if i końcową instrukcję else. W instrukcjach
warunkowych uruchamiany jest tylko jeden zestaw poleceń, dlatego kiedy inter-
preter natrafi na warunek o wartości true, wykonuje powiązany z nim kod JavaScript
i pomija wszystkie pozostałe warunki (patrz rysunek 3.4).

Rysunek 3.4. Gdy korzystamy z prostych instrukcji warunkowych, kod umieszczany wewnątrz
nawiasów klamrowych jest wykonywany wyłącznie wtedy, gdy warunek będzie spełniony. Jeśli
warunek nie zostanie spełniony, kod jest pomijany, a program kontynuuje działanie. Działający
przykład zilustrowanego tu kodu znajdziesz w przykładach dołączonych do książki, a konkretnie
w pliku friday_night.html w katalogu R03

R O Z D Z I AŁ 3 . D O D A W A N I E S T R U K T U R L O G I C Z N Y C H I S T E R U JĄC Y C H

Programy reagujące
inteligentnie

101

Uwaga: Podczas przetwarzania warunków interpreter JavaScriptu poszukuje „prawdy”. Okazuje

się, że w języku JavaScript stosowane jest pojęcie „prawdy” i „fałszu” (ang: truthy oraz falsy), które

mają nieco szersze znaczenie niż wartości true oraz false. Masz wrażenie, że to skomplikowane?

Więcej o tych zaawansowanych zagadnieniach dowiesz się, czytając dalej tę książkę.

Załóżmy, że użytkownik podał wartość 30. Pierwszy warunek nie jest spełniony,
ponieważ 30 to mniej niż 100. Dlatego interpreter pomija kod w nawiasach klam-
rowych przy pierwszym warunku i przechodzi do pierwszej instrukcji else if: „Czy
30 jest równe 50 lub większe?”. Ponieważ odpowiedź to „nie”, interpreter pomija kod
powiązany z tym warunkiem i dochodzi do drugiej instrukcji else if: „Czy 30 jest
równe 25 lub większe?”. Odpowiedź to „tak”, dlatego program wyświetla okno dia-
logowe z wiadomością: „Możesz iść do kina” i przerywa działanie, pomijając koń-
cową klauzulę else.

Kolejność, w jakiej zostaną zapisane instrukcje warunkowe, może mieć wpływ
na przebieg działania programu. Załóżmy na przykład, że zmieniliśmy kolejność
instrukcji warunkowych w poprzednim przykładzie:

var fridayCash = prompt('Ile chcesz wydać?', '');
if (fridayCash >= 25) {
 alert('Możesz iść do kina.');
} else if (fridayCash >= 50) {
 alert('Możesz iść na dobrą kolację.');
} else if (fridayCash >= 100) {
 alert('Możesz iść na kolację i do kina.');
} else {
 alert('Spędzisz wieczór przed telewizorem.');
}

W tym przypadku — niezależnie od tego, jak dużo będziesz mieć pieniędzy —
nigdy nie pójdziesz na dobrą kolację, ani na kolację i do kina. Jeśli będziesz mieć
100 złotych, program najpierw sprawdzi warunek „czy 100 > 12”. Oczywiście,
warunek ten będzie spełniony, a zatem program wyświetli komunikat Możesz iść
do kina. , a pozostałe instrukcje warunkowe zostaną pominięte, bez względu
na to, że będziemy mieli wystarczająco dużo pieniędzy, by pójść zarówno do kina,
jak i na kolację.

Z problemami tego typu można się zetknąć podczas porównywania wartości
liczbowych przy użyciu operatorów < lub >. Ponieważ bardzo wiele liczb może
być większych bądź mniejszych od innych liczb, zatem możliwości spełnienia
takiego warunku także może być wiele. Z kolei w przypadku sprawdzania, czy
zmienna jest równa pewnej wartości liczbowej, warunek będzie spełniony tylko
w jednym przypadku. Zatem sekwencje instrukcji warunkowych if / else if
/ then z takimi warunkami można zapisywać w dowolnej kolejności.

Wskazówka: Istnieje też inny sposób na utworzenie serii instrukcji warunkowych sprawdzających

wartość jednej zmiennej, takiej jak fridayCash, w przykładowym kodzie. Służy do tego instrukcja

switch, którą poznasz na stronie 603.

C ZĘŚĆ I  W P R O W A D Z E N I E D O JĘZ Y K A J A V A S C R I P T

Programy reagujące
inteligentnie

102

Bardziej skomplikowane warunki
Kiedy trzeba sprawdzić wartości wielu zmiennych, często niezbędne są jeszcze bar-
dziej złożone instrukcje warunkowe. Przy walidacji pola na adres e-mail w formu-
larzu należy sprawdzić, czy pole nie jest puste i czy zawiera adres, a nie przypadkowe
znaki. Na szczęście JavaScript umożliwia przetestowanie także takich warunków.

Sprawdzanie, czy spełnionych jest kilka warunków

Często przy podejmowaniu decyzji należy wziąć pod uwagę kombinację czynników.
Na przykład możesz zechcieć pójść do kina, jeśli masz wystarczającą ilość pieniędzy
i grany jest film, który Cię interesuje. Oznacza to, że spełnione muszą być dwa
warunki. Jeśli jeden z nich jest fałszywy, zrezygnujesz z kina. W języku JavaScript
do łączenia warunków służy logiczny operator I, który ma postać dwóch ampersan-
dów (&&). Można podać go między dwoma warunkami w jednej instrukcji warun-
kowej. Aby sprawdzić, czy wartość to liczba większa od 1 i mniejsza od 10, można
użyć następującego kodu:

if (a > 1 && a < 10) {
 // Wartość pomiędzy 1 a 10.
 alert("Wartość " + a + " jest większa od 1 i mniejsza od 10.");
}

Ten kod testuje dwa warunki. Fragment a > 1 sprawdza, czy wartość zmiennej
a jest większa od 1. Drugi warunek, a < 10, to pytanie: „Czy wartość a jest mniejsza
od 10?”. Kod JavaScript spomiędzy nawiasów klamrowych zadziała tylko wtedy, gdy
oba warunki będą spełnione. Jeśli zmienna a ma wartość 0, pierwszy warunek,
a < 10, jest prawdziwy (0 jest mniejsze od 10), ale drugi warunek jest fałszywy
(0 nie jest większe od 1).

Nie trzeba ograniczać się do dwóch warunków. Przy użyciu operatora && można
połączyć ich dowolną liczbę:

if (b>0 && a>0 && c>0) {
 // Wszystkie trzy zmienne są większe od 0.
}

Ten kod sprawdza, czy wartość każdej z trzech zmiennych jest większa od 0. Jeśli
przynajmniej jedna z nich ma wartość 0 lub mniejszą, program nie uruchomi kodu
zapisanego w nawiasach klamrowych.

Sprawdzanie, czy spełniony jest przynajmniej jeden warunek

Czasem wystarczy, że prawdziwy jest jeden warunek z grupy. Załóżmy, że program
umożliwia użytkownikom przechodzenie między zdjęciami w galerii za pomocą
klawiatury. Kiedy internauta wciśnie klawisz N, pojawia się następny rysunek.
Program ma reagować w ten sposób zarówno po wpisaniu małej litery n, jak i po
wprowadzeniu dużej litery N (przy włączonym klawiszu Caps Lock). Trzeba więc
sprawdzić, czy użytkownik podał jedną lub drugą literę. Służy do tego logiczny
operator LUB, który ma postać dwóch symboli potoku (||):

if (key == 'n' || key == 'N') {
 // Przejdź do następnego zdjęcia.
}

R O Z D Z I AŁ 3 . D O D A W A N I E S T R U K T U R L O G I C Z N Y C H I S T E R U JĄC Y C H

Programy reagujące
inteligentnie

103

Uwaga: Aby wprowadzić symbol potoku, wciśnij kombinację Shift+\. Klawisz służący do wpisywania

ukośnika i symbolu potoku znajduje się zwykle nad klawiszem Enter.

Program uruchamia kod JavaScript w nawiasach klamrowych, jeśli prawdziwy jest
choć jeden warunek podany obok operatora LUB.

Operator LUB, podobnie jak operator I, umożliwia sprawdzanie kilku warunków.
Załóżmy, że napisałeś za pomocą języka JavaScript grę w wyścigi samochodowe.
Gracz ma ograniczoną ilość czasu i paliwa oraz liczbę samochodów (każdy wypadek
powoduje utratę jednego pojazdu). Aby utrudnić grę, można ją przerwać, kiedy skoń-
czy się choć jeden z trzech zasobów:

if (gas <= 0 || time <= 0 || cars <= 0) {
 // Koniec gry.
}

Przy testowaniu wielu warunków czasem trudno zrozumieć działanie instrukcji
warunkowej. Niektórzy programiści umieszczają każdy warunek w nawiasach, aby
wyraźniej opisać logikę programu:

if ((key == 'n') || (key == 'N')) {
 // Przejście do następnego zdjęcia.
}

W czasie czytania takiego kodu można traktować każdą grupę jak odrębny test.
Wynik operacji w każdej parze nawiasów to zawsze true lub false.

Negowanie warunków

Fani Supermena prawdopodobnie znają postać Bizarro. Jest to czarny charakter, który
mieszka na sześciennej planecie Htrae (ang. Earth, czyli Ziemia, pisane wstecz),
chodzi w kostiumie z odwróconą literą S i jest przeciwieństwem Supermena. Kiedy
Bizarro mówi „Tak”, ma na myśli „Nie”, a kiedy mówi „Nie”, chce powiedzieć „Tak”.

Język JavaScript udostępnia operator NIE, który ma postać wykrzyknika (!) i działa
w podobny sposób. Widziałeś już, jak używać tego operatora wraz ze znakiem
równości. Ta sekwencja, !=, oznacza „nie równa się”. Jednak operatora NIE można
użyć także do całkowitego odwrócenia wyników instrukcji warunkowej, czyli zmiany
wartości false na true i true na false.

Operatora NIE można użyć, jeśli program ma uruchomić kod dla fałszywego
warunku. Załóżmy, że zmienna valid przyjmuje wartość logiczną true lub false
(patrz ramka na stronie 99). Program może używać tej zmiennej do śledzenia,
czy użytkownik prawidłowo wypełnił formularz. Kiedy internauta spróbuje przesłać
formularz, kod JavaScript sprawdzi każde pole formularza pod kątem określonych
wymagań (na przykład pole nie może być puste i musi zawierać adres e-mail). Jeśli
wystąpi problem, na przykład pole będzie puste, można ustawić zmienną valid na
wartość false (valid = false).

Aby program po wykryciu problemu wyświetlał informacje o błędzie i wstrzymywał
przesyłanie formularza, można użyć następującej instrukcji warunkowej:

if (! valid) {
 // Wyświetlanie błędów i blokowanie przesyłania formularza.
}

C ZĘŚĆ I  W P R O W A D Z E N I E D O JĘZ Y K A J A V A S C R I P T

Programy reagujące
inteligentnie

104

Warunek ! valid oznacza „jeśli nie valid”. Jeśli zmienna valid ma wartość false,
cały warunek ma wartość true. Aby ustalić, czy warunek jest spełniony, należy
sprawdzić jego wartość z pominięciem operatora NIE, a następnie ją odwrócić. Dla-
tego jeśli warunek ma wartość true, operator ! zmieni ją na false, a program nie
uruchomi instrukcji warunkowych.

Działanie operatora NOT jest bardzo proste do zrozumienia (tłumaczenie słów
Bizarro: ten operator jest skomplikowany, jeśli jednak będziesz długo go używał,
przyzwyczaisz się do niego).

Zagnieżdżanie instrukcji warunkowych
Programowanie w dużej części polega na podejmowaniu decyzji na podstawie infor-
macji podanych przez użytkownika i warunków, które wystąpiły w programie. Im
więcej wyborów dokonuje skrypt, tym więcej możliwych skutków i wyższa „inteli-
gencja” programu. Po przetworzeniu jednej instrukcji warunkowej często okazuje się,
że trzeba podjąć następne decyzje.

Załóżmy, że chcesz rozbudować program wyświetlający propozycje rozrywki na piąt-
kowy wieczór o obsługę pozostałych dni tygodnia. Taki skrypt musi najpierw ustalić,
jaki jest dzień, a następnie określić, co użytkownik może zrobić danego wieczoru.
Jedna instrukcja warunkowa może sprawdzać, czy dany dzień to piątek. Jeśli tak,
następna seria instrukcji warunkowych określa rozrywkę na wieczór:

if (dayOfWeek == 'Piątek') {
 var fridayCash = prompt('Ile chcesz wydać?', '');
 if (fridayCash >= 100) {
 alert('Możesz iść na kolację i do kina.');
 } else if (fridayCash >= 50) {
 alert('Możesz iść na dobrą kolację.');
 } else if (fridayCash >= 25) {
 alert('Możesz iść do kina.');
 } else {
 alert('Spędzisz wieczór przed telewizorem.');
 }
}

Pierwszy warunek sprawdza, czy wartość zapisana w zmiennej dayOfWeek to łań-
cuch znaków 'Piątek'. Jeśli tak jest, pojawia się okno dialogowe, które pobiera od
użytkownika informacje. Następnie program uruchamia dalsze instrukcje warun-
kowe. Pierwszy warunek, (dayOfWeek == 'Piątek'), to wstęp do serii następnych
instrukcji warunkowych. Jeśli zmienna dayOfWeek ma inną wartość, warunek jest
fałszywy i skrypt pominie zagnieżdżone instrukcje.

Wskazówki na temat pisania instrukcji warunkowych
Zagnieżdżone instrukcje warunkowe w poprzednim punkcie mogą wydawać się
skomplikowane. Zawierają wiele par () i {} oraz instrukcji else i if. Jeśli popeł-
nisz pomyłkę w jednym z istotnych fragmentów instrukcji warunkowych, skrypt
przestanie działać. Są jednak techniki, które ułatwiają korzystanie z takich instrukcji.

R O Z D Z I AŁ 3 . D O D A W A N I E S T R U K T U R L O G I C Z N Y C H I S T E R U JĄC Y C H

Przykład — używanie
instrukcji warunkowych

105

 Dodawaj oba nawiasy klamrowe przed wpisaniem kodu wewnątrz nich. Jed-
nym z najczęstszych błędów jest pominięcie końcowego nawiasu klamrowego
w instrukcji warunkowej. Aby uniknąć takiej pomyłki, najpierw dodaj wa-
runek i oba nawiasy, a następnie wpisz kod JavaScript, uruchamiany, jeśli
dany warunek jest spełniony. Możesz zacząć od następującego fragmentu:

if (dayOfWeek=='Piątek') {

}

Najpierw należy wpisać klauzulę if i pierwszy nawias klamrowy, dwukrotnie
wcisnąć klawisz Enter, a następnie dodać końcowy nawias klamrowy. Po po-
prawnym przygotowaniu podstawowej struktury kliknij pusty wiersz między
nawiasami klamrowymi i dodaj kod JavaScript.

 Stosuj wcięcia w kodzie w nawiasach klamrowych. Struktura instrukcji wa-
runkowej jest lepiej widoczna po wcięciu całego kodu JavaScript w nawiasach
klamrowych:

if (a < 10 && a > 1) {
 alert("Wartość " + a + " jest większa od 1 i mniejsza od 10.");
}

Wcięcie kodu przez dodanie kilku odstępów (lub wciśnięcie klawisza tabulacji)
pomaga dostrzec, który fragment ma uruchomić program w ramach instrukcji
warunkowej. W instrukcjach zagnieżdżonych warto dodawać wcięcia na każdym
poziomie:

if (a < 10 && a > 1) {
 // Pierwszy poziom wcięć dla pierwszego warunku.
 alert("Wartość " + a + " jest większa od 1 i mniejsza od 10.");
 if (a==5) {
 // Drugi poziom wcięć dla drugiego warunku.
 alert(a + " to połowa z 10.");
 }
}

 Używaj sekwencji == do porównywania wartości. Przy sprawdzaniu, czy
dwie wartości są sobie równe, pamiętaj o używaniu operatora równości:

if (name == 'Robert') {

Często spotykany błąd to użycie jednego znaku równości:
if (name = 'Robert') {

Pojedynczy znak równości zapisuje wartość w zmiennej, dlatego łańcuch znaków
'Robert' zostanie przypisany do zmiennej name. Niestety, interpreter potrak-
tuje tę operację jako prawdziwą, dlatego powyższy warunek zawsze będzie miał
wartość true.

Przykład — używanie instrukcji warunkowych
Instrukcje warunkowe należą do zestawu codziennych narzędzi programisty języka
JavaScript. W tym przykładzie użyjesz takich instrukcji do sterowania działaniem
skryptu.

Uwaga: Informacje o przykładowych plikach znajdziesz w uwadze na stronie 46.

C ZĘŚĆ I  W P R O W A D Z E N I E D O JĘZ Y K A J A V A S C R I P T

Przykład — używanie
instrukcji warunkowych

106

 1. Otwórz w edytorze tekstu plik conditional.html z katalogu R03.

Program ma najpierw pobierać liczbę od użytkownika. Wspomniany plik zawiera
już znaczniki <script> w sekcji nagłówkowej i w ciele strony.

 2. W pierwszej parze znaczników <script> (w sekcji nagłówkowej) wpisz kod
wyróżniony pogrubieniem:

<script>
var luckyNumber = prompt('Jaka jest Twoja szczęśliwa liczba?','');
</script>

Ten wiersz kodu otwiera okno dialogowe, zadaje pytanie i zapisuje w zmiennej
luckyNumber dane wpisane przez użytkownika. Następnie należy dodać instruk-
cję warunkową, która sprawdza, jakie dane internauta podał w oknie dialogowym.

 3. Znajdź drugą parę znaczników <script> (w ciele strony) i dodaj w nich kod
wyróżniony pogrubieniem:

<script>
if (luckyNumber == 7) {
</script>

Nie zapomnij o użyciu podwójnego znaku równości (==), który pozwala
sprawdzić, czy dwie wartości są równe. To początek instrukcji warunkowej.
Ten fragment sprawdza, czy użytkownik wpisał liczbę 7.

 4. Wciśnij dwukrotnie klawisz Enter i dodaj zamykający nawias klamrowy,
aby kod wyglądał następująco:

<script>
if (luckyNumber == 7) {

}
</script>

Zamykający nawias klamrowy kończy instrukcję warunkową. Kod JavaScript
umieszczony między takimi nawiasami zadziała tylko wtedy, gdy warunek
będzie spełniony.

Uwaga: Na stronie 105 dowiedziałeś się, że warto dodać zamykający nawias klamrowy przed

wpisaniem kodu uruchamianego w instrukcji warunkowej.

 5. Kliknij pusty wiersz nad zamykającym nawiasem klamrowym. Wciśnij dwa
razy klawisz spacji i dodaj poniższy kod:

document.write("7 to także moja szczęśliwa liczba!");

Dwa odstępy przed kodem dodają wcięcie w wierszu. Pozwala to szybko dostrzec,
że kod jest częścią instrukcji warunkowej. Użyty tu kod JavaScript nie jest ni-
czym nowym. Instrukcja ta wyświetla wiadomość na stronie.

 6. Zapisz plik i wyświetl go w przeglądarce. Kiedy pojawi się okno dialogowe,
wpisz 7.
Powinieneś zobaczyć wiadomość „7 to także moja szczęśliwa liczba!” pod na-
główkiem wczytanej strony. Jeśli jej nie ma, sprawdź, czy poprawnie przepisałeś
kod (na stronie 51 znajdziesz wskazówki na temat analizy niedziałających
skryptów). Odśwież stronę, lecz tym razem podaj inną liczbę. Pod nagłówkiem
nie powinna pojawić się żadna informacja. Do wyświetlania innych wiadomości
posłuży klauzula else.

R O Z D Z I AŁ 3 . D O D A W A N I E S T R U K T U R L O G I C Z N Y C H I S T E R U JĄC Y C H

Przykład — używanie
instrukcji warunkowych

107

C Z Ę S T O Z A D A W A N E P Y T A N I A

Dlaczego dwa zestawy znaczników skryptu?
Dlaczego znaczniki <script> pojawiają się dwa razy
— najpierw w sekcji nagłówka strony, a następnie w jej

treści?

Podczas stosowania metody document.write() w celu

dodawania zawartości do strony jej wywołanie należy

umieścić dokładnie w tym miejscu, w którym chce-

my, by pojawił się komunikat — w naszym przypadku

jest to główna część strony, poniżej znacznika <h1>.

Pierwszy zestaw znaczników skryptu został umiesz-

czony w sekcji nagłówka strony, gdyż chcemy, by okien-

ko z pytaniem pojawiło się wcześniej. Jeśli wywołanie

metody prompt() przesuniemy z nagłówka do głównej

części strony (dalej — sam wypróbuj, co się stanie),

przed pojawieniem się okienka z pytaniem zostanie

wyświetlona tylko część zawartości. Ponieważ na tym

etapie kod JavaScript jest wykonywany bezzwłocznie,

przeglądarka, zanim wyświetli dalszą część zawartości

strony, będzie musiała poczekać, aż użytkownik poda

odpowiedź w okienku dialogowym. Innymi słowy, strona

będzie wyglądać dziwnie.

Gdy natomiast umieścimy wywołanie metody prompt()

w sekcji <head>, w momencie wyświetlania okienka

dialogowego strona będzie zupełnie pusta. Takie rozwią-

zanie jest nieco lepsze. W następnym rozdziale dowiesz

się, jak można dodawać nowe treści i umieszczać je

w dowolnym miejscu strony bez korzystania z metody

document.write(). Kiedy już poznasz tę technikę,

będziesz mógł zamieszczać cały kod JavaScript w jed-

nym miejscu strony.

 7. Ponownie otwórz edytor kodu i dodaj do strony kod wyróżniony pogru-
bieniem:

<script>
if (luckyNumber == 7) {
 document.write("<p>7 to także moja szczęśliwa liczba!<p>");
} else {
 document.write("<p>Twoja szczęśliwa liczba to " + luckyNumber
 + "!</p>");
}
</script>

Klauzula else zawiera rezerwowy komunikat. Jeśli użytkownik nie wpisze
wartości 7, zobaczy inny komunikat z informacją o szczęśliwej liczbie. Aby
uzupełnić przykład, można dodać instrukcję else if, która sprawdza dalsze
wartości i wyświetla następną wiadomość.

 8. Dodaj do skryptu wiersze wyróżnione pogrubieniem:
<script>
if (luckyNumber == 7) {
 document.write("<p>7 to także moja szczęśliwa liczba!</p>");
} else if (luckyNumber == 13 || luckyNumber == 24) {
 document.write("<p>Naprawdę " + luckyNumber + "? To pechowa
 liczba!</p>");
} else {
 document.write("<p>Twoja szczęśliwa liczba to " + luckyNumber +
 "!</p>");
}
</script>

W tej wersji skrypt najpierw sprawdza, czy zmienna luckyNumber ma wartość 7.
Jeśli jest to inna liczba, program uruchamia blok else if. Ta instrukcja warun-
kowa składa się z dwóch warunków — luckyNumber == 13 i luckyNumber ==
24. Sekwencja || (logiczny operator LUB) sprawia, że cała instrukcja jest praw-
dziwa, jeśli spełniony jest choć jeden z dwóch warunków. Dlatego jeżeli
użytkownik poda wartość 13 lub 24, na stronie pojawi się informacja o pe-
chowej liczbie.

C ZĘŚĆ I  W P R O W A D Z E N I E D O JĘZ Y K A J A V A S C R I P T

Przykład — używanie
instrukcji warunkowych

108

Uwaga: Aby dodać logiczny operator LUB (||), należy dwukrotnie wpisać kombinację Shift+\.

Wyświetl stronę w przeglądarce i wpisz w oknie dialogowym liczbę 13. Odśwież
stronę i wprowadź inne wartości, a także litery lub inne znaki. Zauważ, że jeśli
podasz słowo albo znaki nieliczbowe, program uruchomi końcową klauzulę
else i doda wiadomość typu: „Twoja szczęśliwa liczba to asdfg!”. Ponieważ nie
ma to sensu, należy wyświetlić drugie okno dialogowe, jeżeli użytkownik za
pierwszym razem nie wpisze liczby.

 9. Wróć do edytora tekstu i znajdź pierwszą parę znaczników <script> w sekcji
nagłówkowej. Dodaj kod wyróżniony pogrubieniem:

<script>
var luckyNumber = prompt('Jaka jest Twoja szczęśliwa liczba?','');
luckyNumber = parseInt(luckyNumber, 10);
</script>

Nowy wiersz kodu przekazuje wartość zmiennej luckyNumber do funkcji
parseInt(). To polecenie języka JavaScript przyjmuje wartość i próbuje prze-
kształcić ją na liczbę całkowitą (na przykład -20, 0, 1, 5 lub 100). Więcej o tej
funkcji dowiesz się na stronie 587, na razie jednak zapamiętaj, że jeśli użyt-
kownik wpisze tekst typu „ha, ha”, polecenie parseInt() nie zdoła przekształ-
cić go na liczbę. W zamian zwróci specjalną wartość języka JavaScript, NaN (czyli
nie liczbę). Tej informacji można użyć do wyświetlenia następnego okna
dialogowego, jeśli użytkownik nie wpisał liczby.

 10. Dodaj do skryptu kod wyróżniony pogrubieniem:
<script type="text/javascript">
var luckyNumber = prompt('Jaka jest Twoja szczęśliwa liczba?','');
luckyNumber = parseInt(luckyNumber, 10);
if (isNaN(luckyNumber)) {
 luckyNumber = prompt('Proszę, podaj swoją szczęśliwą liczbę','');
}
</script>

Także tu przydatna była instrukcja warunkowa. W warunku isNaN(lucky
Number) użyto następnego polecenia JavaScript. Sprawdza ono, czy dany ele-
ment jest liczbą, a dokładniej — czy wartość zmiennej luckyNumber liczbą nie
jest. Jeśli ta wartość to nie liczba (użytkownik wpisał na przykład „asklsdkl”),
pojawi się drugie okno dialogowe z nowym pytaniem. Jeśli użytkownik wpro-
wadzi liczbę, program pominie wyświetlanie dodatkowego okna.

Zapisz stronę i wyświetl ją w przeglądarce. Tym razem wpisz w oknie dialogowym
słowo i kliknij przycisk OK. Powinno pojawić się drugie okno dialogowe. Wpisz
w nim liczbę. Oczywiście zakładamy, że użytkownik rzeczywiście pomylił się przy
wprowadzaniu pierwszej wartości i nie powtórzy błędu. Niestety, jeśli internauta
poda słowo także za drugim razem, wystąpi znany już problem. W następnym pod-
rozdziale dowiesz się, jak go rozwiązać.

Uwaga: Kompletną wersję tego przykładu znajdziesz w pliku complete_conditional.html w ka-

talogu R03.

R O Z D Z I AŁ 3 . D O D A W A N I E S T R U K T U R L O G I C Z N Y C H I S T E R U JĄC Y C H

Obsługa powtarzających
się zadań za pomocą pętli

109

Obsługa powtarzających się zadań
za pomocą pętli
Czasem skrypt musi wielokrotnie powtórzyć te same operacje. Załóżmy, że formu-
larz zawiera 30 pól tekstowych. Kiedy użytkownik chce przesłać formularz, należy
sprawdzić, czy wypełnił wszystkie pola. Oznacza to, że trzeba przeprowadzić tę samą
operację (sprawdzić, czy pole nie jest puste) 30 razy. Ponieważ komputery dobrze
nadają się do wykonywania takich zadań, język JavaScript powinien udostępniać
narzędzia do szybkiego wielokrotnego wykonywania tych samych zadań.

W języku technicznym powtarzanie operacji jest nazywane wykonywaniem zadań
w pętli. Ponieważ pętle występują w kodzie JavaScript niezwykle często, dostępnych
jest kilka ich wersji. Wszystkie pełnią tę samą funkcję, jednak działają w nieco od-
mienny sposób.

Pętle while
Pętla while wykonuje fragment kodu, dopóki dany warunek (warunek pętli while)
jest spełniony. Podstawowa struktura tej pętli wygląda następująco:

while (warunek) {
 // Powtarzany kod JavaScript.
}

Pierwszy wiersz rozpoczyna instrukcję while. Podobnie jak w instrukcjach warun-
kowych, warunek należy umieścić w nawiasach po słowie kluczowym, którym tu jest
while. Warunkiem może być dowolne wyrażenie, którego można użyć w instrukcji
warunkowej, na przykład x > 10 lub answer == 'tak'. Także, podobnie jak w in-
strukcjach warunkowych, interpreter wykonuje cały kod zapisany pomiędzy otwiera-
jącym i zamykającym nawiasem klamrowym, jeśli warunek jest spełniony.

Różnica polega na tym, że kiedy interpreter dojdzie do zamykającego nawiasu
klamrowego instrukcji while, nie przechodzi do następnego wiersza programu, ale
wraca na początek instrukcji while i ponownie sprawdza warunek. Jeśli nadal jest
on spełniony, interpreter jeszcze raz uruchamia kod JavaScript podany między nawia-
sami klamrowymi. Proces ten kończy się, kiedy warunek przyjmuje wartość false.
Wtedy program przechodzi do pierwszej instrukcji pod pętlą (patrz rysunek 3.5).

Rysunek 3.5. Pętla while uruchamia kod
JavaScript zapisany między nawiasami
klamrowymi, jeśli warunek (tu jest to x < 10)
ma wartość true

Załóżmy, że chcesz wyświetlić na stronie liczby od 1 do 5. Można to zrobić w nastę-
pujący sposób:

C ZĘŚĆ I  W P R O W A D Z E N I E D O JĘZ Y K A J A V A S C R I P T

Obsługa powtarzających
się zadań za pomocą pętli

110

document.write('Liczba 1
');
document.write('Liczba 2
');
document.write('Liczba 3
');
document.write('Liczba 4
');
document.write('Liczba 5
');

Zauważ, że każdy wiersz kodu jest prawie identyczny — zmienia się tylko liczba.
Pętla umożliwia bardziej wydajne osiągnięcie tego samego efektu:

var num = 1;
while (num <= 5) {
 document.write('Liczba ' + num + '
');
 num += 1;
}

Pierwszy wiersz kodu (var num = 1;) nie jest częścią pętli while. Ten fragment two-
rzy zmienną, która będzie przechowywać liczbę wyświetlaną na stronie. Drugi wiersz
to początek pętli. W tym miejscu należy podać warunek. Dopóki wartość zmiennej
num jest mniejsza od lub równa 5, skrypt uruchamia kod zapisany między nawiasami
klamrowymi. Przy pierwszym sprawdzaniu warunku zmienna num ma wartość 1,
dlatego warunek jest spełniony (liczba 1 jest mniejsza od 5), program wykonuje pole-
cenie document.write() i dodaje do strony kod 'Liczba 1
' (
 to znacznik
końca wiersza w języku HTML, który powoduje, że każda liczba znajdzie się w odręb-
nym wierszu).

Wskazówka: Instrukcję num += 1 (która dodaje 1 do wartości zapisanej w zmiennej num) można zapi-

sać także w bardziej zwięzły sposób:

 num++

Ten skrócony zapis także dodaje 1 do zmiennej num (więcej informacji o tej notacji znajdziesz

w tabeli 2.3 na stronie 72).

Ostatni wiersz pętli (num += 1) jest bardzo istotny. Nie tylko zwiększa wartość
zmiennej num o 1, co umożliwia wyświetlenie następnej liczby (na przykład 2), ale
sprawia, że w pewnym momencie warunek przestanie być prawdziwy (jeśli operator
+= wydaje Ci się dziwny, zajrzyj na stronę 72, gdzie znajdziesz więcej informacji
o sposobie jego działania). Ponieważ kod JavaScript w instrukcji while działa, dopóki
warunek jest spełniony, trzeba zmienić jedną z wartości w warunku, aby zatrzymać pę-
tlę i przejść do dalszej części skryptu. Jeśli warunek będzie zawsze prawdziwy, po-
wstanie pętla nieskończona, a program nigdy nie przestanie działać. Zastanów się,
co się stanie po usunięciu z pętli ostatniego wiersza:

var num = 1;
while (num <= 5) { // To pętla nieskończona.
 document.write('Liczba ' + num + '
');
}

Przy pierwszym uruchamianiu pętli program sprawdza, czy 1 jest mniejsze od lub
równe 5. Odpowiedź to „tak”, dlatego wykonywane jest polecenie document.write().
Na końcu pętli (ostatni nawias klamrowy) interpreter wraca na początek pętli i po-
nownie sprawdza warunek. Zmienna num wciąż ma wartość 1, dlatego warunek nadal
jest prawdziwy i skrypt uruchamia polecenie document.write(). Interpreter znów
wraca na początek pętli i trzeci raz sprawdza warunek. Łatwo się domyślić, że do-
prowadzi to do wyświetlenia nieskończonej liczby wierszy z napisem „Liczba 1”.

R O Z D Z I AŁ 3 . D O D A W A N I E S T R U K T U R L O G I C Z N Y C H I S T E R U JĄC Y C H

Obsługa powtarzających
się zadań za pomocą pętli

111

Ten prosty przykład ilustruje też elastyczność, jaką zapewniają pętle. Załóżmy, że
chcesz wyświetlić liczby z przedziału od 1 do 100, a nie od 1 do 5. Zamiast dodawać
wiele nowych wierszy z poleceniem document.write(), wystarczy zmienić warunek:

var num = 1;
while (num <= 100) {
 document.write('Liczba ' + num + '
');
 num = num + 1;
}

Ta pętla zadziała 100 razy i wyświetli na stronie 100 wierszy.

Pętle i tablice
Pętle są przydatne przy obsłudze standardowej struktury języka JavaScript — tablicy.
Jak możesz przeczytać na stronie 77, tablica to kolekcja danych, która przypomina
listę zakupów. Kiedy wybierasz się do sklepu, działasz w pewnego rodzaju pętli.
Szukasz elementu z listy, a kiedy go znajdziesz, wkładasz towar do koszyka i prze-
chodzisz do poszukiwania następnego produktu — i tak dalej, aż dodasz ostatnią
pozycję na liście. Wtedy zakończyłeś zakupy (przypomina to wyjście z pętli) i możesz
udać się do kasy (czyli przejść do następnego etapu programu).

Pętli w języku JavaScript można używać do poruszania się po elementach tablicy
i wykonywania operacji na każdym z nich. Załóżmy, że tworzysz program wyświe-
tlający kalendarz, który został zbudowany w całości za pomocą języka JavaScript.
Chcesz, aby w kalendarzu znalazła się nazwa każdego dnia tygodnia. Możesz zacząć
od zapisania tych nazw w tablicy:

var days = ['Poniedziałek', 'Wtorek', 'Środa', 'Czwartek',
 'Piątek', 'Sobota', 'Niedziela'];

Uwaga: Symbol  w powyższym fragmencie informuje, że cały kod to jedna instrukcja. Ponieważ

szerokość strony książki czasem uniemożliwia zapisanie całej instrukcji w jednym wierszu, symbol 

określa, że połączony nim kod stanowi całość. Jeśli będziesz wprowadzał taki fragment w edytorze tekstu,

powinieneś wpisać kod w jednym wierszu (i pominąć symbol ).

Następnie można przejść w pętli po wszystkich elementach tablicy i wyświetlić je
na stronie. Pamiętaj, że aby uzyskać dostęp do wartości tablicy, należy podać indeks.
Na przykład pierwszy element tablicy days (Poniedziałek) można pobrać za pomocą
instrukcji days[0]. Drugi element to days[1] i tak dalej.

Aby wyświetlić wszystkie wartości tablicy za pomocą pętli while, można użyć
następującego kodu:

var counter = 0;
while (counter < days.length) {
 document.write(days[counter] + ', ');
 counter++;
}

Pierwszy wiersz, var counter = 0, inicjuje zmienną counter, która jest używana
zarówno w warunku, jak i jako indeks elementów tablicy. Sam warunek, counter
< days.length, pozwala sprawdzić, czy zmienna counter ma wartość mniejszą niż
liczba elementów tablicy (na stronie 80 dowiedziałeś się, że liczbę tę można spraw-
dzić za pomocą właściwości length tablicy). Przykładowy skrypt sprawdza, czy

C ZĘŚĆ I  W P R O W A D Z E N I E D O JĘZ Y K A J A V A S C R I P T

Obsługa powtarzających
się zadań za pomocą pętli

112

zmienna counter ma wartość mniejszą od 7 (to liczba dni tygodnia). Jeśli tak jest,
program uruchamia kod w pętli i wyświetla na stronie nazwę dnia tygodnia,
przecinek oraz odstęp, a następnie zwiększa wartość zmiennej o 1 (instrukcja
counter++ działa tak samo jak counter += 1; patrz wskazówka na stronie 72). Po
wykonaniu kodu w pętli skrypt ponownie sprawdza warunek. Pętla działa, dopóki
warunek jest spełniony. Proces ten przedstawiono na rysunku 3.6.

Rysunek 3.6. W tej pętli warunek jest sprawdzany osiem razy. Ostatni test sprawdza, czy 7 jest mniejsze od 7.
To nieprawda, dlatego interpreter kończy wykonywanie instrukcji while i przechodzi do dalszej części skryptu.
Ostateczny efekt uruchomienia tego programu to tekst: „Poniedziałek, Wtorek, Środa, Czwartek, Piątek, Sobota,
Niedziela”. Warto zauważyć, że po niedzieli także zostanie wyświetlony przecinek. Aby uniknąć tego niepo-
trzebnego przecinka, można by użyć metody join() obiektu tablicy; to zaawansowane rozwiązanie zostało
opisane na stronie 606

Pętle for
Język JavaScript udostępnia także pętlę for, która jest bardziej zwięzła (i trochę
bardziej skomplikowana). Pętle for służą zwykle do powtarzania danej operacji
określoną liczbę razy, dlatego mają licznik, warunek i metodę zmieniania wartości
licznika. Pętle for często umożliwiają wykonanie tych samych zadań, co pętle while,
jednak w mniejszej liczbie wierszy. Przypomnij sobie pętlę while ze strony 109:

var num = 1;
while (num <= 100) {
 document.write('Liczba ' + num + '
');
 num += 1;
}

Przy użyciu pętli for ten sam efekt można uzyskać w trzech wierszach kodu:
for (var num=1; num<=100; num++) {
 document.write('Liczba ' + num + '
');
}

Początkowo pętle for mogą wydawać się skomplikowane, jednak kiedy zrozumiesz
poszczególne części instrukcji for, nie powinieneś mieć problemów z ich używaniem.
Każda pętla tego typu zaczyna się od słowa kluczowego for, po którym następują

R O Z D Z I AŁ 3 . D O D A W A N I E S T R U K T U R L O G I C Z N Y C H I S T E R U JĄC Y C H

Obsługa powtarzających
się zadań za pomocą pętli

113

nawiasy z trzema elementami i para nawiasów klamrowych. Podobnie jak w pętlach
while, fragment w nawiasach klamrowych (tu jest to document.write('Liczba
' + num + '
') to kod JavaScript uruchamiany w ramach pętli.

W tabeli 3.2 znajdziesz opis trzech elementów podawanych w nawiasach; jednak
tutaj krótko je przedstawię: są to kolejno inicjalizacja licznika, sprawdzenie wa-
runku oraz zmiana wartości licznika. Pierwsza część (var num=1;) inicjuje
zmienną licznika. Ta operacja ma miejsce tylko raz, w momencie uruchamiania
instrukcji. Druga część to warunek sprawdzany przed uruchomieniem kodu w pę-
tli. Fragment trzeci to operacja wykonywana po zakończeniu działania tego kodu.
Zwykle polega ona na zmianie wartości licznika, dlatego w pewnym momencie
warunek przyjmuje wartość false, a pętla kończy działanie.

Tabela 3.2. Elementy pętli for

Element pętli Znaczenie Czas działania

for Rozpoczyna pętlę for.

var num = 1; Przypisuje zmiennej num wartość 1. Jeden raz przy
uruchamianiu pętli.

num <= 100; Czy num ma wartość mniejszą od lub równą 100?
Jeśli tak, należy powtórzyć pętlę. Jeśli nie, należy
ją pominąć i kontynuować wykonywanie skryptu.

Na początku instrukcji
i przed każdym
powtórzeniem pętli.

num++; Dodaje 1 do zmiennej num. Działa tak samo jak
num = num + 1 oraz num += 1.

Po każdym
powtórzeniu pętli.

Ponieważ pętle for umożliwiają łatwe powtarzanie serii operacji określoną liczbę
razy, dobrze nadają się do przechodzenia po elementach tablicy. Na rysunku 3.5
widoczna jest pętla while, która zapisuje na stronie wszystkie elementy tablicy.
To samo zadanie można wykonać za pomocą pętli for:

var days = ['Poniedziałek', 'Wtorek', 'Środa', 'Czwartek',
 'Piątek', 'Sobota', 'Niedziela'];
for (var i = 0; i<days.length; i++) {
 document.write(days[i] + ', ');
}

Wskazówka: Doświadczeni programiści często używają bardzo krótkich nazw zmiennych licznika

w pętlach for. W powyższym kodzie taką nazwą jest i. Pojedyncze litery (na przykład i, j i z) można

szybko wpisać, a ponieważ zmienne tego typu są używane tylko w pętli, nie muszą mieć bardziej

opisowych nazw, takich jak licznik.

Przykłady przedstawione do tej pory zwiększały liczbę do określonej wartości,
a następnie kończyły działanie pętli, jednak można też odliczać wstecz. Załóżmy, że
chcesz wyświetlić elementy tablicy od końca. Można to zrobić w następujący sposób:

var example = ['pierwszy', 'drugi', 'trzeci', 'ostatni'];
for (var j = example.length - 1; j >= 0; j--) {
 document.write(example[j] + '
');
}

W tym fragmencie wartość zmiennej j to początkowo liczba elementów tablicy
pomniejszona o 1 (4–1=3). (A dlaczego pomniejszona o 1? Dlatego, że indeks
elementu w tablicy jest zawsze o jeden mniejszy od numeru miejsca, który dany

C ZĘŚĆ I  W P R O W A D Z E N I E D O JĘZ Y K A J A V A S C R I P T

Obsługa powtarzających
się zadań za pomocą pętli

114

element zajmuje: pierwszy element tablicy ma indeks o wartości 0, drugi — in-
deks o wartości 1, a indeksem ostatniego jest długość tablicy pomniejszona o 1.
Innymi słowy, aby odwołać się do ostatniego elementu naszej przykładowej tablicy,
musielibyśmy użyć wyrażenia example[3]).

Przy każdym powtórzeniu pętli należy sprawdzić, czy wartość tej zmiennej jest większa
lub równa 0. Jeśli tak, skrypt uruchamia kod między nawiasami klamrowymi,
odejmuje 1 od j (j--) i ponownie sprawdza warunek. A zatem powyższa pętla prze-
gląda zawartość tablicy, zaczynając od jej końca (elementu o indeksie 3) i zmierzając
w kierunku początku (elementu o indeksie 0).

Pętle do-while
Istnieje też inny, mniej popularny rodzaj pętli — do-while. Pętle tego typu działają
prawie identycznie z pętlami while. Ich podstawowa struktura wygląda następująco:

do {
 // Powtarzany kod JavaScript.
} while (warunek);

Pętle tego typu sprawdzają warunek na końcu, po wykonaniu pętli. Dlatego kod
JavaScript w nawiasach klamrowych zawsze jest uruchamiany przynajmniej raz.
Nawet jeśli warunek nie jest spełniony, skrypt sprawdza go dopiero po pierwszym
wykonaniu kodu.

Takie rozwiązanie jest potrzebne stosunkowo rzadko, jednak jest bardzo przydatne,
jeśli program ma prosić użytkownika o podanie danych. Dobrym przykładem jest
program, który napisałeś we wcześniejszej części rozdziału (patrz strona 105). Skrypt
ten prosi użytkownika o wpisanie liczby. Kod ma wbudowany system zabezpiecza-
jący, dlatego jeśli internauta nie poda odpowiednich danych, program powtarza
prośbę. Jeżeli jednak wyjątkowo uparty użytkownik ponownie wpisze błędne in-
formacje, na stronie pojawi się bezsensowny komunikat.

Przy użyciu pętli do-while można ponawiać prośbę o wpisanie liczby do czasu uzy-
skania odpowiednich danych. Aby zobaczyć, jak działa to podejście, zmodyfikuj kod
utworzony na stronie 108.

 1. Otwórz w edytorze tekstu plik conditional.html utworzony na stronie
108.
Jeśli nie wykonałeś wspomnianego przykładu, możesz otworzyć plik complete_
conditional.html. Najpierw musisz zastąpić kod w początkowej części strony
pętlą do-while.

 2. Znajdź kod między znacznikami <script> w sekcji nagłówkowej strony
i usuń kod wyróżniony pogrubieniem:

var luckyNumber = prompt('Jaka jest Twoja szczęśliwa liczba?','');
luckyNumber = parseInt(luckyNumber, 10);
if (isNaN(luckyNumber)) {
 luckyNumber = prompt('Proszę, podaj swoją szczęśliwą liczbę','');
}

Usunięty kod wyświetlał drugie okno dialogowe, które nie będzie już potrzebne.
W zamian należy umieścić pozostały kod w pętli do-while.

R O Z D Z I AŁ 3 . D O D A W A N I E S T R U K T U R L O G I C Z N Y C H I S T E R U JĄC Y C H

Funkcje — wielokrotne
korzystanie z kodu

115

 3. Umieść kursor przed pierwszym wierszem kodu (var luckyNumber...)
i wpisz:

do {

Ten kod to początek pętli. Teraz trzeba dokończyć pętlę i dodać sprawdzany
warunek.

 4. Kliknij koniec ostatniego wiersza w tej sekcji i wpisz fragment } while
(isNaN(luckyNumber));. Gotowy blok kodu powinien wyglądać następująco:

do {
var luckyNumber = prompt('Jaka jest Twoja szczęśliwa liczba?','');
luckyNumber = parseInt(luckyNumber, 10);
} while (isNaN(luckyNumber));

Zapisz plik i wyświetl go w przeglądarce. Spróbuj wpisać w oknie dialogowym tekst
lub inne symbole nieliczbowe. To samo okno będzie pojawiało się do czasu wpro-
wadzenia liczby.

Słowo kluczowe do informuje interpreter, że rozpoczyna się pętla do-while. Następ-
nie uruchamiane są dwa dalsze wiersze, które wyświetlają okno dialogowe i prze-
kształcają odpowiedź na liczbę całkowitą. Dopiero potem skrypt sprawdza waru-
nek, który jest taki sam jak w kodzie ze strony 108 (sprawdza, czy
wprowadzone dane „nie są liczbą”). Jeśli użytkownik nie podał liczby, pętla jest
uruchamiana ponownie, aż do wprowadzenia liczby. Korzystną cechą tego po-
dejścia jest to, że okno pojawia się przynajmniej raz, dlatego jeśli użytkownik po-
da liczbę, skrypt od razu wyjdzie z pętli.

Pełny, działający kod tego przykładu można znaleźć w pliku complete_do-while.html
w katalogu R03.

Funkcje — wielokrotne korzystanie
z przydatnego kodu

Wyobraź sobie, że przydzielono Ci asystenta do pomocy w wykonywaniu wszelkich
zadań (chyba pora umieścić tę książkę na półce z literaturą science-fiction). Załóżmy,
że masz ochotę na pizzę. Asystent nie zna jeszcze okolicy, dlatego musisz udzielić
mu szczegółowych wskazówek: „Wyjdź przez drzwi, skręć w prawo, wejdź do windy,
zjedź na parter, wyjdź z budynku…” i tak dalej. Asystent wykonuje polecenie i przy-
nosi pizzę. Po paru godzinach masz ochotę na następny kawałek. Nie musisz wtedy
powtarzać wszystkich instrukcji („Wyjdź przez drzwi, skręć w prawo…”). Asystent
wie już, gdzie znajduje się pizzeria, dlatego wystarczy wydać polecenie: „Przynieś
kawałek pizzy”, a pomocnik dostarczy zamówienie.

Oznacza to, że wystarczy podać szczegółowe instrukcje jeden raz. Asystent zapa-
mięta wszystkie kroki i po usłyszeniu polecenia „Przynieś kawałek pizzy” zniknie,
a po pewnym czasie pojawi się z zamówieniem. Język JavaScript udostępnia podobny
mechanizm — funkcje. Funkcja to zbiór instrukcji podany na początku skryptu
i przypominający szczegółowe polecenia wydane asystentowi. Instrukcje funkcji nie
są wykonywane w miejscu jej utworzenia. Przeglądarka zapisuje je w pamięci, a pro-
gramista może wywołać funkcję w dowolnym momencie, kiedy chce wykonać okre-
ślone operacje.

C ZĘŚĆ I  W P R O W A D Z E N I E D O JĘZ Y K A J A V A S C R I P T

Funkcje — wielokrotne
korzystanie z kodu

116

Funkcje są nieocenionym narzędziem, które pozwala w wydajny sposób wielokrot-
nie wykonywać powtarzalne operacje. Załóżmy, że chcesz utworzyć stronę z galerią
fotografii, która ma zawierać 50 miniatur. Kiedy użytkownik kliknie jeden z małych
obrazków, program ma przyciemnić tło strony oraz wyświetlić tytuł i większą wersję
wybranego zdjęcia. Za każdym razem, kiedy internauta wybierze rysunek, proces
ten się powtarza. Dlatego na stronie z 50 miniaturami skrypt musi wykonać serię
tych samych operacji 50 razy. Na szczęście nie trzeba pisać 50 wersji prawie ta-
kiego samego kodu, aby utworzyć galerię fotografii. W zamian wystarczy napisać
funkcję z wszystkimi operacjami i uruchamiać ją przy każdym kliknięciu minia-
tury. Kod funkcji wystarczy napisać raz, a następnie można wielokrotnie ją uru-
chamiać.

Podstawowa struktura funkcji wygląda następująco:
function nazwaFunkcji() {
 // Uruchamiany kod JavaScript.
}

Słowo kluczowe function informuje interpreter o tym, że natrafił na funkcję
(podobne przeznaczenie mają inne słowa kluczowe: if rozpoczyna instrukcję
if-else, a var tworzy zmienną). Następnie należy podać nazwę funkcji, którą —
podobnie jak nazwę zmiennej — programista może określić samodzielnie. Obowią-
zują przy tym te same reguły, o jakich należy pamiętać przy tworzeniu nazw zmien-
nych (zasady te znajdziesz na stronie 64). Nazwy funkcji często zawierają czasownik,
na przykład obliczPodatek, pobierzWysokoscEkranu, zaktualizujStrone lub
wygasRysunek. Aktywne wyrażenia podkreślają, że kod wykonuje pewne zadanie,
i pomagają odróżnić nazwy funkcji od nazw zmiennych.

Bezpośrednio po nazwie znajduje się para nawiasów, które są cechą charaktery-
styczną funkcji. Po nawiasach następuje odstęp, nawias klamrowy, kod w języku
JavaScript i końcowy, zamykający nawias klamrowy. Podobnie jak w instrukcjach
if, nawiasy klamrowe wyznaczają początek i koniec kodu JavaScript funkcji.

Uwaga: Funkcje, podobnie jak instrukcje if-else, są bardziej czytelne, jeśli kod w nawiasach

klamrowych ma wcięcia. Programiści dodają przeważnie dwa odstępy lub tabulację na początku

każdego wiersza.

Oto bardzo prosta funkcja, która wyświetla bieżącą datę w formacie „Sun May
12 2008”:

function printToday() {
 var today = new Date();
 document.write(today.toDateString());
}

Nazwa tej funkcji to printToday. Zawiera ona tylko dwa wiersze kodu JavaScript,
który pobiera bieżącą datę, przekształca ją na zrozumiały format (polecenie toDate
String()), a następnie wyświetla na stronie efekt tej operacji za pomocą stan-
dardowej metody document.write(). Na razie nie musisz znać sposobów obsługi
dat. Poznasz je w dalszej części książki, na stronie 592.

Programiści zazwyczaj umieszczają funkcje na początku skryptu, aby można było
używać ich w dalszym kodzie. Pamiętaj, że funkcja nie jest uruchamiana w miejscu
jej utworzenia. Jej dodanie przypomina poinformowanie asystenta o tym, jak ma

R O Z D Z I AŁ 3 . D O D A W A N I E S T R U K T U R L O G I C Z N Y C H I S T E R U JĄC Y C H

Funkcje — wielokrotne
korzystanie z kodu

117

dojść do pizzerii, bez natychmiastowego wysyłania go po posiłek. Kod funkcji jest
zapisywany w pamięci przeglądarki i oczekuje na uruchomienie w odpowiednim
momencie.

Jak można uruchomić funkcję? Programiści używają słowa wywoływanie na okre-
ślenie procesu uruchomienia funkcji, kiedy ta ma wykonać swe zadania. Wywołanie
funkcji polega na podaniu jej nazwy wraz z parą nawiasów. Aby na przykład uru-
chomić funkcję printToday, należy wpisać następującą instrukcję:

printToday();

Jak widać, funkcje można uruchamiać w zwięzły sposób. Jest to jedna z zalet funkcji.
Po ich utworzeniu nie trzeba wpisywać wiele kodu, aby uzyskać pożądane efekty.

Uwaga: Przy wywoływaniu funkcji pamiętaj o dodaniu nawiasów. Ten element umożliwia wywołanie

funkcji. Instrukcja printToday nie wywoła żadnej reakcji skryptu, natomiast kod printToday()

spowoduje uruchomienie funkcji.

Krótki przykład
Ponieważ funkcje są niezwykle istotne, warto wykonać kilka zadań, aby przećwiczyć
tworzenie i używanie funkcji na działającej stronie WWW.

 1. Otwórz w edytorze tekstu plik print_date.html.

Najpierw należy dodać funkcję w sekcji nagłówkowej dokumentu.

 2. Znajdź kod między znacznikami <script> w sekcji nagłówkowej strony
i dodaj poniższy fragment:

function printToday() {
 var today = new Date();
 document.write(today.toDateString());
}

Prosta funkcja jest już gotowa, jednak na razie nie wykonuje swych zadań.

 3. Zapisz plik i wyświetl go w przeglądarce.

Nic się nie stanie — przynajmniej nic takiego, co można zauważyć. Przeglą-
darka wczytuje funkcję do pamięci i oczekuje na jej wywołanie, które dodasz
w następnym kroku.

 4. Wróć do pliku print_date.html otwartego w edytorze tekstu. Znajdź znacz-
nik <p> z tekstem rozpoczynającym się od słów „Dziś jest” i dodaj między
znacznikami kod wyróżniony pogrubieniem:

<p>Dziś jest
<script>printToday();</script>
</p>

Zapisz stronę i wyświetl ją w przeglądarce (wyniki zostały przedstawione na
rysunku 3.7). Na stronie pojawi się aktualna data. Jeśli zechcesz wyświetlić ją
także na dole strony, możesz powtórnie wywołać tę samą funkcję.

C ZĘŚĆ I  W P R O W A D Z E N I E D O JĘZ Y K A J A V A S C R I P T

Funkcje — wielokrotne
korzystanie z kodu

118

Rysunek 3.7. Finalny
efekt działania Twojej
pierwszej funkcji.
Oczywiście data, którą
zobaczysz w przeglą-
darce, będzie inna niż
widoczna na rysunku.
To jedna z cech dyna-
micznej natury funkcji
— działają one wtedy,
gdy zostaną wywołane,
a zatem każdego dnia,
kiedy wywołasz funkcję
printToday, wyświetli
ona inną datę

Przekazywanie danych do funkcji
Funkcje są jeszcze bardziej przydatne, kiedy przyjmują dane. Pomyśl ponownie
o asystencie, którego wysyłasz po pizzę. Pierwsza „funkcja”, opisana na stronie
115, zawiera instrukcje potrzebne do dotarcia do pizzerii, dokonania zakupu i
powrotu do biura. Kiedy chcesz pizzę, „wywołujesz” funkcję przez wydanie
asystentowi polecenia: „Przynieś mi pizzę!”. Czasem chcesz otrzymać pizzę z pe-
peroni, innym razem z dodatkowym serem lub oliwkami. Aby uwzględnić to w
instrukcjach, możesz powiedzieć asystentowi, na którą pizzę masz ochotę.

Funkcje JavaScript także mogą przyjmować informacje. Są one przekazywane
w parametrach, których funkcje używają do wykonywania zadań. Jeśli na przykład
funkcja ma obliczyć łączną cenę zakupów z koszyka, musi wiedzieć, ile kosztuje
każdy przedmiot i ile sztuk klient zamawia.

Najpierw, w momencie tworzenia funkcji, należy umieścić w nawiasach nową
zmienną. Jest to parametr. Podstawowa struktura takiej funkcji wygląda następująco:

function nazwaFunkcji(parametr) {
 // Uruchamiany kod JavaScript.
}

Parametr to po prostu zmienna, dlatego musi mieć poprawną nazwę (wskazówki na
ten temat znajdziesz na stronie 64). Załóżmy, że chcesz skrócić kod potrzebny do
dodawania tekstu do strony. Możesz użyć do tego prostej funkcji, która zastępuje
polecenie document.write() krótszą nazwą:

function print(message) {
 document.write(message);
}

Nowa funkcja ma nazwę print i przyjmuje jeden parametr, message. W momencie
wywołania funkcja przyjmuje informacje (wyświetlaną wiadomość), a następnie
używa polecenia document.write() do dodania komunikatu do strony. Funkcja

R O Z D Z I AŁ 3 . D O D A W A N I E S T R U K T U R L O G I C Z N Y C H I S T E R U JĄC Y C H

Funkcje — wielokrotne
korzystanie z kodu

119

oczywiście nie wykonuje żadnych operacji do momentu jej wywołania, dlatego
w innym miejscu strony należy ją uruchomić:

print('Witaj, świecie!');

W momencie uruchomienia tego kodu skrypt wywołuje funkcję print i przekazuje
do niej tekst — łańcuch 'Witaj, świecie!'. Następnie funkcja dodaje tekst „Witaj,
świecie!” do strony. W języku technicznym proces przesyłania informacji do funkcji
jest nazywany „przekazywaniem argumentów”. W omawianej instrukcji tekst „Witaj,
świecie!” to argument. Argumenty są wartościami przekazywanymi do funkcji
i odpowiadają parametrom definiowanym podczas jej tworzenia.

Działanie nawet prostych funkcji może być nieco skomplikowane dla początkują-
cych programistów. Poniżej znajdziesz szczegółowy opis wszystkich operacji, które
ilustruje rysunek 3.8.

 1. Interpreter wczytuje funkcję i zapisuje ją w pamięci. Ten etap przygotowuje
przeglądarkę do późniejszego uruchomienia funkcji.

 2. Skrypt wywołuje funkcję i przekazuje do niej informacje — tekst „Witaj,
świecie!”.

 3. Skrypt zapisuje informacje przekazane do funkcji w zmiennej message. Ten
krok odpowiada instrukcji var message = 'Witaj, świecie!';.

 4. Funkcja jest uruchamiana i wyświetla na stronie wartość zapisaną w zmien-
nej message.

Rysunek 3.8. Programiści zwykle tworzą
funkcje przed miejscem ich wywołania.
Tu funkcja print() znajduje się w trzech
pierwszych wierszach kodu, natomiast jej kod
jest uruchamiany dopiero w ostatnim wierszu

Nasze możliwości nie ograniczają się jednak do jednego parametru — funkcja może
ich mieć dowolnie wiele. Trzeba tylko określić w funkcji każdy z nich:

function nazwaFunkcji(parametr1, parametr2, parametr3) {
 // Uruchamiany kod JavaScript.
}

Następnie można wywołać funkcję, podając tę samą liczbę argumentów w odpo-
wiedniej kolejności:

nazwaFunkcji(argument1, argument2, argument3);

Przy wywołaniu funkcji nazwaFunkcji wartość argument1 jest zapisywana w zmien-
nej parametr1, argument2 trafia do zmiennej parametr2 i tak dalej. Załóżmy, że
chcesz rozwinąć wcześniejszą funkcję print o możliwość przekazania znacznika
HTML, który ma obejmować tekst dodawany do strony. Dzięki temu będzie można
wyświetlać informacje w formie nagłówków lub akapitów. Nowa funkcja powinna
wyglądać następująco:

function print(message,tag) {
 document.write('<' + tag + '>' + message + '</' + tag + '>');
}

C ZĘŚĆ I  W P R O W A D Z E N I E D O JĘZ Y K A J A V A S C R I P T

Funkcje — wielokrotne
korzystanie z kodu

120

A oto przykładowe wywołanie tej funkcji:
print('Witaj, świecie!', 'p');

Ta instrukcja przekazuje do funkcji dwa argumenty: 'Witaj, świecie!' i 'p'.
Wartości te są zapisywane w dwóch zmiennych funkcji: message i tag. Efekt to nowy
akapit dodany do strony: <p>Witaj, świecie!</p>.

Funkcje przyjmują dowolne zmienne i wartości języka JavaScript, a nie tylko łań-
cuchy znaków. Jako argument można przekazać na przykład tablicę, zmienną, liczbę
lub wartość logiczną.

Pobieranie informacji z funkcji
Czasem funkcja po prostu wykonuje zadanie, na przykład wyświetla wiadomość
na stronie, przenosi obiekt po ekranie lub sprawdza poprawność pól formularza.
Jednak często programista chce pobrać dane z funkcji. W końcu funkcja „Przynieś
mi pizzę!” nie będzie zbyt przydatna, jeśli jej wywołanie nie doprowadzi do otrzy-
mania pysznego kawałka pizzy. Także funkcja obliczająca łączny koszt zakupów
nie będzie wartościowa, jeśli nie będzie można pobrać tej wartości.

Niektóre opisane wcześniej wbudowane funkcje języka JavaScript zwracają wartość.
Na przykład polecenie prompt() (patrz strona 74) wyświetla okno dialogowe z polem
tekstowym, a następnie zwraca dane wpisane przez użytkownika. Wiesz już, jak za-
pisać zwróconą wartość w zmiennej i użyć jej:

var answer = prompt('W jakim miesiącu się urodziłeś?', '');

Skrypt zapisuje odpowiedź użytkownika w zmiennej answer. Następnie można
sprawdzić wartość zmiennej w instrukcji warunkowej lub użyć jej do wielu innych
operacji możliwych w języku JavaScript.

Aby zwracać wartość we własnych funkcjach, należy użyć słowa kluczowego return
i zwracanej wartości:

function nazwaFunkcji(parametr1, parametr2) {
 // Uruchamiany kod JavaScript.
 return wartość;
}

Załóżmy, że chcesz obliczyć łączny koszt zakupów z uwzględnieniem podatku.
Można to zrobić za pomocą następującego skryptu:

var TAX = .08; // 8-procentowy podatek od sprzedaży.
function calculateTotal(quantity, price) {
 var total = quantity * price * (1 + TAX);
 var formattedTotal = total.toFixed(2);
 return formattedTotal;
}

Pierwszy wiersz zapisuje wysokość podatku w zmiennej TAX. Umożliwia to szybką
zmianę tej wartości przez zaktualizowanie jednego wiersza kodu. Trzy następne
wiersze to definicja funkcji. Na razie nie musisz rozumieć, jak działa ten kod. Więcej
informacji o operacjach na liczbach znajdziesz na stronie 587. Tu ważny jest czwarty
wiersz funkcji — instrukcja return, która zwraca wartość zapisaną w zmiennej
formattedTotal.

R O Z D Z I AŁ 3 . D O D A W A N I E S T R U K T U R L O G I C Z N Y C H I S T E R U JĄC Y C H

Funkcje — wielokrotne
korzystanie z kodu

121

Aby użyć zwróconej wartości, zwykle należy zapisać ją w zmiennej. Utworzoną
wcześniej funkcję można wywołać w następujący sposób:

var saleTotal = calculateTotal(2, 16.95);
document.write('Łączny koszt: $' + saleTotal);

W tym wywołaniu do funkcji przekazano wartości 2 i 16.95. Pierwsza z nich określa
liczbę produktów, a druga — ich cenę. Funkcja wylicza koszt całkowity oraz podatek
i zwraca wartość sumaryczną. Wynik ten jest zapisywany w nowej zmiennej
(saleTotal), używanej następnie w wywołaniu document.write() do wyświetlenia
łącznej ceny zakupów z uwzględnieniem podatku.

Uwaga: Słowo kluczowe return powinno być ostatnią instrukcją funkcji, bo zaraz po tym, gdy

tylko interpreter JavaScript je napotka, funkcja zostanie zakończona. Żaden kod umieszczony po

tym słowie kluczowym nigdy nie zostanie wykonany.

Jednak zwracanej wartości nie trzeba zapisywać w zmiennej. Funkcji można użyć
bezpośrednio w innej instrukcji:

document.write('Suma: $' + calculateTotal(2, 16.95));

Tu skrypt wywołuje funkcję, dodaje zwróconą przez nią wartość do łańcucha
'Suma: $' i zapisuje tekst w dokumencie. Początkowo ten sposób używania funkcji
może być mało czytelny, dlatego można wykonać dodatkową operację w postaci
zapisania wyniku działania funkcji w zmiennej, a następnie użyć tej zmiennej
w skrypcie.

Uwaga: Funkcje mogą zwracać tylko jedną wartość. Jeśli chcesz przekazać większą ich liczbę, za-

pisz wyniki w tablicy i zwróć ją. Więcej informacji o tablicach możesz znaleźć na stronie 77.

Unikanie konfliktów między nazwami zmiennych
Jedną z wielkich zalet funkcji jest to, że zmniejszają ilość kodu, który trzeba napisać.
Prawdopodobnie odkryjesz, że pewnych wartościowych funkcji używasz w wielu
projektach. Na przykład funkcja doliczająca do ceny koszty wysyłki i podatek będzie
przydatna w każdym formularzu z zamówieniami, dlatego można skopiować ją
i wkleić w innych skryptach witryny lub wykorzystać w następnych projektach.

Kiedy programista przeniesie funkcję do gotowego skryptu, może pojawić się pro-
blem. Co się stanie, jeśli zmienna z tego programu i zmienna w funkcji mają tę samą
nazwę? Której z nich użyje skrypt? Oto przykład:

var message = 'Poza funkcją';
function warning(message) {
 alert(message);
}
warning('W funkcji'); // 'W funkcji'
alert(message); // 'Poza funkcją'

Zauważ, że zmienna message pojawia się zarówno poza funkcją (wiersz 1.), jak i jako
jej parametr. Parametr to zmienna, która przyjmuje wartość podaną w momencie
wywołania funkcji. Tu kod warning('W funkcji'); przekazuje do funkcji łańcuch
znaków, który zostaje zapisany w zmiennej message. W skrypcie znajdują się więc
dwie wersje zmiennej message. Co się stanie z wartością pierwszej zmiennej message,
utworzonej w pierwszym wierszu programu?

C ZĘŚĆ I  W P R O W A D Z E N I E D O JĘZ Y K A J A V A S C R I P T

Funkcje — wielokrotne
korzystanie z kodu

122

Może się wydawać, że skrypt zastąpi pierwotną wartość zmiennej message nowym
łańcuchem, 'W funkcji'. To nieprawda. W momencie uruchamiania skryptu po-
jawią się dwa okna dialogowe. Pierwsze z nich wyświetli tekst „W funkcji”, a drugi —
łańcuch znaków „Poza funkcją”. W kodzie pojawiają się dwie zmienne o nazwie
message, jednak znajdują się one w innych miejscach (patrz rysunek 3.9).

Rysunek 3.9. Parametr funkcji jest dostępny tylko w niej, dlatego
jej pierwszy wiersz, function warning(message), tworzy nową
zmienną message, widoczną tylko wewnątrz funkcji. Po zakończeniu
jej działania zmienna znika

Interpreter traktuje zmienne funkcji w inny sposób niż zmienne zadeklarowane
i utworzone poza funkcjami. W języku technicznym można powiedzieć, że każda
funkcja ma określony zasięg. Zasięg ten działa jak mur otaczający funkcję. Zmienne
utworzone wewnątrz niej nie są widoczne w kodzie spoza tego muru. Zrozumienie
działania zasięgu może początkowo sprawiać problemy, jednak jest to bardzo przy-
datny mechanizm. Ponieważ funkcje mają określony zasięg, nie trzeba się martwić,
że parametry wywołają konflikty między nazwami zmiennych lub modyfikację
wartości zmiennych spoza funkcji.

Do tej pory omówiono jedynie używanie zmiennych podanych jako parametry,
jednak zmienne w funkcji można tworzyć także w standardowy sposób:

var message = 'Poza funkcją';
function warning() {
 var message = 'W funkcji';
 alert(message);
}
warning(); // 'W funkcji'
alert(message); // 'Poza funkcją'

Ten kod dwukrotnie tworzy zmienną message: w pierwszym wierszu skryptu
i w pierwszym wierszu funkcji. Kod działa podobnie jak w przykładzie, w którym
użyto parametrów. Wpisanie w funkcji instrukcji var message powoduje utworze-
nie w zasięgu funkcji nowej zmiennej. Jest to tak zwana zmienna lokalna, dostępna
tylko w ramach funkcji. Główny skrypt i pozostałe funkcje nie widzą tej zmiennej
i nie mają do niej dostępu.

Jednak zmienne utworzone w głównej części skryptu (poza funkcją) istnieją w zasięgu
globalnym. Wszystkie funkcje w skrypcie mają dostęp do zmiennych utworzonych
w głównym bloku programu. Poniższy kod tworzy zmienną message w pierwszym
wierszu skryptu. Jest to zmienna globalna, dlatego funkcja ma do niej dostęp:

var message = 'Zmienna globalna';
function warning() {
 alert(message);
}
warning(); // 'Zmienna globalna'

R O Z D Z I AŁ 3 . D O D A W A N I E S T R U K T U R L O G I C Z N Y C H I S T E R U JĄC Y C H

Funkcje — wielokrotne
korzystanie z kodu

123

Ta funkcja nie ma parametrów i nie zawiera definicji zmiennej message, dlatego
po uruchomieniu instrukcji alert(message) funkcja szuka zmiennej globalnej
o takiej nazwie. W skrypcie znajduje się taka zmienna, dlatego pojawi się okno dia-
logowe z tekstem „Zmienna globalna”.

Zmienne lokalne i globalne mają pewną specyficzną cechę. Zmienna istnieje
w zasięgu funkcji tylko wtedy, jeśli jest parametrem lub została zadeklarowana
wewnątrz niej przy użyciu słowa kluczowego var. Ilustruje to rysunek 3.10. Górny
fragment kodu pokazuje, jak dwie zmienne message (zmienna globalna i zmienna
lokalna funkcji) mogą współistnieć obok siebie. Kluczowy jest pierwszy wiersz funkcji
— var message = 'W funkcji';. W celu utworzenia zmiennej lokalnej konieczne
jest zastosowanie słowa kluczowego var.

Rysunek 3.10. Przy przypisywaniu wartości do
zmiennych w funkcji należy pamiętać o pewnym
drobnym, ale istotnym szczególe. Jeśli chcesz, aby
zmienna była dostępna tylko w funkcji, pamiętaj
o dodaniu słowa kluczowego var przy tworzeniu
tej zmiennej (górny kod). Jeśli go nie użyjesz, zapiszesz
nową wartość w zmiennej globalnej (kod dolny)

Porównaj to z kodem z dolnej części rysunku 3.10. Tym razem w funkcji nie użyto
słowa kluczowego var. Dlatego kod message='W funkcji'; nie tworzy zmiennej
lokalnej, lecz zapisuje nową wartość w globalnej zmiennej message. Efekt? Funkcja
modyfikuje zmienną globalną, zastępując jej pierwotną wartość.

Zagadnienie zasięgu zmiennych jest skomplikowane, dlatego wcześniejszy opis
może być nie w pełni zrozumiały. Na razie zapamiętaj, że jeśli zmienne w skrypcie
mają nieoczekiwaną wartość, może to wynikać z problemów z ich zasięgiem. Jeśli
natrafisz na taki problem, jeszcze raz przeczytaj uważnie ten punkt.

C ZĘŚĆ I  W P R O W A D Z E N I E D O JĘZ Y K A J A V A S C R I P T

Przykład — prosty quiz

124

Przykład — prosty quiz
Pora wykorzystać wiedzę przedstawioną w tym rozdziale i utworzyć kompletny
program. W tym przykładzie utworzysz prosty system do obsługi quizu. Program
będzie zadawał pytania i oceniał odpowiedzi graczy. Na początku podrozdziału znaj-
dziesz kilka możliwych rozwiązań tego problemu i omówienie skutecznych technik
programistycznych.

Pierwszy krok polega jak zawsze na precyzyjnym określeniu zadań programu. Two-
rzony skrypt ma wykonywać kilka operacji. Oto one.

 Zadawanie pytań. Program do obsługi quizu musi mieć funkcję zadawania
pytań. Do tej pory poznałeś jeden prosty sposób pobierania informacji na stro-
nach WWW — użycie polecenia prompt(). Ponadto trzeba przygotować listę
pytań. Ponieważ tablice dobrze się nadają do przechowywania list informacji,
pytania można zapisać właśnie w nich.

 Informowanie użytkowników o poprawności odpowiedzi. Po pobraniu od-
powiedzi od użytkownika trzeba ustalić, czy jest ona prawidłowa. Posłuży do
tego instrukcja warunkowa. Następnie należy poinformować gracza o popraw-
ności odpowiedzi. Można użyć do tego polecenia alert().

 Wyświetlanie wyników quizu. Potrzebny jest sposób na śledzenie wyników
gracza. Posłuży do tego zmienna przechowująca liczbę poprawnych odpowiedzi.
Do wyświetlenia ostatecznego wyniku quizu można użyć poleceń alert() lub
document.write().

Opisany program można napisać na wiele sposobów. Niektórzy początkujący pro-
gramiści mogą zastosować najprostsze podejście i powtarzać ten sam kod przy każ-
dym pytaniu. Na przykład kod JavaScript do zadania dwóch pierwszych pytań quizu
może wyglądać następująco:

var answer1=prompt('Ile książyców ma Ziemia?','');
if (answer1 == 1) {
 alert('Prawidłowa odpowiedź!');
} else {
 alert('Błąd. Prawidłowa odpowiedź to 1.');
}
var answer2=prompt('Ile książyców ma Saturn?','');
if (answer2 == 31) {
 alert('Prawidłowa odpowiedź!');
} else {
 alert('Błąd. Prawidłowa odpowiedź to 31.');
}

To rozwiązanie wydaje się logiczne, ponieważ program ma zadawać pytania jedno
po drugim. Jednak nie jest to wydajny sposób programowania. Kiedy w programie
trzeba wielokrotnie powtórzyć te same operacje, warto zastanowić się nad użyciem
pętli lub funkcji. W następnym skrypcie użyjesz obu tych struktur. Pętla posłuży do
przejścia w pętli przez wszystkie pytania quizu, a funkcja będzie je zadawać.

 1. Otwórz w edytorze tekstu plik quiz.html.

Na początku należy dodać kilka zmiennych, które są przeznaczone do śledzenia
liczby pytań i poprawnych odpowiedzi.

R O Z D Z I AŁ 3 . D O D A W A N I E S T R U K T U R L O G I C Z N Y C H I S T E R U JĄC Y C H

Przykład — prosty quiz

125

 2. Znajdź kod między znacznikami <script> w sekcji nagłówkowej strony
i wpisz poniższy kod:

var score = 0;

Ta zmienna będzie przechowywać liczbę prawidłowych odpowiedzi. Na początku
quizu, przed zadaniem pierwszego pytania, należy przypisać zmiennej wartość 0.
Następnie trzeba przygotować listę pytań i odpowiedzi.

 3. Wciśnij klawisz Enter, aby dodać nowy wiersz, i wpisz kod var questions = [.

Wszystkie pytania znajdą się w tablicy, czyli zmiennej, która może przechowy-
wać wiele elementów. Dodany kod to pierwsza część instrukcji tworzącej tablicę.
Elementy tablicy można podać w wielu wierszach, co opisano na stronie 78.

 4. Wciśnij dwukrotnie klawisz Enter, aby dodać dwa nowe wiersze, i wpisz
sekwencję];. Kod powinien wyglądać następująco:

var score = 0;
var questions = [

];

Ponieważ quiz składa się z wielu pytań, warto zapisać każde z nich w tablicy.
Przy zadawaniu pytań wystarczy wtedy przejść po elementach tablicy. Jednak
każde pytanie ma inną odpowiedź, dlatego trzeba zapisać także odpowiedzi.

Jedną z możliwości jest utworzenie nowej tablicy, na przykład answers[],
i zapisanie w niej wszystkich odpowiedzi. Aby zadać pierwsze pytanie, należy
wtedy pobrać pierwszy element tablicy questions, a w celu sprawdzenia, czy
odpowiedź jest poprawna, trzeba użyć pierwszej wartości z tablicy answers.
Wadą tego rozwiązania jest potencjalny brak synchronizacji między listami,
który może wynikać ze wstawienia nowego pytania w środku tablicy questions,
a odpowiedzi — na początku tablicy answers. Wtedy pierwszy element tablicy
z pytaniami nie będzie dopasowany do pierwszej wartości tablicy odpowiedzi.

Lepsze podejście polega na użyciu tablicy zagnieżdżonej, nazywanej też tablicą
wielowymiarową. Wymaga to utworzenia tablicy z pytaniem i odpowiedzią oraz
zapisania jej jako jednego elementu tablicy questions. Powstanie w ten sposób
lista, której każdy element to tablica.

 5. Kliknij pusty wiersz między znakami [i];, a następnie dodaj kod wyróż-
niony pogrubieniem:

var questions = [
 ['Ile księżyców ma Ziemia?', 1],
];

Kod ['Ile księżyców ma Ziemia?', 1] to dwuelementowa tablica. Pierwszy
element to pytanie, a drugi — odpowiedź. Ta tablica to pierwszy element tablicy
questions. Tablice zagnieżdżone nie mają nazw. Przecinek na końcu wiersza
oznacza koniec pierwszego elementu tablicy questions i informuje o tym,
że pojawią się dalsze dane.

 6. Wciśnij klawisz Enter, aby utworzyć nowy, pusty wiersz. Następnie dodaj
do skryptu dwa wiersze wyróżnione pogrubieniem:

var questions = [
 ['Ile księżyców ma Ziemia?', 1],

C ZĘŚĆ I  W P R O W A D Z E N I E D O JĘZ Y K A J A V A S C R I P T

Przykład — prosty quiz

126

 ['Ile księżyców ma Saturn?', 31],
 ['Ile księżyców ma Wenus?', 0]
];

Dodałeś do quizu dwa nowe pytania. Zauważ, że po ostatnim elemencie tablicy
nie ma przecinka. Umieszczenie wszystkich pytań w jednej tablicy zapewnia
dużą elastyczność. Jeśli zechcesz dodać nowe pytanie, możesz dołączyć następną
zagnieżdżoną tablicę z pytaniem i odpowiedzią.

Po przygotowaniu podstawowych zmiennych quizu pora zastanowić się nad
zadawaniem pytań. Są one zapisane w tablicy, a program ma wyświetlić każde
z nich. Na stronie 111 napisałem, że doskonałym narzędziem do poruszania
się po tablicach są pętle.

 7. Kliknij kolumnę za sekwencją]; (za tablicą questions) i wciśnij klawisz
Enter, aby utworzyć nowy, pusty wiersz. Dodaj w nim następujący kod:

for (var i=0; i<questions.lenght; i++) {

Ten wiersz to pierwsza część pętli for (patrz strona 112). Wykonuje on trzy
operacje. Po pierwsze, tworzy nową zmienną, i, której przypisuje wartość 0.
Ta zmienna to licznik potrzebny do śledzenia liczby powtórzeń pętli. Drugi
element, i<questions.length, to warunek podobny do warunku w instrukcjach
if-else. Sprawdza on, czy wartość zmiennej i jest mniejsza od liczby ele-
mentów tablicy questions. Jeśli jest to prawda, należy powtórnie urucho-
mić pętlę. Kiedy wartość zmiennej i będzie równa liczbie elementów tablicy (lub
większa od niej), skrypt zakończy działanie pętli. Trzecia część, i++, zwiększa
wartość zmiennej i o 1 przy każdym powtórzeniu pętli.

Teraz pora dodać najważniejszą część pętli — kod JavaScript uruchamiany
przy każdym jej powtórzeniu.

 8. Wciśnij klawisz Enter, aby utworzyć nowy, pusty wiersz. Wpisz w nim
poniższy kod:

askQuestion(questions[i]);

Zamiast umieszczać w pętli cały kod do obsługi zadawania pytań, można dodać
funkcję, która wykonuje tę operację. Funkcja (utworzysz ją za chwilę) będzie
nosić nazwę askQuestion(). Przy każdym powtórzeniu pętli kod przekaże do
tej funkcji jeden element z tablicy questions (questions[i]). Pamiętaj, że
dostęp do wartości tablicy zapewnia indeks, dlatego wyrażenie questions[0]
oznacza pierwszy element, questions[1] to element drugi i tak dalej.

Użycie funkcji do zadawania pytań zwiększa elastyczność programu. W przy-
szłości będziesz mógł przenieść tę funkcję do innego skryptu i ponownie ją
wykorzystać. Teraz należy dokończyć kod pętli.

 9. Wciśnij klawisz Enter, aby dodać nowy, pusty wiersz, i wpisz znak }, aby
zakończyć pętlę. Oto gotowa pętla:

for (var i=0; i<questions.length; i++) {
 askQuestion(questions[i]);
}

To już cała prosta pętla, która wywołuje funkcję i przekazuje do niej każde
pytanie quizu. Teraz trzeba utworzyć serce quizu — funkcję askQuestion().

R O Z D Z I AŁ 3 . D O D A W A N I E S T R U K T U R L O G I C Z N Y C H I S T E R U JĄC Y C H

Przykład — prosty quiz

127

 10. Utwórz pusty wiersz przed dodaną wcześniej pętlą for.

Funkcję należy umieścić między dwiema początkowymi instrukcjami defi-
niującymi podstawowe zmienne a dodaną przed chwilą pętlą. Choć funkcje
można definiować w dowolnym miejscu skryptu, większość programistów
umieszcza je na początku kodu. W wielu skryptach najpierw znajdują się defi-
nicje zmiennych globalnych (takich jak score i questions w przykładzie), co
ułatwia ich przeglądanie i modyfikowanie. Po zmiennych następują funkcje,
które są podstawą większości programów, a na końcu znajdują się wymienione
krok po kroku operacje, takie jak pętla w przykładowym kodzie.

 11. Dodaj poniższy fragment:
function askQuestion(question) {

}

Ten kod wyznacza ciało funkcji. Zawsze warto najpierw wpisać początkowy i koń-
cowy nawias klamrowy funkcji, a dopiero potem dodać skrypt między nimi. Za-
pobiega to pominięciu zamykającego nawiasu klamrowego.

Nowa funkcja przyjmuje jeden argument i zapisuje go w parametrze question.
Nie jest to tablica questions[] utworzona w kroku 6. W zmiennej question
skrypt będzie zapisywał elementy z tablicy questions[]. Jak wiesz z kroku 8.,
każdy element tej tablicy to lista zawierająca dwie wartości, czyli pytanie i od-
powiedź.

 12. Dodaj wiersz wyróżniony pogrubieniem:
function askQuestion(question) {
 var answer = prompt(question[0],'');
}

Ten kod powinien wyglądać znajomo. Występuje tu znane już polecenie
prompt(). Jedyna nowa część to wyrażenie question[0]. W ten sposób można
uzyskać dostęp do pierwszego elementu tablicy. Przykładowa funkcja przyjmuje
tablicę, która zawiera pytanie i odpowiedź. Przykładowo pierwsza taka ta-
blica ma wartość ['Ile księżyców ma Ziemia?', 1]. Dlatego wyrażenie
question[0] zapewnia dostęp do pierwszego elementu, 'Ile księżyców ma
Ziemia?'; funkcja przekazuje go do polecenia prompt() jako pytanie, które
pojawi się w oknie dialogowym.

Program zapisuje w zmiennej answer wartość wpisaną przez gracza w oknie
dialogowym. Następnie należy porównać dane wprowadzone przez użytkownika
z prawidłową odpowiedzią.

 13. Uzupełnij funkcję przez dodanie kodu wyróżnionego pogrubieniem:
function askQuestion(question) {
 var answer = prompt(question[0],'');
 if (answer == question[1]) {
 alert('Prawidłowa odpowiedź!');
 score++;
 } else {
 alert('Błąd. Prawidłowa odpowiedź to ' + question[1]);
 }
}

C ZĘŚĆ I  W P R O W A D Z E N I E D O JĘZ Y K A J A V A S C R I P T

Przykład — prosty quiz

128

Ten kod to prosta instrukcja if-else. Warunek (answer == question[1])
pozwala sprawdzić, czy wartość podana przez użytkownika (answer) jest taka
sama jak odpowiedź zapisana w drugim elemencie tablicy (question[1]). Jeśli
obie liczby są takie same, gracz odpowiedział poprawnie. Pojawia się wtedy
informacja o prawidłowej odpowiedzi, a skrypt zwiększa liczbę punktów o 1
(score++). Oczywiście przy błędnej odpowiedzi pojawia się okno dialogowe
z właściwą wartością.

Na tym etapie quiz ma już wszystkie funkcje. Jeśli zapiszesz plik i wyświetlisz
go w przeglądarce, będziesz mógł wziąć udział w quizie. Jednak brakuje jeszcze
możliwości wyświetlenia wyników użytkownikowi. Posłuży do tego skrypt w ciele
strony.

 14. Znajdź drugą parę znaczników <script> (w dolnej części strony) i wpisz
w nich poniższy kod:

var message = 'Liczba punktów: ' + score;

Ten kod tworzy nową zmienną i zapisuje w niej łańcuch znaków 'Liczba
punktów: ' oraz wynik gracza. Dlatego jeśli użytkownik udzielił trzech dobrych
odpowiedzi, zmienna message będzie miała wartość 'Liczba punktów: 3'.
Aby skrypt był bardziej czytelny, tworzenie dłuższego komunikatu warto po-
dzielić na kilka wierszy.

 15. Wciśnij klawisz Enter i wpisz następujący kod:
message += ' z ' + questions.length;

Ten wiersz dodaje łańcuch ' z ' i liczbę wszystkich pytań do zmiennej message.
Na tym etapie zmienna ta ma wartość typu 'Liczba punktów: 3 z 3'. Teraz
można dokończyć komunikat i wyświetlić go na ekranie.

 16. Dodaj do skryptu wiersze wyróżnione pogrubieniem:
var message = 'Liczba punktów: ' + score;
message += ' z ' + questions.length;
message += '.';
document.write('<p>' + message + '</p>');

Zapisz stronę i otwórz ją w przeglądarce. Odpowiedz na pytania i sprawdź, jaki
wynik uzyskasz (patrz rysunek 3.11). Jeśli skrypt nie działa, wypróbuj techniki
rozwiązywania problemów wymienione na stronie 51. Możesz też porównać
skrypt z gotową, działającą wersją programu z pliku complete_quiz.html.

Aby wydłużyć quiz, spróbuj dodać dalsze pytania do tablicy questions[] z początku
skryptu.

Teraz, kiedy już opanowałeś niektóre niezbyt fascynujące, lecz za to stanowiące
wyzwanie intelektualne tajniki JavaScriptu, nadszedł czas, by zająć się czymś, co
będzie naprawdę zabawne. W następnym rozdziale poznasz bibliotekę jQuery, do-
wiesz się, czym ona jest i jak jej używać, a co najważniejsze, jak się przy tym do-
skonale bawić i realizować wiele zadań programistycznych.

R O Z D Z I AŁ 3 . D O D A W A N I E S T R U K T U R L O G I C Z N Y C H I S T E R U JĄC Y C H

Przykład — prosty quiz

129

Rysunek 3.11. Efekt działania prostego programu do obsługi quizów. Kiedy nauczysz się manipulować stronami
WWW (patrz strona 157), reagować na zdarzenia zachodzące na stronach (patrz strona 182) oraz obsługiwać
formularze umieszczane na stronach WWW (patrz strona 279), zobaczysz, jak zmodyfikować ten program, by
pytania pojawiały się bezpośrednio na stronie, a wynik dynamicznie się zmieniał po udzieleniu każdej odpowiedzi.
Wkrótce dowiesz się, jak zastąpić nieporęczne polecenie prompt()

C ZĘŚĆ I  W P R O W A D Z E N I E D O JĘZ Y K A J A V A S C R I P T

130

Wprowadzenie
do biblioteki jQuery

Rozdział 4. Wprowadzenie do jQuery

Rozdział 5. Akcja i reakcja — ożywianie stron za pomocą zdarzeń

Rozdział 6. Animacje i efekty

Rozdział 7. Popularne zastosowania jQuery

Rozdział 8. Wzbogacanie formularzy

II
CZĘŚĆ

Wprowadzenie do jQuery

trzech początkowych rozdziałach tej książki przedstawionych zostało wiele
podstawowych informacji dotyczących języka programowania JavaScript;
były to stosowane w nim słowa kluczowe, pojęcia oraz jego składnia. Wiele

tych pojęć jest bardzo prostych („zmienna to takie pudełko, w którym można umie-
ścić jakąś wartość”), jednak niektóre z nich mogły sprawić, że drapałeś się w zadumie
po głowie lub sięgałeś po pastylkę aspiryny (na przykład pętle for opisane na stro-
nie 109). Prawda jest taka, że dla większości osób pisanie kodu w języku Java-
Script jest trudne. Rzeczywiście nawet w książce liczącej tysiąc stron nie udałoby się
opisać wszystkich możliwych informacji dotyczących tego języka oraz sposobów jego
działania we wszystkich dostępnych przeglądarkach.

Programowanie jest zagadnieniem trudnym. I właśnie z tego powodu w tej książce
opisano zarówno język JavaScript, jak i bibliotekę jQuery. Jak się przekonasz w pierw-
szej części tego rozdziału, jQuery jest biblioteką języka JavaScript, która niezwykle
przyspiesza i ułatwia programowanie, gdyż samoczynnie może wykonywać wiele zło-
żonych zadań. Biblioteka ta, której mottem jest „pisz mniej, rób więcej”, sprawia, że
programowanie staje się zabawne, szybkie i satysfakcjonujące. Dzięki niej, za po-
mocą jednego wiersza kodu można zrobić to samo, co w innych przypadkach wy-
magałoby kilkudziesięciu wierszy zwyczajnego kodu JavaScript. Kiedy już zakończysz
lekturę tego oraz kolejnego rozdziału, będziesz mógł zrobić na swoich stronach więcej,
niż zrobiłbyś po przeczytaniu tysiącstronicowej książki poświęconej wyłącznie języ-
kowi JavaScript.

Kilka słów o bibliotekach JavaScript
Wielu programistów korzystających z języka JavaScript podczas tworzenia stron
WWW wielokrotnie musi wykonywać dokładnie te same zadania, takie jak pobranie
elementu strony, dodanie nowej zawartości, ukrycie lub wyświetlenie fragmentu
strony, modyfikowanie atrybutów znaczników, określanie wartości pól formularzy,
zapewnienie odpowiedniej reakcji programu na różnego rodzaju czynności wy-
konywane przez użytkownika. Szczegóły realizacji tych prostych zadań mogą być
złożone zwłaszcza wtedy, kiedy chcemy, by nasz program działał we wszystkich

W

4
ROZDZIAŁ

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Kilka słów o bibliotekach
JavaScript

134

głównych przeglądarkach. Na szczęście biblioteki JavaScript stanowią rozwiązanie
pozwalające ominąć problem mozolnego tworzenia kodu realizującego powtarzają-
ce się czynności programistyczne.

Biblioteki JavaScript to fragmenty kodu napisanego w tym języku, które zawierają
rozwiązania wielu prozaicznych zadań wykonywanych każdego dnia przez progra-
mistów. Można je sobie wyobrazić jako kolekcje gotowych funkcji JavaScriptu, które
wystarczy dodać do strony. Funkcje te ułatwiają wykonywanie najczęściej spotyka-
nych zadań. Zdarza się dość często, że bardzo wiele wierszy naszego własnego kodu
(oraz sporo godzin koniecznych do jego napisania) można zastąpić wywołaniem
jednej funkcji takiej biblioteki. Istnieje bardzo dużo takich bibliotek, a wielu z nich
używano podczas tworzenia największych i najbardziej znanych stron WWW, takich
jak Yahoo!, Amazon, CNN, Apple oraz Twitter.

W tej książce użyto popularnej biblioteki jQuery (http://www.jquery.com). Dostępne
są także inne biblioteki JavaScript (patrz ramka na stronie 135), jednak jQuery ma
nad nimi przewagę i to z kilku powodów. Oto one.

 Jest stosunkowo niewielka. Skompresowana wersja biblioteki zajmuje jedynie
około 96 kB w wersji 1.11 oraz 83 kB w wersji 2.1. (Jeśli serwer dodatkowo ko-
rzysta z kompresji „gzip”, rzeczywistą wielkość przesyłanego pliku biblioteki
można ograniczyć do około 38 kB!).

 Jest przyjazna dla projektantów stron. Biblioteka jQuery nie zakłada, że jesteś
profesjonalnym informatykiem. Bazuje na znajomości CSS, a większość pro-
jektantów stron i tak już umie się nimi posługiwać.

 Jest wypróbowana i sprawdzona. Biblioteka jQuery jest używana na milionach
stron, w tym także na wielu bardzo popularnych witrynach o bardzo dużym obcią-
żeniu, takich jak Pinterest, MSN.com, Amazon, Microsoft.com, Craiglist czy też
ESPN. Okazuje się, że jest ona używana przez ponad 57% wszystkich witryn na
świecie (http://w3techs.com/technologies/history_overview/javascript_library/all).
Popularność jQuery jest najlepszym świadectwem jej jakości.

 Jest bezpłatna. A tego nie można przebić!

 Ma ogromną społeczność użytkowników. Kiedy czytasz te słowa, cała rzesza
ludzi pracuje nad projektem jQuery — pisze kod jej nowej wersji, poprawia błędy,
dodaje nowe możliwości, aktualizuje witrynę z dokumentacją i poradnikami.
Biblioteka JavaScript utworzona przez jednego programistę (lub udostępniana
przez jednego autora) może zniknąć, kiedy ten zmęczy się prowadzeniem projek-
tu. Jednak jQuery będzie dostępna przez bardzo długi czas dzięki temu, że wspie-
ra ją bardzo wielu programistów z całego świata. Nawet bardzo duże firmy, takie
jak Microsoft oraz Adobe, przydzielają swoich inżynierów do pracy nad jQuery
i biorą udział w tworzeniu jej kodu. To tak, jakby spora grupa programistów
pracowała dla nas, na dodatek za darmo.

 Wtyczki, wtyczki i jeszcze raz wtyczki. Biblioteka jQuery pozwala programi-
stom tworzyć wtyczki — dodatkowe programy napisane w JavaScripcie i współ-
pracujące z biblioteką w celu wykonywania określonych zadań, tworzenia efek-
tów wizualnych i zapewniania nowych możliwości, z których w niezwykle prosty

http://www.jquery.com
http://w3techs.com/technologies/history_overview/javascript_library/all
http://MSN.com
http://Microsoft.com

R O Z D Z I AŁ 4 . W P R O W A D Z E N I E D O J Q U E R Y

Jak zdobyć jQuery?

135

W I E D Z A W P I G U Ł C E

Inne biblioteki JavaScript
jQuery nie jest jedyną dostępną biblioteką napisaną w ję-

zyku JavaScript. Istnieje wiele, wiele innych. Niektóre z nich

zostały zaprojektowane w celu wykonywania ściśle okre-

ślonych zadań, inne natomiast mają ogólne przeznacze-

nie i służą do rozwiązywania wszelkich możliwych pro-

blemów, jakie mogą napotkać programiści JavaScript.

Oto kilka najbardziej popularnych bibliotek.

 Yahoo User Interface Library (http://yu library.com/)

jest projektem prowadzonym przez Yahoo i w prak-

tyce używanym na jej witrynie. Programiści firmy

bezustannie poprawiają i rozwijają tę bibliotekę,

udostępnili także jej bardzo dobrą dokumentację.

 Dojo Toolkit (http://dojotoolkit.org/) to kolejna

biblioteka istniejąca już od bardzo dawna. Daje

ogromne możliwości i stanowi kolekcję bardzo wielu

plików JavaScript mogących posłużyć do rozwiązania

niemal każdego problemu. Jest ona używana przez

wielkie firmy, takie jak ADP, IBM oraz VMWare.

Jest nieco złożona i przeznaczona przede wszystkim

dla twórców aplikacji internetowych z dużym do-

świadczeniem.

 Mootools (http://mootools.net/) jest kolejną bi-

blioteką służącą głównie do tworzenia płynnych

animacji i innych efektów wizualnych.

Także inne biblioteki starają się udostępniać szkielety do

tworzenia aplikacji internetowych. Najpopularniejsze

są Ember.js (http://emberjs.com/), Angular.js (http://
angularjs.org/) oraz Backbone js (http://backbonejs.org/).

Niektóre biblioteki są małe i udostępniają proste,

lecz przydatne narzędzia do programowania w języku

JavaScript. Przykładowo Underscore.js (http://under-

-scorejs.org/) jest niewielką biblioteką JavaScript udo-

stępniającą bardzo dużo przydatnych funkcji, w której

jednak nie znajdziesz narzędzi do obsługi efektów

wizualnych, technologii AJAX ani modyfikacji kodu

HTML strony, którymi dysponuje jQuery.

Istnieją także biblioteki o ściśle określonym przezna-

czeniu i możliwościach, takie jak Raphaël (http://
raphael.js.com/), której jedynym celem jest ułatwienie
tworzenia grafiki wektorowej w przeglądarkach.

Innymi słowy, nic nie stoi na przeszkodzie, by zaszaleć

i korzystać z nawet 10 różnych bibliotek JavaScript.

Jednak to jQuery jest najlepszym miejscem, od którego

warto rozpocząć poznawanie bibliotek JavaScript.

Później, kiedy zdobędziesz większą wiedzę i umie-

jętności, być może okaże się, że będziesz musiał sko-

rzystać z możliwości, jakie dają inne biblioteki.

sposób można korzystać na swoich stronach. Czytając książkę, dowiesz się
o wtyczkach umożliwiających weryfikację poprawności danych wpisywanych
w formularzach, ułatwiających tworzenie rozwijanych menu oraz generowanie
interaktywnych pokazów slajdów, których wykorzystanie zajmuje pół godziny,
a nie stanowi odrębnego projektu o dwutygodniowym terminie realizacji. A ta-
kich wtyczek współpracujących z biblioteką jQuery są dosłownie tysiące.

W tej książce już wcześniej miałeś okazję skorzystać z jQuery. W przykładzie w roz-
dziale 1. (patrz strona 49) dodano do strony kilka wierszy kodu JavaScript, by utwo-
rzyć na niej efekt pojawiania się stopniowo.

Jak zdobyć jQuery?
Biblioteka jQuery to jedynie trochę kodu JavaScript umieszczonego w zewnętrznym
pliku. Podobnie jak w przypadku wszystkich innych zewnętrznych plików JavaScript
(patrz strona 49), także i plik jQuery należy dołączyć do swojej strony. Jednak, ze
względu na ogromną popularność jQuery, można to zrobić na kilka sposobów: moż-
na pobrać wersję biblioteki udostępnianą na serwerach firm Google, Microsoft lub
na serwerze jQuery.com (patrz rysunek 4.1) bądź też można skopiować plik biblio-
teki na własny komputer i umieścić go na witrynie.

http://yuilibrary.com/
http://dojotoolkit.org/
http://mootools.net/
http://emberjs.com/
http://angularjs.org/
http://angularjs.org/
http://backbonejs.org/
http://under-scorejs.org/
http://under-scorejs.org/
http://raphael.js.com/
http://raphael.js.com/
http://jQuery.com

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Jak zdobyć jQuery?

136

Rysunek 4.1. Strona główna witryny jQuery jest miejscem, z którego należy rozpocząć pobieranie biblioteki
oraz zdobywanie informacji na temat jej API (zawiera ona alfabetyczną listę wszystkich funkcji biblioteki).
Wiersz ikon widocznych w lewym, górnym rogu pozwala przejść na strony innych projektów jQuery: jQuery UI
(który zostanie opisany w III części książki), jQuery Mobile (do tworzenia witryn przeznaczonych do oglądania
na urządzeniach mob lnych) Sizzle (biblioteki wbudowanej w jQuery ułatwiającej wybieranie i manipulowanie
fragmentami stron WWW) oraz QUnit (biblioteki do testowania programów JavaScript)

Pierwsza z metod polega na skorzystaniu z sieci dystrybucji treści (ang. content di-
stribution network, w skrócie CDN) — czyli innej witryny, która przechowuje bi-
bliotekę i przesyła ją do każdego, kto o to poprosi. Takie rozwiązanie ma kilka zalet.
Przede wszystkim można obniżyć obciążenie własnego serwera, gdyż to serwery
Google, Microsoft lub jQuery będą udostępniać bibliotekę osobom przeglądającym
naszą witrynę. Poza tym sieci tego typu zapewniają jeszcze jedną korzyść — ich
serwery są rozmieszczone na całym świecie. A zatem, jeśli na naszą stronę wejdzie
użytkownik, na przykład z Singapuru, pobierze plik biblioteki z serwera położonego
zapewne znacznie bliżej swojego miejsca pobytu niż nasz; dzięki temu pobierze ten
plik w krótszym czasie i odniesie wrażenie, że nasza witryna działa szybciej.

Jednak najważniejsze jest to, że z sieci dystrybucji korzysta także wielu innych pro-
gramistów, zatem istnieje całkiem duże prawdopodobieństwo, że gdy użytkownik
wejdzie na naszą stronę, w pamięci podręcznej jego przeglądarki będzie już zapisany
odpowiedni plik jQuery. Ponieważ przeglądarka takiego użytkownika pobrała już
bibliotekę z serwerów Google podczas przeglądania innych witryn, nie będzie mu-
siała robić tego ponownie podczas wyświetlania naszej, co znacząco poprawi szyb-
kość jej działania.

R O Z D Z I AŁ 4 . W P R O W A D Z E N I E D O J Q U E R Y

Jak zdobyć jQuery?

137

Jednak korzystanie z CDN ma także kilka wad. Przede wszystkim, aby metoda ta
zadziałała, użytkownik musi być podłączony do internetu. Ma to znaczenie, gdy
musimy zapewnić poprawność działania witryny bez podłączenia z internetem, na
przykład w kioskach multimedialnych w muzeach lub podczas lekcji programowa-
nia w szkole, w klasie, w której nie ma dostępu do internetu. W takich sytuacjach
konieczne będzie pobranie biblioteki z witryny jQuery.com (poniżej dowiesz się,
jak to należy zrobić) i umieszczenie jej na własnej witrynie. Takie rozwiązanie ma
także tę zaletę, że nasza witryna będzie działać nawet wtedy, gdyby zostały wyłą-
czone serwery CDN. (Oczywiście, gdyby wyłączono serwery firmy Google, na świe-
cie mogłyby się pojawić znacznie poważniejsze problemy niż ten, że nasza witryna
przestała działać).

Dołączanie pliku jQuery z serwera CDN
Zarówno Microsoft, jQuery, jak i Google pozwalają korzystać na własnych witry-
nach z biblioteki jQuery pobieranej z ich serwerów. Aby na przykład skorzystać
z wersji 1.11.0 biblioteki pobieranej z serwera CDN firmy Microsoft, w sekcji na-
główka naszej strony (tuż przed zamykającym znacznikiem </head>) musielibyśmy
umieścić znacznik o następującej postaci:

<script src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.11.0.min.js">
</script>

Gdybyśmy chcieli skorzystać z serwera CDN jQuery, musielibyśmy użyć nastę-
pującego kodu:

<script src="http://code.jquery.com/jquery-1.11.0.min.js"></script>

Poniższy kod pozwala użyć serwera CDN firmy Google:
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.11.0/
jquery.min.
js"></script>

Na naszej stronie powinniśmy umieścić tylko jeden z powyższych znaczników, za-
leżnie od tego, z której sieci dystrybucji chcemy skorzystać. Najpopularniejsza jest
chyba sieć firmy Google, jeśli zatem nie wiesz, której z nich użyć, wybierz właśnie tę.

Jeśli wolisz korzystać z biblioteki jQuery 2 (więcej informacji na jej temat znaj-
dziesz w ramce na następnej stronie), w powyższych wierszach kodu zmień
fragment 1.11.0 na 2.1.0 (bądź też inny numer aktualnie dostępnej najnowszej
wersji jQuery, którą możesz sprawdzić na stronie http://jquery.com/download/).
Aby na przykład pobrać jQuery 2.1.0 z serwera CDN firmy Google, należy użyć
poniższego kodu:

<script src="//ajax.googleapis.com/ajax/libs/jquery/2.1.0/jquery.min.js">
</script>

Uwaga: Być może zauważyłeś, że odnośnik do serwera CDN firmy Google wygląda dość niezwykle. Nie

zaczyna się od określenia protokołu — http:// — jak w przypadkach serwerów CDN jQuery i Microsoftu.

Adresy URL tego typu są określane jako zależne od protokołu (ang. protocol-relative), co oznacza

tylko tyle, że przeglądarka pobierze je, korzystając z aktualnie używanego protokołu bezpieczeń-

stwa. Jeśli na przykład witryna jest pobierana przy użyciu bezpiecznego protokołu https, to także

biblioteka jQuery zostanie pobrana z wykorzystaniem tego protokołu. Więcej informacji na temat

http://jquery.com/download/
http://jQuery.com

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Jak zdobyć jQuery?

138

adresów URL zależnych od protokołu znajdziesz na stronie http://www.paulirish.com/2010/the-
protocol-relative-url/. Adresy tego typu przysparzają tylko jednego problemu: działają wyłącznie

w przypadku, gdy strona jest pobierana z serwera WWW. Jeśli stronę zawierającą takie adresy URL

otworzymy w przeglądarce jako plik lokalny, nie będą one działać.

Pobieranie pliku jQuery
Bez trudu można pobrać plik biblioteki jQuery i dodać go do wszystkich pozostałych
stron oraz plików tworzących naszą witrynę. Plik ten wchodzi w skład przykładów
dołączonych do tej książki, które pobrałeś z serwera FTP wydawnictwa Helion
zgodnie z informacjami podanymi na stronie 46.; ponieważ jednak biblioteka ta jest
regularnie aktualizowana, jej najnowszą wersję zawsze można znaleźć na stronie
http://jquery.com/download/.

Aby pobrać najnowszą wersję biblioteki jQuery, wykonaj kolejno następujące kroki.

 1. Wejdź na stronę http://jquery.com/download/.

Strona ta zawiera informacje na temat kodu, listę CDN, o których wspomnia-
no już wcześniej, oraz listę starszych wersji biblioteki.

 2. Wybierz wersje 1.x lub 2.x.

W tej książce używana jest wersja jQuery 1.11, warto jednak przeczytać in-
formacje zamieszczone w ramce poniżej. Ogólnie rzecz biorąc, jeśli musisz ob-
sługiwać wciąż popularną przeglądarkę Internet Explorer 8, powinieneś użyć
wersji jQuery 1.11.

C Z Ę S T O Z A D A W A N E P Y T A N I A

Którą wersję wybrać: jQuery 1 czy 2?
Na witrynie jQuery dostępne są dwie wersje biblioteki

— 1 i 2. Której z nich powinienem używać?

W czasie pisania tej książki wersje jQuery 1.11 oraz 2.1

odpowiadały sobie pod względem funkcjonalnym.

Podstawowa różnica pomiędzy nimi — a jednocześnie

podstawowy powód, dla którego zespół jQuery udo-

stępnił wersję 2. — polega na porzuceniu wsparcia dla

przeglądarek Internet Explorer 6, 7 oraz 8. Starsze wer-

sje Internet Explorera często działają inaczej niż nowo-

czesne przeglądarki, a wykorzystanie w nich nowocze-

snych możliwości wymaga dodatkowych starań. Obsługa

tych przeglądarek wiąże się z koniecznością napisania do-

datkowego kodu, co zwiększa rozmiar biblioteki jQuery.

Zespół jQuery, mając nadzieję, że przeglądarki IE 6, 7 i 8

kiedyś w końcu znikną z internetu, przygotował odchu-

dzoną wersję biblioteki, z której usunięto kod obsługują-

cy te przeglądarki. Jednak te wersje Internet Explorera

wciąż są używane, dlatego też cały czas dostępne są

wersje 1. biblioteki jQuery.

Jednak IE 8 wciąż jest najczęściej używaną wersją In-

ternet Explorera. Z tego powodu w tej książce bę-

dziesz używał jQuery w wersji 1.11.0. Dysponuje ona

tymi samymi możliwościami co jQuery 2, a jednocze-

śnie wciąż działa w starszych wersjach Internet Explo-

rera. Powinieneś używać najnowszej wersji biblioteki

jQuery 1 (czyli obecnie 1.11) tak długo, jak Twoją witrynę

odwiedzają osoby korzystające z przeglądarki Internet

Explorer 8.

Jednak w przyszłości wszystkie nowe możliwości wpro-

wadzane w bibliotece jQuery będą implementowane

wyłącznie w jej wersji 2. W wersji 1. będą wprowadzane

wyłącznie poprawki błędów. Nie obawiaj się jednak,

wszystko, czego się nauczysz w tej książce, będzie dzia-

łało we wszystkich wersjach jQuery. Jeśli jednak po za-

kończeniu lektury okaże się, że jakieś nowe, fantastycz-

ne i absolutnie konieczne możliwości są dostępne tylko

w jQuery 2, to być może warto, żebyś się zastanowił

nad jej wykorzystaniem.

http://www.paulirish.com/2010/the-protocol-relative-url/
http://www.paulirish.com/2010/the-protocol-relative-url/
http://www.paulirish.com/2010/the-protocol-relative-url/
http://jquery.com/download/
http://jquery.com/download/

R O Z D Z I AŁ 4 . W P R O W A D Z E N I E D O J Q U E R Y

Dodawanie jQuery
do strony

139

Na witrynie umożliwiającej pobieranie biblioteki jQuery jej pliki są udostęp-
niane w dwóch wersjach — skompresowanej (ang. compressed) oraz nieskom-
presowanej (ang. uncompressed). Plik wersji nieskompresowanej jest bardzo
duży (ma ponad 280 kB wielkości) i udostępniany wyłącznie po to, by można
się było dowiedzieć czegoś więcej na temat biblioteki poprzez analizę jej kodu.
W tej wersji pliku biblioteki znajduje się bardzo dużo komentarzy (patrz stro-
na 90), które ułatwiają zrozumienie przeznaczenia poszczególnych fragmen-
tów kodu. (Aby zrozumieć te komentarze, trzeba naprawdę dobrze znać język
JavaScript).

Na swojej witrynie należy jednak używać wersji skompresowanej. Została ona
zminimalizowana, co oznacza, że zajmuje znacznie mniej miejsca niż zwy-
czajne pliki z kodem JavaScript — nie zawiera żadnych komentarzy oraz nie-
potrzebnych znaków (takich jak znaki odstępu, nowego wiersza, tabulacji i tak
dalej). Tę wersję biblioteki znacznie trudniej przeglądać i analizować, lecz prze-
glądarki mogą ją szybciej pobierać.

Uwaga: Zazwyczaj łatwo można stwierdzić, że dane pliki JavaScript zostały zminimalizowane, gdyż

przeważnie do ich nazw dodawany jest ciąg znaków „min”; na przykład nazwa jquery-1.11.0.min js oznacza,

że plik zawiera zminimalizowaną wersję biblioteki jQuery.

 3. Kliknij odnośnik skompresowanej wersji biblioteki prawym przyciskiem
myszy i z wyświetlonego menu kontekstowego wybierz opcję Zapisz odno-
śnik jako.

Jeśli ograniczymy się do zwyczajnego kliknięcia odnośnika, nie spowoduje to
zamierzonego pobrania pliku biblioteki. Zamiast tego cały jej kod zostanie wy-
świetlony w oknie przeglądarki. Właśnie dlatego konieczne jest skorzystanie
z metody Zapisz jako.

 4. Przejdź na swoim komputerze do katalogu, w którym są przechowywane za-
soby witryny, i zapisz w nim plik.

Plik biblioteki jQuery można zapisać w dowolnym miejscu, jednak bardzo
wielu projektantów umieszcza używane, zewnętrzne pliki JavaScript w osobnym
katalogu. Zazwyczaj katalogom tym nadawane są takie nazwy jak scripts, libs,
js bądź _js.

Dodawanie jQuery do strony

Jeśli używamy jednej z wersji jQuery udostępnianej przez sieci dystrybucji (patrz
strona 137), możemy ją dodać do naszej strony, korzystając z jednego z fragmentów
kodu zamieszczonych na stronie 137. Aby na przykład skorzystać z wersji dostęp-
nej na serwerach Google, do sekcji nagłówka strony należy dodać poniższy znacznik
<script>:

<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.11.0/jquery.min.
js"></script>

http://ajax.googleapis.com/ajax/libs/jquery/1.11.0/jquery.min.js"></
http://ajax.googleapis.com/ajax/libs/jquery/1.11.0/jquery.min.js"></

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Dodawanie jQuery
do strony

140

C Z Ę S T O Z A D A W A N E P Y T A N I A

Wersje biblioteki jQuery
Jak widzę, w tej książce używana jest biblioteka jQuery
w wersji 1.11.0, natomiast najnowszą wersją dostępną
na witrynie jQuery jest 1.11 x. Czy to jakiś problem?

Biblioteka jQuery zmienia się cały czas. Często odnaj-
dywane są nowe błędy, a zespół jej twórców skrupulatnie
zabiera się do pracy nad ich poprawianiem. Co więcej,
kiedy pojawiają się nowe wersje przeglądarek, dysponu-
jące nowymi możliwościami i lepszą obsługą najnowszych
standardów, zespół jQuery zabiera się do pracy, by za-
pewnić jak najbardziej efektywniejsze działanie biblioteki
w takiej przeglądarce. W końcu, od czasu do czasu, także
w bibliotece jQuery pojawiają się jakieś nowe możliwości,
mające poprawić jej użyteczność. Właśnie z tych powo-
dów jest całkiem prawdopodobne, że będziesz mógł
znaleźć na witrynie jQuery wersję nowszą od używanej
w tej książce. Jeśli faktycznie tak będzie, koniecznie po-
winieneś jej użyć.

Wraz z upływem lat biblioteka jQuery dojrzała i aktualnie
jej podstawowe funkcjonalności zmieniają się bardzo
nieznacznie. Choć programiści często modyfikują jej
kod, by zwiększyć szybkość działania, zagwarantować,
że będzie dobrze działać w wielu różnych przeglądar-
kach, a także po to, by poprawiać wykrywane błędy,
jednak sam sposób korzystania z biblioteki zmienia się
bardzo niewiele. Innymi słowy, choć programiści mogą
modyfikować bibliotekę, by działała lepiej, sposób jej
używania — nazwy funkcji, przekazywane do nich ar-
gumenty oraz zwracane przez nie wartości — zmienia
się bardzo rzadko. Oznacza to, że wszystko, o czym prze-
czytasz w tej książce, będzie działać także w nowszej wer-
sji biblioteki, tylko lepiej i szybciej.

Nie jest to jednak regułą. Na przykład sześć miesięcy po
wydaniu poprzedniej wersji tej książki udostępniona zo-
stała wersja jQuery 1.9. Usunięto z niej niektóre polecania
używane w przykładach zamieszczonych w książce,
więc czytelnicy, którzy korzystali z tej wersji biblioteki,
odkryli, że niektóre z kodów nie działają.

Ilość różnic pomiędzy dwiema wersjami biblioteki można
zazwyczaj określić na podstawie porównania numerów
ich wersji. Pierwsza cyfra numeru reprezentuje tak zwaną
bardzo ważną wersję, na przykład są to wersje 1. i 2.
biblioteki jQuery. (Zgodnie z informacjami podanymi
w ramce na stronie 109, wersja 2. ma dokładnie te sa-
me możliwości, co wersja 1.11, lecz nie obsługuje prze-
glądarki Internet Explorer 8 i wcześniejszych).

Po tej pierwszej cyfrze zapisywana jest kropka, a po niej
kolejny numer, jak w jQuery 1.1, 1.2, 1.3 i tak dalej. Każ-
da z wersji oznaczanych kolejnymi numerami udo-
stępnia zazwyczaj jakieś nowe możliwości, modyfikacje
zapewniające lepsze działanie starych funkcji i tak dalej.
I w końcu ostatnia cyfra, np. 3 w jQuery 1.11.3, zazwy-
czaj odnosi się do kolejnej grupy poprawek wprowadza-
nych do biblioteki (w tym przypadku, do jej wersji
1.11). A zatem, jeśli używamy biblioteki w wersji 1.11.0,
a pojawiła się wersja 1.11.3, warto z niej skorzystać, gdyż
zazwyczaj będzie zawierała poprawki do błędów odnale-
zionych w kodzie biblioteki 1.11.0.

Aby zobaczyć, jakie zmiany wprowadzono w konkretnej
wersji biblioteki, należy wejść na stronę umożliwiającą
pobranie jQuery (http://jquery.com/download/) i po-
szukać na niej odnośnika Release notes (informacje
o wersji) dla aktualnej wersji biblioteki. I tak na stronie
http://blog.jquery.com/2014/01/24/jquery-1-11-and-
-2-1-released/ można znaleźć informacje o zmianach
wprowadzonych w wersjach 1.11.0 oraz 2.1 biblioteki
jQuery. Po ich przeczytaniu można podjąć decyzję,
czy warto aktualizować kod biblioteki, czy nie. Jeśli na
przykład wszystkie zmiany są związane z możliwościami,
z których nie korzystamy, zapewne będziemy mogli
pominąć tę nową wersję; jeśli jednak zawiera ona po-
prawki możliwości, których używamy, zaktualizowanie
biblioteki będzie zalecane. Jeśli na witrynie używamy
wtyczek jQuery, aktualizację do najnowszej wersji bi-
blioteki trzeba będzie przeprowadzać ostrożniej, chyba
że będziemy absolutnie pewni, że stosowane wtyczki
dobrze z nią działają.

Wskazówka: Podczas korzystania z sieci dystrybucji treści (CDN) firmy Google można pominąć

fragmenty numeru wersji. Jeśli zamiast numeru 1.11.0 podamy w odnośniku numer 1.11 (<script

src="http://ajax.googleapis.com/ajax/libs/jquery/1.11/jquery.min.js"></script>), Google

udostępni najnowszą wersję biblioteki z rodziny 1.11 — na przykład wersję 1.11.2. Jeśli w przyszło-

ści pojawi się aktualizacja o numerze 1.11.9, serwer Google będzie udostępniał właśnie ją. Technika

ta jest całkiem sprytna, gdyż (zgodnie z informacjami podanymi w ramce powyżej) zmiany repre-

zentowane przez ostatni numer, na przykład z 1.11.0 na 1.11.2, zazwyczaj sprowadzają się do po-

prawek w kodzie, które mogą usprawnić działanie naszej witryny.

http://jquery.com/download/
http://blog.jquery.com/2014/01/24/jquery-1-11-and-2-1-released/
http://blog.jquery.com/2014/01/24/jquery-1-11-and-2-1-released/

R O Z D Z I AŁ 4 . W P R O W A D Z E N I E D O J Q U E R Y

Dodawanie jQuery
do strony

141

Jeśli pobrałeś plik biblioteki i umieściłeś na własnym komputerze, będziesz go
musiał dodać do strony, na której chcesz używać biblioteki. Plik jQuery jest zwy-
czajnym zewnętrznym plikiem JavaScript, a zatem dodaje się go do strony dokład-
nie tak samo jak inne pliki tego typu, w sposób opisany na stronie 49. Załóżmy na
przykład, że dysponujesz plikiem jquery.js umieszczonym w katalogu js, w głównym
katalogu serwera WWW. Aby go dodać do strony głównej witryny, powinieneś umie-
ścić w jej sekcji nagłówka znacznik w następującej postaci:

<script src="js/jquery-1.11.0.min.js"></script>

Po dołączeniu pliku jQuery do strony można już dodawać do niej własne skrypty,
korzystające z zaawansowanych funkcji tej biblioteki. Następnym krokiem będzie
dodanie kolejnej pary znaczników <script> zawierających nieco bardziej wymaga-
jący kod JavaScript:

<script src="js/jquery-1.11.0.min.js"></script>
<script>
$(document).ready(function() {
 // to jest miejsce na nasz kod
});
</script>

Wewnątrz drugiej pary znaczników <script> znajduje się cały kod, który chcemy
umieścić na danej stronie WWW. Najprawdopodobniej jednak zastanawiasz się,
co oznacza zapis $(document).ready(). Jest to wbudowana funkcja jQuery, która
spowoduje wykonanie przekazanego do niej kodu po zakończeniu pobierania całej
strony WWW.

A po co robić coś takiego? Wynika to z faktu, że przeważająca część programów pi-
sanych w języku JavaScript jest związana z operowaniem na zawartości stron WWW;
mogą to być takie czynności jak na przykład animowanie jakiegoś elementu div,
stopniowe wyświetlenie niewidocznego początkowo obrazka, rozwinięcie menu po
wskazaniu myszą konkretnego odnośnika i tak dalej. Aby z elementem strony zrobić
coś interesującego i interaktywnego, program JavaScript musi go najpierw wybrać.
Jednak nie jest to możliwe, dopóki przeglądarka go nie pobierze. Ponieważ przeglądar-
ka wykonuje każdy kod JavaScript bezpośrednio po jego odnalezieniu, może się zda-
rzyć, że jakieś fragmenty kodu strony jeszcze nie będą pobrane. (Taki efekt występo-
wał w przykładzie z quizem zaprezentowanym w poprzednim rozdziale. W momencie
wyświetlania quizu strona była pusta — jej zawartość pojawiała się dopiero po podaniu
odpowiedzi. Działo się tak dlatego, że kod JavaScript obsługujący quiz był wykonywany,
zanim przeglądarka zdążyła wyświetlić znaczniki HTML dalszej zawartości strony).

Innymi słowy, abyśmy mogli zrobić coś fajnego z zawartością strony, musimy po-
czekać, aż przeglądarka ją pobierze. I właśnie to zapewnia funkcja $(document).
ready(): czeka na zakończenie pobierania całej zawartości dokumentu HTML
i dopiero potem wykonuje wskazany kod JavaScript. Jeśli to wszystko wydaje się bar-
dzo zagmatwane i trudne, wystarczy, byś zapamiętał, że zawsze wtedy, gdy umiesz-
czasz skrypt w sekcji <head> strony (przed jej ciałem), powinieneś zrobić dwie rzeczy:
zastosować funkcję ready() i umieścić swój kod dokładnie pomiędzy $(document).
ready(function() { oraz zamykającą sekwencją znaków });.

Dodatkowo warto pamiętać także o kilku dodatkowych zagadnieniach.

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Modyfikowanie
stron WWW

142

 Odwołanie do pliku biblioteki jQuery musi być umieszczone przed jakimkol-
wiek kodem JavaScript, w którym biblioteka ta jest używana. Innymi słowy, przed
znacznikami <script> odwołującymi się do jQuery nie należy umieszczać
innych znaczników <script>.

 Własny kod JavaScript należy umieszczać za wszystkimi arkuszami stylów (za-
równo dołączanymi, zewnętrznymi, jak i definiowanymi wewnątrz strony). Po-
nieważ kod korzystający z możliwości jQuery bardzo często odwołuje się do
definicji stylów z CSS, dlatego też kod JavaScript należy umieszczać za arku-
szami stylów, tak by w momencie jego wykonywania przeglądarka zdążyła je
pobrać. Dobrą zasadą, do której można się stosować, jest umieszczanie znacz-
ników <script> wewnątrz sekcji nagłówka strony, poniżej jakiejkolwiek innej
zawartości, lecz — oczywiście — przed zamykającym znacznikiem </head>.

 Do własnego kodu JavaScript warto dodawać komentarze — na przykład ko-
mentarz // koniec funkcji ready, umieszczony po zamykającej sekwencji
znaków });, może oznaczać miejsce, w którym kończy się wywołanie funkcji
ready(). Oto kompletny przykład:

$(document).ready(function() {
 // To jest miejsce na nasz kod.
}); // Koniec funkcji ready.

Po umieszczeniu komentarza na końcu funkcji bardzo łatwo będzie można póź-
niej określić, gdzie kończy się jej kod. Jak się przekonasz, korzystanie z biblioteki
jQuery wymaga częstego stosowania tych krótkich sekwencji znaków składają-
cych się z zamykającego nawiasu klamrowego, okrągłego oraz średnika. Umiesz-
czając za nimi komentarze, można sobie znacznie ułatwić określenie, do jakiego
fragmentu kodu odnosi się dana sekwencja.

Wskazówka: jQuery udostępnia skrócony zapis wywołania funkcji $(document).ready(function() {}):

 $(function() {

 // To jest miejsce na nasz kod.

 }); // Koniec funkcji ready.

Podstawowe informacje
o modyfikowaniu stron WWW

Język JavaScript umożliwia modyfikowanie stron WWW na oczach przeglądają-
cych je użytkowników. Korzystając z niego, można dodawać obrazki i teksty, usu-
wać fragmenty zawartości lub błyskawicznie zmieniać wygląd wybranych elementów
strony. Dynamiczne modyfikowanie wyglądu stron jest cechą charakterystyczną
najnowszej generacji witryn WWW, wykorzystujących możliwości języka Java-
Script. Przykładowo witryna Google Maps (http://maps.google.com/) zapewnia dostęp
do mapy całego świata, kiedy ją powiększamy lub przewijamy, oglądana mapa jest
aktualizowana bez konieczności ponownego wczytywania strony. Kiedy na witrynie
Netflix (http://www.netflix.com/) umieścimy wskaźnik myszy na tytule filmu, na
stronie pojawi się wyskakujące okienko prezentujące dodatkowe informacje na
jego temat (patrz rysunek 4.2). W obu tych przypadkach program napisany w języ-
ku JavaScript zmienia kod HTML pobrany początkowo przez przeglądarkę.

http://maps.google.com/
http://www.netflix.com/

R O Z D Z I AŁ 4 . W P R O W A D Z E N I E D O J Q U E R Y

Modyfikowanie
stron WWW

143

Rysunek 4.2. JavaScript
może ułatwić przegląda-
nie stron, pozwalając na
wyświetlanie tylko tych
ich fragmentów, które
w danej chw li są po-
trzebne. Na przykład
Amazon.com ukrywa
pewne elementy aż do
chwili, gdy wskażemy in-
ne elementy strony my-
szą. Wskazanie myszą
ikony koszyka wyświetla
wszystkie wybrane pro-
dukty. Co? 30 egzempla-
rzy JavaScript & jQuery:
The Missing Manual?
To musi być świetna
książka

W tym rozdziale dowiesz się, jak można modyfikować zawartość stron przy użyciu
języka JavaScript. Nauczysz się dodawać do strony nowe treści, znaczniki HTML
oraz ich atrybuty, a także modyfikować oryginalną zawartość strony. Innymi słowy,
nauczysz się używać języka JavaScrip do generacji nowego oraz modyfikowania już
istniejącego kodu HTML strony.

Być może trudno w to uwierzyć, lecz okazuje się, że gdy wiemy, jak budować strony
w językach HTML i CSS, dysponujemy już znaczną częścią wiedzy niezbędnej
do efektywnego korzystania z języka JavaScript i tworzenia interaktywnych wi-
tryn WWW. Przykładowo popularna wtyczka Datepicker, należąca do pakietu jQu-
ery UI, ułatwia użytkownikom wybieranie dat na formularzach (na witrynach do
planowania lotów lub wydarzeń i tak dalej). Kiedy użytkownik kliknie specjalnie
oznaczone pole tekstowe, na ekranie zostaje wyświetlony kalendarz (patrz rysunek
4.3). Choć efekt jest naprawdę świetny, a kalendarz bardzo ułatwia wybieranie dat,
jednak język JavaScript odpowiada jedynie za interaktywną stronę całego rozwią-
zania — sam kalendarz powstaje z wykorzystaniem dobrze już znanych kodów
HTML i CSS.

Jeśli dokładnie przeanalizujemy sposób utworzenia tego kalendarza, okaże się, że skła-
dowymi są znaczniki HTML, takie jak <div>, <table> oraz <td> posiadające specy-
ficzne klasy CSS i identyfikatory (takie jak ui-datepicker-month, ui-datepicker-
div i tak dalej). Arkusz stylów wykorzystujący te klasy i identyfikatory określa
kolory, typografię oraz formatowanie kalendarza. Innymi słowy, korzystając z języ-
ków HTML i CSS, moglibyśmy sami utworzyć taki kalendarz. JavaScript sprawia
jedynie, że kalendarz staje się interaktywny, bo zapewnia możliwość wyświetlenia
go w odpowiedzi na kliknięcie pola formularza i ukrycia, gdy użytkownik wybierze
już jakąś datę.

http://Amazon.com

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Modyfikowanie
stron WWW

144

Rysunek 4.3. Projekt jQuery UI
(http://jqueryui.com) udostępnia
bardzo użyteczne komponenty
interfejsu użytkownika, które
można stosować w aplikacjach
internetowych. Przykładowo
wtyczka Datepicker udostępnia
łatwy i przyjazny dla użytkownika
sposób wybierania dat. Poznasz
ją dokładniej na stronie 375

Jednym z możliwych sposobów nowoczesnego wykorzystania języka JavaScript,
zwłaszcza w kontekście projektowania interfejsów użytkownika, jest automatyzacja
tworzenia kodu HTML i stosowania stylów CSS. Na witrynie Amazon.com, przed-
stawionej na rysunku 4.2, kod JavaScript wyświetla animację odtwarzaną, kiedy
użytkownik umieści wskaźnik myszy w obszarze przycisku, jednak najfajniejsza
część całego tego rozwiązania (czyli utworzenie tego okienka) sprowadza się do napi-
sania odpowiedniego kodu HTML i stylów CSS…, a to przecież już umiesz zrobić!

Znaczna część zadań, do jakich będziemy używali JavaScriptu, sprowadza się do mani-
pulowania stronami WWW poprzez dodawanie do nich nowych treści, modyfikację
ich oryginalnego kodu HTML bądź też przypisywanie stylów do wybranych elemen-
tów. Jakakolwiek zmiana zawartości strony — czy to kodu HTML, czy stylów CSS,
taka jak dodanie paska nawigacyjnego z dynamicznym, rozwijanym menu, czy two-
rzenie interaktywnego pokazu slajdów, czy też bardzo proste stopniowe wyświetla-
nie elementu (co zrobiliśmy w ramach przykładu przedstawionego w rozdziale 1.)
— będzie się składała z dwóch podstawowych etapów. Oto one.

 1. Wybranie odpowiedniego elementu strony.

Elementem tym może być dowolny istniejący znacznik; zanim będziemy mogli
coś z nim zrobić, będziemy musieli wybrać go w kodzie JavaScript (jak to zro-
bić, dowiesz się w dalszej części rozdziału). Aby na przykład stopniowo wyświe-
tlić zawartość strony, trzeba ją najpierw wybrać (znacznik <body>); aby z kolei
wyświetlić menu kontekstowe po wskazaniu przycisku myszą, musimy wybrać
ten przycisk. Nawet jeśli chcemy wykonać banalną operację dodania jakiegoś
tekstu na końcu strony, to i tak musimy zacząć od wybrania znacznika, przed
którym lub za którym tekst zostanie dodany.

 2. Wykonanie na tym elemencie pewnych operacji.

No dobrze, „pewne operacje” to niezbyt precyzyjne określenie tego, co należy
zrobić. Jednak ilość potencjalnych zmian, które możemy wprowadzić w celu mo-
dyfikacji wyglądu lub sposobu działania strony, jest praktycznie nieskończona.

http://jqueryui.com
http://Amazon.com

R O Z D Z I AŁ 4 . W P R O W A D Z E N I E D O J Q U E R Y

Zrozumieć DOM

145

Znaczną część tej książki poświęcono przedstawieniu różnych rzeczy, jakie
można robić z elementami stron WWW. Oto kilka przykładów.

 Zmiana właściwości elementu. Podczas animacji położenia elementu <div>
na stronie modyfikowane są współrzędne określające jego położenie.

 Dodawanie nowej zawartości. Jeśli podczas wypełniania formularza użyt-
kownik popełni jakiś błąd, popularnym rozwiązaniem jest wyświetlanie ko-
munikatu o błędzie, takiego jak: „Proszę podać prawidłowy adres e-mail”.
W tym przypadku dodajemy nową zawartość strony, umiejscowioną wzglę-
dem konkretnego pola formularza.

 Usunięcie elementu. Na witrynie Amazon.com, przedstawionej na rysun-
ku 4.2, okienko znika po usunięciu wskaźnika myszy z odnośnika do koszyka.
W tym przypadku program JavaScript usuwa okienko ze strony.

 Pobranie informacji o elemencie. Może się zdarzyć, że będziemy chcieli zdo-
być pewne informacje na temat wybranego znacznika. Aby na przykład spraw-
dzić poprawność informacji podanych w polu tekstowym, konieczne jest wy-
branie tego pola, a następnie pobranie tekstu, który został w nim podany.
Inaczej mówiąc, konieczne jest pobranie wartości konkretnego pola.

 Dodanie lub usunięcie atrybutu class. Czasami będziemy chcieli zmienić
wygląd jakiegoś elementu strony: wyświetlić na niebiesko tekst w wybranym
akapicie lub oznaczyć błędnie wypełnione pole formularza, zmieniając kolor
tła na czerwony. Choć takie wizualne modyfikacje można wprowadzać przy
użyciu kodu JavaScript, jednak niejednokrotnie najprostszym rozwiązaniem
będzie zastosowanie odpowiedniej klasy CSS, a przeglądarka wprowadzi wszel-
kie wizualne zmiany na podstawie kodu CSS zdefiniowanego w arkuszu stylów.
W takim przypadku zmiana koloru tekstu w akapicie na niebieski sprowadza
się do utworzenia odpowiedniej klasy z niebieskim kolorem tekstu i napisania
kodu JavaScript, który dynamicznie użyje tej klasy w wybranym akapicie.

Niejednokrotnie będziemy wykonywali kilka powyższych czynności jednocześnie.
Możemy na przykład upewnić się, że użytkownik nie zapomniał podać w polu
formularza swojego adresu poczty elektronicznej. Jeśli użytkownik spróbuje prze-
słać formularz bez podania tej informacji, będziemy chcieli poinformować go
o tym. Zadanie to może wymagać określenia, czy użytkownik wpisał cokolwiek
w polu formularza (czyli pobrania informacji o konkretnym elemencie strony),
wyświetlenia komunikatu o błędzie (czyli dodania do strony nowej zawartości)
i wyróżnienia pola (poprzez przypisanie mu odpowiedniej klasy).

Pierwszym krokiem jest wybranie odpowiedniego elementu. Aby zrozumieć, jak to
zrobić i jak zmodyfikować fragment strony przy użyciu kodu JavaScript, będziesz
musiał poznać DOM — Document Object Model (model obiektów dokumentu).

Zrozumieć DOM
Kiedy przeglądarka wczyta dokument HTML, wyświetla jego zawartość na ekranie
(oczywiście, po określeniu jego wyglądu na podstawie zastosowanych arkuszy stylów
CSS). Jednak nie jest to jedyna czynność wykonywana przez przeglądarkę i związana
ze znacznikami, ich atrybutami oraz zawartością dokumentu HTML. Oprócz tego

http://Amazon.com

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Zrozumieć DOM

146

przeglądarka tworzy i zapamiętuje „model” danego dokumentu HTML. Innymi sło-
wy, przeglądarka zapamiętuje znaczniki HTML, ich atrybuty oraz kolejność, w jakiej
są zapisane w pliku — ta reprezentacja jest nazywana modelem obiektów doku-
mentu (ang. Document Object Model, w skrócie DOM).

DOM zawiera informacje niezbędne językowi JavaScript do operowania na elemen-
tach strony WWW. Oferuje także narzędzia pozwalające na poruszanie się po za-
wartości strony, modyfikowanie istniejących elementów HTML oraz dodawanie
nowych. Sam DOM nie jest (w zasadzie) związany z językiem JavaScript — stanowi
odrębny standard opracowany przez W3C (ang. World Wide Web Consortium), który
większość producentów przeglądarek zaakceptowała i wykorzystuje w swoich pro-
gramach. DOM pozwala skryptom pisanym w języku JavaScript komunikować się
z kodem HTML strony oraz modyfikować go.

Aby dowiedzieć się, w jaki sposób działa DOM, przeanalizujmy przedstawiony po-
niżej przykład bardzo prostej strony WWW:

<!DOCTYPE HTML>
<html>
<head>
 <meta charset="UTF-8">
 <title>Strona WWW</title>
</head>
<body class="home">
 <h1 id="header">Nagłówek</h1>
 <p>Jakiś ważny tekst.</p>
</body>
</html>

Zarówno na tej, jak i na wszystkich innych stronach WWW jakieś znaczniki HTML
otaczają inne znaczniki — na przykład wewnątrz znacznika <html> umieszczony
jest znacznik <body>, wewnątrz którego z kolei są umieszczone inne znaczniki oraz
treści wyświetlane wewnątrz okna przeglądarki. Wzajemne relacje pomiędzy poszcze-
gólnymi znacznikami można przedstawić za pomocą struktury przypominającej nieco
drzewo genealogiczne (patrz rysunek 4.4). „Korzeniem” tego drzewa jest znacznik
<html> — jest on takim prapradziadkiem wszystkich innych znaczników tworzących
stronę; z kolei pozostałe znaczniki reprezentują „gałęzie” drzewa rodu; przykładem
mogą tu być znaczniki <head> oraz <body>, z których każdy zawiera swój własny
zbiór znaczników.

Przeglądarki, oprócz znaczników HTML, zapamiętują także teksty wyświetlane we-
wnątrz nich (takie jak Nagłówek umieszczony na rysunku 4.4 wewnątrz znacznika
<h1>) oraz atrybuty przypisywane poszczególnym znacznikom (takie jak atrybut
class w znaczniku <body> oraz id w znaczniku <h1> na przykładzie z rysunku 4.4).
W rzeczywistości DOM traktuje te wszystkie znaczniki (nazywane także elemen-
tami), atrybuty i teksty jako odrębne jednostki, nazywane węzłami (ang. node).

JavaScript udostępnia kilka sposobów wybierania elementów strony tak, by później
można było coś z nimi zrobić — na przykład stopniowo ukryć lub przesunąć w inne
miejsce. Metoda document.getElementById() pozwala na pobranie elementu o kon-
kretnym identyfikatorze (podanym w kodzie HTML znacznika). Jeśli zatem na stro-
nie znajduje się znacznik <div> z atrybutem id o wartości banner, można go pobrać
przy użyciu następującego wywołania:

document.getElementById('banner');

R O Z D Z I AŁ 4 . W P R O W A D Z E N I E D O J Q U E R Y

Pobieranie elementów
stron na sposób jQuery

147

Rysunek 4.4. Podstawowa, zagnieżdżona
struktura strony WWW, w której jedne
znaczniki są umieszczane wewnątrz innych,
często jest przedstawiana w formie drzewa.
Znaczniki otaczające inne znaczniki są cza-
sami nazywane przodkami, natomiast umiesz-
czane wewnątrz nich — potomkami

Podobnie metoda document.getElementsByTagName() pobiera każdy egzemplarz
podanego znacznika umieszczony na stronie — na przykład wywołanie document.
getElementsByTagName('a') pobiera wszystkie dostępne na danej stronie znacz-
niki odnośników; dodatkowo niektóre przeglądarki udostępniają także metody po-
zwalające na pobieranie wszystkich elementów posiadających odpowiednią klasę
bądź pobieranie elementów na podstawie reguł CSS.

Nowsze wersje przeglądarek zapewniają możliwość pobierania elementów DOM na
podstawie selektorów CSS. Przykładowo metoda document.getElementsByClass
Name() pobiera wszystkie elementy o tej samej nazwie klasy. Poniższe wywołanie
pozwala pobrać wszystkie elementy klasy author:

document.getElementsByClassName('author');

Nieco bardziej ogólną metodą jest querySelectorAll() — pozwala ona na pobie-
ranie elementów strony przy użyciu dowolnego selektora CSS. Aby na przykład po-
brać jedynie elementy klasy author, należałoby użyć wywołania o postaci:

document.querySelectorAll('span.author');

Jak się przekonasz w następnym podrozdziale, także jQuery korzysta z selektorów
CSS do pobierania elementów HTML, a co więcej, robi to w taki sposób, że można
jej używać niemal we wszystkich przeglądarkach.

Pobieranie elementów stron na sposób jQuery
jQuery udostępnia niezwykle użyteczną technikę pozwalającą na pobieranie ko-
lekcji elementów i operowanie na nich, są to selektory CSS. Jeśli zatem jesteś
przyzwyczajony do określania postaci swoich stron przy użyciu kaskadowych arku-
szy stylów, jesteś także gotów, by rozpocząć korzystanie z jQuery. Selektor CSS jest
jedynie instrukcją informującą przeglądarkę, w których znacznikach należy zasto-
sować dany styl. I tak h1 jest bardzo prostym selektorem elementu, który odnosi się
do wszystkich znaczników <h1>; z kolei .copyright jest selektorem klasy określa-
jącym postać dowolnych znaczników mających atrybut class o wartości copyright:

<p class="copyright">Wszelkie prawa zastrzeżone, 2011</p>

Podczas korzystania z jQuery można pobrać jeden lub większą liczbę elementów,
posługując się specjalnym poleceniem nazywanym obiektem jQuery. Służy do tego
kod o następującej postaci:

$('selektor')

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Pobieranie elementów
stron na sposób jQuery

148

W czasie tworzenia obiektu jQuery można używać niemal wszystkich selektorów
CSS 2.1 oraz wielu selektorów CSS 3 (i to nawet wtedy, gdy nie są one rozumiane
przez samą przeglądarkę — jak to się dzieje w przypadku pewnych selektorów
CSS 3 w przeglądarkach Internet Explorer). Gdy na przykład chcemy pobrać znacznik
o identyfikatorze (atrybucie id) banner, możemy użyć następującego fragmentu
kodu:

$('#banner')

gdzie #banner jest selektorem CSS używanym do określania postaci znacznika, któ-
rego identyfikator ma wartość banner — znak # informuje, że interesuje nas właśnie
atrybut id. Oczywiście, kiedy już pobierzemy jakieś elementy, będziemy chcieli coś
z nimi zrobić — jQuery udostępnia wiele narzędzi pozwalających na przeprowadza-
nie różnego typu operacji na elementach. Załóżmy przykładowo, że chcielibyśmy
zmienić kod HTML umieszczony wewnątrz elementu. Możemy to zrobić w nastę-
pujący sposób:

$('#banner').html('<h1>Byłem tu, JavaScript</h1>');

Znacznie więcej informacji na temat operowania na elementach stron WWW znaj-
dziesz w dalszej części książki, od strony 157. Jednak na początek musisz dowie-
dzieć się czegoś więcej na temat pobierania tych elementów przy użyciu biblioteki
jQuery.

Proste selektory
Proste selektory CSS, takie jak te, które bazują na identyfikatorze elementu, nazwie
klasy lub znacznika, stanowią podstawę kaskadowych arkuszy stylów. Są one do-
skonałym sposobem pobierania szerokiej gamy elementów przy użyciu jQuery.

Ponieważ czytanie informacji o selektorach nie jest najlepszym sposobem ich po-
znawania, zatem do książki dołączona została interaktywna strona WWW pozwa-
lająca na ich testowanie. W przykładach do książki, w katalogu testy znajduje się
plik o nazwie selectors.html. Otwórz go w przeglądarce. Aby przetestować selektor,
wystarczy go wpisać w polu tekstowym Selektor i kliknąć przycisk Zastosuj (patrz
rysunek 4.5).

Uwaga: Więcej informacji na temat przykładów z książki można znaleźć na stronie 46.

Selektory identyfikatorów

Każdy element strony, który ma określony identyfikator (wartość atrybutu id), moż-
na pobrać przy użyciu selektora identyfikatora. Załóżmy, że na stronie WWW znaj-
duje się kod HTML w następującej postaci:

<p id="message">Komunikat specjalny</p>

Aby pobrać taki element przy użyciu biblioteki jQuery, należy użyć następującego
wywołania:

var messagePara = $('#message');

R O Z D Z I AŁ 4 . W P R O W A D Z E N I E D O J Q U E R Y

Pobieranie elementów
stron na sposób jQuery

149

Rysunek 4.5. Plik selectors.html, dostępny w przykładach dołączonych do tej książki, pozwala testować selektory
jQuery. Wystarczy wpisać selektor w polu Selektor (zakreślonym na rysunku) i kliknąć przycisk Zastosuj. Strona
przekształci selektor na obiekt jQuery, a wszystkie pobrane przez niego elementy zostaną wyróżnione na
czerwono. Poniżej pola prezentowany jest kod jQuery zastosowany do pobrania tych elementów oraz ich liczba.
W przedstawionym przykładzie selektorem jest :checked, w związku z czym zostały wyróżnione wszystkie za-
znaczone przyciski opcji i pola wyboru (konkretnie są to dwa pola widoczne w prawym dolnym rogu strony)

Nie wystarczy tu podanie samego identyfikatora elementu ('message') — należy
użyć pełnego selektora CSS ('#message'). Innymi słowy, przed identyfikatorem
elementu należy umieścić znak #, tworząc w ten sposób prawidłowy selektor
identyfikatora CSS.

Selektory elementów

Biblioteka jQuery udostępnia także swój własny zamiennik metody DOM — get
ElementsByTagName (). By z niego skorzystać, wystarczy podać w wywołaniu jQuery
nazwę znacznika. Aby na przykład pobrać wszystkie znaczniki <a> umieszczone
na stronie z wykorzystaniem starej metody DOM, należałoby użyć poniższego
wywołania:

var linksList = document.getElementsByTagName('a');

Po zastosowaniu jQuery analogiczne wywołanie ma następującą postać:
var linksList = $('a');

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Pobieranie elementów
stron na sposób jQuery

150

W I E D Z A W P I G U Ł C E

Zrozumieć CSS
Kaskadowe arkusze stylów są obszernym zagadnieniem

pojawiającym się zawsze w ramach dyskusji o języku

JavaScript. Aby korzyść z czytania tej książki była moż-

liwie największa, konieczna jest przynajmniej pobieżna

znajomość zasad projektowania stron WWW oraz wie-

dza dotycząca kaskadowych arkuszy stylów (CSS) i spo-

sobu ich stosowania. CSS to najważniejsze z narzędzi,

jakim dysponują projektanci stron i którego używają do

tworzenia pięknych witryn; jeśli zatem jeszcze nie znasz

tej technologii, najwyższy czas się jej nauczyć. Znajomość

CSS nie tylko ułatwi korzystanie z biblioteki jQuery, lecz

jednocześnie sprawi, że będziesz w stanie użyć kombi-

nacji CSS i JavaScriptu do tworzenia na swoich stronach

interaktywnych efektów wizualnych.

Jeśli potrzebujesz pomocy, by szybko rozpocząć pracę

z CSS, możesz skorzystać z wielu dostępnych zasobów.

Podstawowe informacje na temat CSS możesz znaleźć na

stronie HTML Dog CSS Tutorials (http://www.htmldog.
com/guides/css/).

Dostępne są na niej samouczki na poziomie podsta-

wowym, średnim oraz zaawansowanym.

Można także kupić egzemplarz książki CSS3. Nieoficjalny

podręcznik. Wydanie III, zawierającej wyczerpującą pre-

zentację CSS (oraz wiele praktycznych przykładów, takich

jak zamieszczone w tej książce).

Jednak podczas korzystania z biblioteki jQuery najważ-

niejsza jest znajomość selektorów CSS — czyli narzędzia

informującego przeglądarkę WWW, w jakich elemen-

tach strony należy zastosować dane reguły CSS. Do tego

celu doskonale nadają się wszystkie publikacje wymienione

w tej ramce. Istnieje także kilka doskonałych stron, na

które można zajrzeć w celu odświeżenia informacji na

temat różnych, dostępnych selektorów:

 http://css.maxdesign.com.au/selectutorial/,

 https://developer.moz lla.org/en-US/docs/

Web/Guide/CSS/Getting_started/Selectors.

Wskazówka: Biblioteka jQuery obsługuje nawet większą liczbę różnego rodzaju selektorów niż te,

które zostały tu przedstawione. W książce opisano wiele przydatnych selektorów jQuery, lecz ich

pełną listę można znaleźć na stronie http://api.jquery.com/category/selectors/.

Selektory klas
Kolejnym przydatnym sposobem pobierania elementów stron jest zastosowanie na-
zwy klasy. Załóżmy, że chcemy utworzyć pasek nawigacyjny z rozwijanym menu
— kiedy użytkownik przesunie wskaźnik myszy nad przyciskiem menu, ma po-
jawić się dodatkowe, rozwijane menu. Do utworzenia i kontroli działania takiego
menu niezbędne jest zastosowanie kodu JavaScript oraz posiadanie możliwości za-
programowania każdego z przycisków paska nawigacyjnego tak, by umieszczenie
na nim wskaźnika myszy powodowało wyświetlenie menu.

Uwaga: Ponieważ pobieranie wszystkich elementów podanej klasy jest bardzo często wykonywa-

ną operacją, zatem najnowsze wersje przeglądarek udostępniają specjalną metodę służącą do tego

celu. Jednak ze względu na to, że nie wszystkie przeglądarki ją obsługują (przykładem jest choćby

Internet Explorer 8 oraz jego wcześniejsze wersje), zastosowanie biblioteki, takiej jak jQuery, uwzględ-

niającej różnice pomiędzy przeglądarkami, jest wprost nieocenione.

Jednym ze sposobów rozwiązania takiego problemu mogłoby być dodanie do każdego
elementu głównego paska nawigacyjnego określonej klasy — na przykład navButton
— oraz zastosowanie skryptu w celu pobrania wyłącznie elementów należących do
danej klasy i wyposażenie ich w całą magię związaną z wyświetlaniem menu. Może
się wydawać, że takie rozwiązanie jest złożone, jednak aktualnie najważniejsze jest
to, że w celu zapewnienia prawidłowego działania paska nawigacyjnego potrzebny
jest jakiś sposób pobrania tylko tych elementów, które należą do konkretnej klasy.

http://www.htmldog.com/guides/css/
http://www.htmldog.com/guides/css/
http://css.maxdesign.com.au/selectutorial/
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Getting_started/Selectors
http://api.jquery.com/category/selectors/

R O Z D Z I AŁ 4 . W P R O W A D Z E N I E D O J Q U E R Y

Pobieranie elementów
stron na sposób jQuery

151

Na szczęście jQuery udostępnia bardzo prosty sposób pobierania wszystkich ele-
mentów należących do klasy o podanej nazwie. Wystarczy w tym celu użyć selektora
klasy CSS, który ma następującą postać:

$('.submenu')

Także w tym przypadku warto zwrócić uwagę, że selektor klasy CSS użyty w wy-
wołaniu jQuery wygląda jak selektor klasy CSS — czyli składa się z nazwy klasy
poprzedzonej kropką. Po pobraniu znaczników można nimi operować przy użyciu
innych możliwości jQuery. Aby na przykład ukryć wszystkie znaczniki należące do
klasy .submenu, można użyć następującego wywołania:

$('.submenu').hide();

Więcej informacji na temat funkcji hide()podano na stronie 212., jednak przykład
ten pokazuje, w jaki sposób używana jest biblioteka jQuery.

Selektory zaawansowane
Biblioteka jQuery pozwala także na stosowanie bardziej zaawansowanych selek-
torów, za pomocą których można precyzyjne wybrać potrzebne elementy. Nie war-
to jednak już teraz ich opanowywać: po przeczytaniu kilku kolejnych rozdziałów
książki i lepszym poznaniu sposobów działania biblioteki jQuery oraz korzystania
z niej w celu modyfikowania stron WWW zechcesz zapewne wrócić do tej części
rozdziału i przyjrzeć się im ponownie.

 Selektory elementów potomnych pozwalają odwołać się do znacznika umiesz-
czonego wewnątrz innego. Przykładowo załóżmy, że utworzyliśmy wypunkto-
waną listę odnośników i znacznikowi nadaliśmy identyfikator navBar —
<ul id= navBar >. Wyrażenie jQuery w postaci $('a') pobierze wszystkie
znaczniki <a> istniejące na stronie. Jeśli jednak chcemy pobrać wyłącznie od-
nośniki umieszczone wewnątrz listy, możemy to zrobić przy użyciu selektora
w następującej postaci:

$('#navBar a')

Także w tym przypadku jest to standardowa postać selektora CSS, który składa
się z selektora, umieszczonego za nim znaku odstępu oraz kolejnego selektora.
Ostatni podany selektor (w tym przypadku jest to a) określa elementy docelowe,
natomiast wszystkie selektory umieszczone na lewo od niego — elementy,
wewnątrz których są umieszczone elementy docelowe.

 Selektory dzieci pozwalają pobierać elementy będące dziećmi innych elemen-
tów. „Dziecko” to bezpośredni element potomny innego elementu; na przykład
w kodzie HTML zobrazowanym na rysunku 4.4 znaczniki <h1> oraz <p> są
dziećmi znacznika <body>, natomiast znacznik nim nie jest (gdyż jest
umieszczony wewnątrz znacznika <p>). Selektor dziecka tworzy się, zapisując
najpierw element rodzica, następnie znak większości (>) i w końcu element
dziecka. Aby na przykład pobrać znaczniki <p> będące dziećmi znacznika <body>,
należałoby użyć wywołania:

$('body > p')

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Pobieranie elementów
stron na sposób jQuery

152

 Selektory elementów sąsiadujących pozwalają pobierać znaczniki, które w kodzie
HTML są umieszczone bezpośrednio za jakimiś innymi znacznikami. Załóżmy
na przykład, że dysponujemy ukrytym panelem, wyświetlanym po kliknięciu
konkretnej zakładki. W kodzie HTML taka zakładka mogłaby być reprezentowana
przez jakiś znacznik nagłówka (na przykład <h2>), natomiast ukryty panel — przez
znacznik <div> umieszczony bezpośrednio za nagłówkiem. Aby wyświetlić taki
znacznik <div> (nasz panel), musimy mieć możliwość pobrania go. Przy użyciu
jQuery oraz selektorów elementów sąsiadujących można to zrobić bardzo łatwo:

$('h2 + div')

Aby utworzyć taki selektor, wystarczy umieścić znak plusa (+) pomiędzy dwoma
selektorami (przy czym mogą to być selektory dowolnego typu: identyfikatora,
klasy bądź elementów). Selektor umieszczony z prawej strony określa elementy,
jakie należy pobrać, przy czym muszą one być poprzedzone elementami pasu-
jącymi do selektora umieszczonego z lewej strony znaku +.

 Selektory atrybutów pozwalają pobierać elementy na podstawie tego, czy po-
siadają konkretne atrybuty, a nawet, czy atrybuty te posiadają ściśle określone
wartości. Korzystając z takiego selektora, można odszukać wszystkie znaczniki
, w których użyto atrybutu alt, a nawet te spośród nich, w których w atry-
bucie alt podano odpowiedni łańcuch znaków. Można także odszukać wszyst-
kie odnośniki, jakie odwołują się do stron spoza naszej witryny, a następnie
dodać do nich kod, który sprawi, że strony te zostaną wyświetlone w nowym
oknie przeglądarki.
Selektor atrybutu jest umieszczany za nazwą elementu, którego atrybuty chcemy
sprawdzać. Aby na przykład znaleźć wszystkie znaczniki , w których został
podany atrybut alt, można użyć następującego wyrażenia:

$('img[alt]')

Istnieje kilka różnych rodzajów selektorów atrybutów. Oto one.
 [atrybut] pobierają elementy, w których kodzie HTML został podany kon-

kretny atrybut; na przykład $('a[href]') znajdzie wszystkie znaczniki <a>,
w których została podana wartość atrybutu href. Używając takiego selektora,
można pominąć wszystkie nazwane odnośniki — <a name= jakiesMiejsce
Strony > — czyli odnośniki używane do poruszania się w obrębie tej
samej strony.

 [atrybut= wartość] pozwalają pobrać elementy, w których konkretny
atrybut ma określoną wartość; na przykład poniższy selektor pozwala pobrać
wszystkie pola tekstowe formularza:
$('input[type="text"]')

Ponieważ niemal wszystkie pola formularzy korzystają z tego samego znacz-
nika — <input> — zatem jedynym sposobem określenia typu pola jest spraw-
dzenie jego atrybutu type (pobieranie pól formularzy na podstawie ich typu
jest operacją wykonywaną tak często, że jQuery udostępnia specjalne selektory
służące właśnie do tego celu, zostały one opisane na stronie 281).

 [atrybut^= wartość] odnajduje elementy, w których wartość określonego
atrybutu rozpoczyna się od podanego ciągu znaków. Aby na przykład znaleźć
wszystkie odnośniki wskazujące strony spoza naszej witryny, można użyć
następującego kodu:

R O Z D Z I AŁ 4 . W P R O W A D Z E N I E D O J Q U E R Y

Pobieranie elementów
stron na sposób jQuery

153

$('a[type^="http://"]')

Należy zwrócić uwagę, że nie cała wartość atrybutu musi pasować do
łańcucha podanego w selektorze, a jedynie jej początek. A zatem selektor
href^= http:// odnajdzie odnośniki wskazujące strony http://www.
google.com, http://helion.pl i tak dalej. Takiego selektora można także użyć
do pobrania wszystkich odnośników służących do wysyłania wiadomości
poczty elektronicznej; oto przykład:
$('a[href^="mailto:"]')

 [atrybut$= wartość] odnajduje elementy, w których wartość określonego
atrybutu kończy się podanym ciągiem znaków, co jest doskonałym sposobem
odnajdywania rozszerzeń plików. Przy użyciu selektora tego typu można od-
szukać wszystkie odnośniki prowadzące do plików PDF (na przykład po to, by
przy użyciu kodu JavaScript dodać do nich ikonę PDF lub automatycznie wy-
generować odnośnik do strony firmy Adobe, z której użytkownik mógłby po-
brać program Acrobat Reader). Selektor pozwalający na pobranie wszystkich
odnośników do plików PDF ma następującą postać:
$('a[href$=".pdf"]')

 [atrybut*= wartość] pozwala pobrać wszystkie elementy, których okre-
ślony atrybut zawiera podany ciąg znaków. Dzięki temu można odszukać na
przykład odnośniki dowolnego typu prowadzące do domeny o określonej na-
zwie. Oto przykładowy selektor pozwalający na pobranie wszystkich odnośni-
ków do strony missingmanuals.com (http://missingmanuals.com):
$('a[href*="missingmanuals.com"]')

Powyższy selektor jest na tyle elastyczny, że pozwala nie tylko na pobieranie
odnośników wskazujących stronę http://www.missingmanuals.com, lecz
także kierujących na strony http://missingmanuals.com bądź http://www.
missingmanuals.com/library.html.

Uwaga: Biblioteka jQuery udostępnia całą grupę selektorów bardzo użytecznych podczas pracy z for-

mularzami. Pozwalają one na pobieranie takich elementów jak pola tekstowe, pola haseł czy też przyciski

opcji. Więcej informacji na ich temat można znaleźć na stronie 281.

Filtry jQuery
Biblioteka jQuery zapewnia także możliwość filtrowania pobieranych elementów na
podstawie ich pewnych cech charakterystycznych. I tak filtr :even pozwala pobrać
każdy parzysty element kolekcji. Oprócz tego można wyszukiwać elementy zawie-
rające podane inne elementy, określony tekst, elementy, które nie są aktualnie wi-
doczne, a nawet elementy niepasujące do podanego selektora. Aby użyć takiego filtra,
za głównym selektorem należy umieścić dwukropek i podać nazwę filtra. Aby na przy-
kład odszukać wszystkie parzyste wiersze tabeli, należałoby użyć następującego se-
lektora jQuery:

$('tr:even')

http://www.google.com
http://helion.pl
http://missingmanuals.com):
http://www.missingmanuals.com
http://missingmanuals.com
http://www.missingmanuals.com/library.html
http://www.google.com
http://www.missingmanuals.com/library.html

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Pobieranie elementów
stron na sposób jQuery

154

Powyższe wywołanie pobiera każdy parzysty znacznik <tr>. Aby dodatkowo zawę-
zić wybór, możemy zażądać pobrania wszystkich parzystych wierszy tabeli należącej
do klasy stripped. Można to zrobić przy użyciu poniższego selektora:

$('.stripped tr:even')

Oto sposób, w jaki działają filtry, w tym także przedstawiony powyżej filtr :even.

 Filtry :even oraz :odd pobierają co drugi element z grupy. Filtry te działają nieco
wbrew temu, co podpowiada intuicja; trzeba jednak pamiętać, że kolekcja ele-
mentów pobranych przez jQuery jest listą wszystkich elementów strony pasują-
cych do podanego selektora. Pod tym względem przypominają one nieco tablice
(opisane na stronie 77). Każdy element pobrany przez jQuery ma swój indeks,
a trzeba pamiętać, że numeracja indeksów tablic w języku JavaScript zaczyna się
od zera (patrz strona 79). A zatem, ponieważ filtr odrzuca każdy parzysty ele-
ment kolekcji (0., 2., 4. i tak dalej), zatem w efekcie zwrócony zostanie ele-
ment pierwszy, trzeci i tak dalej. Innymi słowy, filtr ten pobiera nieparzyste
elementy kolekcji. Filtr :odd działa na tej samej zasadzie, przy czym odrzuca
elementy nieparzyste (1., 3., 5. i tak dalej).

 Filtry :first oraz :last zwracają odpowiednio pierwszy i ostatni element z grupy.
Aby na przykład pobrać pierwszy akapit strony, należy użyć następującego
wywołania:

$('p:first');

Z kolei poniżej przedstawiono wywołanie pozwalające na pobranie ostatniego
akapitu:

$('p:last');

 Filtra :not() można użyć, by odszukać elementy, które nie pasują do poda-
nego selektora. Załóżmy na przykład, że chcemy pobrać wszystkie znaczniki
<a> z wyjątkiem tych, które należą do klasy navButton. Oto sposób, w jaki
można to zrobić:

$('a:not(.navButton)');

W wywołaniu funkcji :not() przekazywany jest selektor, który chcemy igno-
rować. Użyty w powyższym przykładzie .navButton jest selektorem klasy, a za-
tem należy go zrozumieć tak: „elementy, które nie należą do klasy .navButton”.
Filtra :not() można używać wraz z większością innych filtrów jQuery oraz
przeważającą liczbą jej selektorów; a zatem, by odszukać wszystkie odnośniki, któ-
rych adresy nie zaczynają się od http://, można użyć następującego wywołania:

$('a:not([href^="http://"])')

 Filtr :has() zwraca wszystkie elementy zawierające inny, podany selektor.
Załóżmy, że interesują nas wszystkie znaczniki , jednak wyłącznie wtedy,
gdy wewnątrz nich umieszczony jest znacznik <a>. W tym celu możemy użyć
następującego wywołania:

$('li:has(a)');

Takie rozwiązanie różni się znacząco od selektora elementów potomnych, gdyż
pozwala pobrać nie elementy <a>, lecz elementy zawierające wewnątrz ja-
kieś odnośniki.

R O Z D Z I AŁ 4 . W P R O W A D Z E N I E D O J Q U E R Y

Pobieranie elementów
stron na sposób jQuery

155

 Filtr :contains() zwraca wszystkie elementy zawierające podany tekst. Przy-
kładowo poniższe wywołanie pozwala zwrócić wszystkie odnośniki z napisem
Kliknij mnie!:

$('a:contains(Kliknij mnie!)');

 Filtr :hidden() odnajduje elementy ukryte, czyli takie, których właściwość
display CSS ma wartość none (co oznacza, że nie są one wyświetlane na stronie),
elementy ukryte przy użyciu funkcji hide() (opisanej dokładniej na stronie 212),
elementy o wysokości lub szerokości wynoszącej zero oraz ukryte pola formularzy.
(Filtr ten nie zwraca elementów, których właściwość visibility CSS ma war-
tość invisible). Przykładowo załóżmy, że ukryliśmy kilka elementów <div>.
Oto sposób, w jaki przy użyciu jQuery można je pobrać i ponownie wyświetlić:

$('div:hidden').show();

Powyższe wywołanie nie spowoduje żadnych zmian w znacznikach <div>, które
w momencie wywoływania są widoczne. (Więcej informacji na temat funkcji
show() można znaleźć na stronie 212).

 Filtr :visible jest przeciwieństwem filtra :hidden. Zwraca on wszystkie wi-
doczne elementy strony.

Zrozumienie kolekcji jQuery
Wybierając elementy strony przy użyciu obiektu jQuery — na przykład: $('navBar
a') — nie otrzymujemy w efekcie tradycyjnej listy węzłów DOM, takich jak zwra-
cane przez metody getElementById() lub getElementsByTagName(). Zamiast tego
zwracana jest specjalna, charakterystyczna dla biblioteki jQuery kolekcja elemen-
tów. Do elementów tych nie możesz wykorzystać tradycyjnych metod DOM, a za-
tem, jeśli już poznałeś metody DOM, czytając inną książkę, okaże się, że żadnej
z nich nie będziesz mógł w bezpośredni sposób zastosować do elementów zwraca-
nych przez wywołanie jQuery. Można uznać, że jest to ogromna wada biblioteki.
Jednak okazuje się, że jQuery dysponuje odpowiednikami niemal wszystkich wła-
ściwości i metod DOM. Oznacza to, że można z nimi zrobić to wszystko, co przy
użyciu tradycyjnych technik DOM, lecz szybciej, wygodniej i z wykorzystaniem
krótszego kodu.

Niemniej jednak istnieją dwie, kluczowe, pojęciowe różnice pomiędzy działaniem
kolekcji DOM i kolekcji jQuery. Biblioteka jQuery została napisana po to, by uła-
twiać pisanie kodu JavaScript i skracać czas pisania aplikacji w tym języku. Jednym
z jej podstawowych celów jest zapewnienie możliwości wykonywania wielu złożo-
nych operacji przy użyciu możliwie krótkiego kodu. By tak się działo, jQuery używa
dwóch, niezwykłych zasad: automatycznych pętli oraz łańcuchów wywołań funkcji.

Automatyczne pętle
Podczas korzystania ze standardowych metod DOM dysponujemy zazwyczaj grupą
elementów strony, a następnie musimy utworzyć pętlę (patrz strona 109), by po-
brać każdy z wybranych wcześniej węzłów i coś z nim zrobić. Jeśli na przykład
chcemy pobrać wszystkie obrazki na stronie, a następnie je ukryć — a takie rozwią-
zanie może być niezbędne w przypadku tworzenia interaktywnego pokazu slajdów
— najpierw należy pobrać obrazki, a następnie utworzyć pętlę, która je ukryje.

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Pobieranie elementów
stron na sposób jQuery

156

Ponieważ przetwarzanie elementów kolekcji w pętli jest tak często realizowaną
czynnością, została ona wbudowana w funkcje biblioteki jQuery. Innymi słowy, wy-
konując jakąś funkcję jQuery na grupie elementów, nie musimy jawnie tworzyć pętli,
gdyż funkcja wykona ją automatycznie.

Aby na przykład pobrać wszystkie obrazki umieszczone wewnątrz znacznika <div>
o identyfikatorze slideshow, a następnie je ukryć, wystarczy wykonać następujące
wywołanie jQuery:

$('#slideshow img').hide();

Kolekcja znaczników pobranych przez wywołanie $('#slideshow img') może
liczyć na przykład 50 elementów. Funkcja hide() automatycznie pobierze każdy
z nich i go ukryje. Rozwiązanie to jest tak wygodne (wystarczy sobie wyobrazić, jak
wielu pętli for nie musimy pisać), że aż dziwi, dlaczego nie zostało wbudowane
w JavaScript.

Łańcuchy wywołań funkcji

Czasami może się zdarzyć, że na kolekcji elementów będziemy chcieli wykonać se-
kwencję kilku różnych czynności. Załóżmy, że z poziomu kodu JavaScript chcemy
określić szerokość i wysokość znacznika <div> (o identyfikatorze popUp). Normalnie
musielibyśmy do tego celu użyć przynajmniej dwóch wierszy kodu. Gdy jednak za-
stosujemy bibliotekę jQuery, wystarczy tylko jeden:

$('#popUp').width(300).height(300);

Biblioteka jQuery korzysta z rozwiązania nazywanego łańcuchami wywołań, które
pozwala zapisywać kilka wywołań funkcji jQuery jedno bezpośrednio za drugim.
Wywołanie każdej funkcji jest połączone z następnym przy użyciu kropki (.), a każda
funkcja operuje na tej samej kolekcji elementów, co poprzednia. A zatem powyższe
wywołanie najpierw zmienia szerokość elementu o identyfikatorze popUp, a następ-
nie jego wysokość. Możliwość takiego łączenia wywołań pozwala na świadome wy-
konanie liczby operacji. Załóżmy, że chcemy nie tylko zmienić szerokość i wysokość
znacznika <div>, lecz także umieścić wewnątrz niego jakiś tekst i stopniowo wy-
świetlić go na stronie (przy założeniu, że aktualnie nie jest widoczny). Możemy to
zrobić przy użyciu poniższego, zwięzłego kodu:

$('#popUp').width(300).height(300).text('Siema!').fadeIn(1000);

Kod ten wywołuje cztery funkcje jQuery — width(), height(), text() oraz fadeIn()
— przy czym każda z nich modyfikuje elementy o identyfikatorze popUp.

Wskazówka: Długie sekwencje wywołań funkcji jQuery mogą być mało czytelne, dlatego też wielu

programistów zapisuje je w osobnych wierszach:

 $('#popUp').width(300)
 .height(300)
 .text('Siema!')
 .fadeIn(1000);

Jeśli tylko średnik zostanie umieszczony wyłącznie za ostatnim wywołaniem, interpreter JavaScrip-

tu potraktuje taki kod jak jedną instrukcję.

R O Z D Z I AŁ 4 . W P R O W A D Z E N I E D O J Q U E R Y

Dodawanie treści do stron

157

Możliwość łączenia wywołań funkcji w łańcuch jest cechą biblioteki jQuery, in-
nymi słowy, w takiej sekwencji nie można używać ani funkcji pisanych samodziel-
nie, ani wbudowanych funkcji języka JavaScript, a przynajmniej nie bez samodziel-
nego zapewnienia takich możliwości.

Dodawanie treści do stron
Biblioteka jQuery udostępnia wiele funkcji służących do wykonywania operacji na
elementach oraz zawartości stron WWW, zaczynając od prostych operacji podmiany
fragmentów kodu HTML, przez precyzyjne umiejscawianie jednych elementów
w zależności od pozostałych, a na całkowitym usuwaniu znaczników i treści strony
kończąc.

Uwaga: Przykładowy plik content_functions.html umieszczony w przykładach do książki, w katalogu

testy, pozwala przetestować działanie każdej z tych funkcji. Aby przekonać się, jak one działają,

wystarczy wyświetlić ten plik w przeglądarce, wpisać dowolny tekst w polu formularza i kliknąć dowolny

z umieszczonych na stronie prostokątów.

Aby przeanalizować zamieszczone w dalszej części rozdziału przykłady tych funkcji,
załóżmy, że dysponujemy stroną zawierającą następujący fragment kodu HTML:

<div id="container">
 <div id="errors">
 <h2>Błędy:</h2>
 </div>
</div>

Poniżej przedstawiono pięć najbardziej użytecznych funkcji do operowania na
zawartości stron.

 Funkcja .html() może zarówno odczytać cały kod HTML umieszczony we-
wnątrz określonego elementu, jak i go zastąpić. Jest używana wraz z wywołaniem
jQuery pobierającym jakieś elementy strony.

Aby pobrać kod HTML umieszczony wewnątrz wybranego elementu, należy
umieścić wywołanie funkcji .html() tuż za selektorem jQuery. I tak przy zało-
żeniu, że na stronie będzie się znajdował przedstawiony powyżej fragment kodu,
moglibyśmy użyć następującego wywołania:

alert($('#errors').html());

Wywołanie to wyświetli okienko informacyjne JavaScript zawierające następu-
jący łańcuch znaków: <h2>Błędy:</h2> . Podczas korzystania z tej funkcji
w taki sposób można skopiować kod HTML umieszczony wewnątrz konkret-
nego elementu i wkleić go wewnątrz innego elementu.

Jeśli w wywołaniu funkcji .html() podamy jakiś łańcuch znaków, zostanie on
użyty jako zamiennik aktualnej zawartości elementu:

$('#errors').html('<p>W formularzu odnaleziono cztery błędy.</p>');

Powyższe wywołanie spowoduje zmianę kodu HTML umieszczonego wewnątrz
elementu o identyfikatorze errors. Po wykonaniu wywołania przedstawiony
wcześniej fragment kodu HTML przyjmie następującą postać:

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Dodawanie treści do stron

158

<div id="container">
 <div id="errors">
 <p>W formularzu odnaleziono cztery błędy.</p>
 </div>
</div>

Warto zwrócić uwagę, że usunięte zostały także znaczniki <h2>, umieszczone
wewnątrz elementu o identyfikatorze errors. Dzięki zastosowaniu innych spo-
śród wymienionych niżej funkcji jQuery można uniknąć zmieniania całego
kodu HTML.

Uwaga: W przypadku użycia funkcji html() lub text() do pobrania kodu HTML lub tekstu z kolekcji

jQuery zawierającej większą liczbę elementów, kod HTML lub tekst zostanie pobrany wyłącznie

z pierwszego elementu. Jeśli na przykład strona zawiera 10 znaczników <div> i zostanie wykonany kod

var divContents = $('div').html(), to w zmiennej divContents zostanie zapisana wyłącznie

zawartość pierwszego elementu <div>.

Jednak podczas użycia tych samych funkcji, czyli html() i text(), do wstawiania odpowiednio kodu

HTML lub tekstu do kolekcji jQuery zmodyfikowane zostaną wszystkie jej elementy. Przykładowo kod

$('div').html('<p>Witaj, świecie!</p>');, spowoduje dodanie akapitu z tekstem "Witaj,

świecie!" do każdego elementu <div> na stronie.

 Funkcja .text() działa podobnie jak funkcja .html(), jednak nie akceptuje
znaczników HTML. Jest przydatna, gdy chcemy zamienić tekst umieszczony
wewnątrz znacznika. Przykładowo we fragmencie kodu umieszczonym na po-
czątku tego podrozdziału znajduje się znacznik <h2> zawierający słowo Błędy: .
Załóżmy, że po uruchomieniu programu w celu sprawdzenia, czy w formularzu
nie ma już żadnych błędów, chcemy zmienić tekst umieszczony w tym nagłówku
na: Nie znaleziono błędów! . Możemy to zrobić przy użyciu następującego
wywołania:

$('#errors h2').text('Nie znaleziono błędów!');

W efekcie znacznik <h2> pozostanie w dotychczasowej postaci — zmieni się je-
dynie umieszczony wewnątrz niego tekst. jQuery koduje wszystkie znaczniki
umieszczone w łańcuchu przekazywanym w wywołaniu funkcji .text(), na
przykład <p> zostanie przekształcony na <p>. Może się to przydać, gdy
będziemy chcieli wyświetlić nawiasy kątowe i znaczniki w tekście na stronie.
Funkcji tej można używać do wyświetlania na stronie fragmentów kodu HTML,
tak by użytkownicy mogli je przeanalizować.

 Funkcja .append() dodaje przekazany w jej wywołaniu kod HTML jako ostatni
element potomny wybranego wcześniej elementu. Załóżmy, że wybraliśmy wcze-
śniej znacznik <div>, lecz zamiast zmieniać jego zawartość, chcemy na jej koń-
cu, tuż przed zamykającym znacznikiem </div>, coś dodać. Funkcja .append()
jest doskonałym sposobem dodawania nowych punktów na końcach list upo-
rządkowanych () lub wypunktowanych (). W ramach przykładu załóżmy,
że na stronie zawierającej fragment kodu HTML przedstawiony na początku te-
go podrozdziału wykonaliśmy poniższe wywołanie:

$('#errors').append('<p>W formularzu znaleziono cztery błędy.</p>');

Po wykonaniu tej instrukcji kod HTML strony będzie mieć następującą postać:

R O Z D Z I AŁ 4 . W P R O W A D Z E N I E D O J Q U E R Y

Dodawanie treści do stron

159

<div id="container">
 <div id="errors">
 <h2>Błędy:</h2>
 <p>W formularzu znaleziono cztery błędy.</p>
 </div>
</div>

Należy zwrócić uwagę, że początkowy kod umieszczony wewnątrz znacznika
<div> nie uległ zmianie, a nowy fragment kodu HTML został dodany bezpo-
średnio za nim.

 Funkcja .prepend() działa podobnie do .append(), ale powoduje dodanie prze-
kazanego kodu HTML bezpośrednio za otwierającym znacznikiem wybranego
elementu. Przykładowo załóżmy, że na tej samej stronie, co wcześniej, chcemy
wykonać poniższą instrukcję:

$('#errors').prepend('<p>W formularzu znaleziono cztery błędy.</p>');

W efekcie kod strony przyjmie następującą postać:
<div id="container">
 <div id="errors">
 <p>W formularzu znaleziono cztery błędy.</p>
 <h2>Błędy:</h2>
 </div>
</div>

Nowa treść została umieszczona bezpośrednio za otwierającym znacznikiem
<div>.

 Jeśli chcemy dodać nowy kod HTML poza wybranym elementem, bądź to przed
jego znacznikiem otwierającym, bądź bezpośrednio za znacznikiem zamykają-
cym, możemy w tym celu użyć funkcji .before() oraz .after(). Często spotyka
się rozwiązanie polegające na sprawdzaniu zawartości pola formularza, by przed
jego przesłaniem zweryfikować, czy pole nie jest puste. Załóżmy, że kod HTML
pola formularza ma następującą postać:

<input type="text" name="userName" id="userName">

A teraz załóżmy, że w momencie wysyłania formularza to pole będzie puste.
Możemy napisać program, który je sprawdzi i doda za nim komunikat o błędzie.
Aby dodać komunikat za polem (na razie nie będziemy zaprzątać sobie głowy,
jak można sprawdzić, czy zawartość pola formularza jest prawidłowa — te in-
formacje znajdziesz na stronie 299), można użyć funkcji .after():

$('#userName').after('Nazwa użytkownika jest
wymagana');

Powyższa instrukcja sprawi, że na stronie pojawi się komunikat o błędzie, a jej
kod będzie teraz wyglądał tak:

<input type="text" name="userName" id="userName">
Nazwa użytkownika jest wymagana

Funkcja .before() umieszcza przekazany kod HTML przed wybranym ele-
mentem. A zatem poniższy wiersz kodu:

$('#userName').before('Nazwa użytkownika jest
wymagana');

wygeneruje następujący fragment kodu HTML:
Nazwa użytkownika jest wymagana
<input type="text" name="userName" id="userName">

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Ustawianie i odczyt
atrybutów znaczników

160

Uwaga: Funkcje opisane w tym podrozdziale — html(), text() i tak dalej — są najczęściej używanym

sposobem dodawania i modyfikowania zawartości stron WWW; jednak istnieją także inne. Pełne zesta-

wienie funkcji jQuery służących do manipulowania kodem HTML i zawartością stron WWW można zna-

leźć na stronie http://api jquery.com/category/manipulation/.

Zastępowanie i usuwanie wybranych elementów
Może się zdarzyć, że będziemy chcieli całkowicie zastąpić lub usunąć wybrane ele-
menty. Wyobraźmy sobie, że korzystając z JavaScriptu, utworzyliśmy pojawiające
się okienko dialogowe (nie takie proste okienko tworzone przez funkcję alert(),
lecz profesjonalnie wyglądające okno będące w rzeczywistości bezwzględnie umiej-
scowionym znacznikiem <div>, wyświetlonym na stronie). Kiedy użytkownik klik-
nie przycisk Zamknij, chcemy, by okienko zostało usunięte ze strony. Do tego celu
możemy użyć funkcji jQuery o nazwie .remove(). Załóżmy, że znacznik <div> za-
wierający całe okienko ma identyfikator popup. W takim przypadku możemy usunąć
okienko, używając następującego wywołania:

$('#popup').remove();

Możliwości funkcji .remove() nie ograniczają się do usuwania pojedynczych ele-
mentów. Równie dobrze można przy jej użyciu usunąć wszystkie znaczniki
należące do klasy error. Wystarczy skorzystać z następującego wywołania:

$('span.error').remove();

Dodatkowo mamy także możliwość całkowitego zastąpienia wybranych elementów
zupełnie nową zawartością. Załóżmy, że dysponujemy stroną ze zdjęciami produk-
tów oferowanych przez naszą firmę. Kiedy użytkownik kliknie zdjęcie produktu, zo-
staje on dodany do koszyka. Załóżmy też, że chcemy, by po kliknięciu obrazka znacz-
nik został zastąpiony jakimś tekstem (takim jak Dodano do koszyka.).
W następnym rozdziale dowiesz się, jak sprawić, by konkretne elementy reagowały
na zdarzenia (takie jak kliknięcie obrazka), na razie jednak przyjmijmy, że na stro-
nie istnieje znacznik o identyfikatorze product101, który chcemy zamienić na
tekst. Oto sposób, w jaki możemy to zrobić za pomocą biblioteki jQuery:

$('#product101').replaceWith('<p>Dodano do koszyka.</p>');

Powyższe wywołanie usuwa ze strony znacznik i zastępuje go znacznikiem <p>.

Uwaga: Biblioteka jQuery udostępnia także funkcję clone(), pozwalającą na zrobienie kopii wy-

branego elementu. Będziesz miał okazję przekonać się, jak działa, w przykładzie rozpoczynającym

się na stronie 174.

Ustawianie i odczyt atrybutów znaczników
Dodawanie, usuwanie oraz modyfikowanie elementów strony to nie jedyne opera-
cje, które z powodzeniem można wykonywać przy użyciu biblioteki jQuery; nie są
to także jedyne czynności, które będziemy chcieli wykonywać na pobranych ele-
mentach. Bardzo często będziemy modyfikować wartości atrybutów elementów —
na przykład dodawać do elementu nazwę klasy lub zmieniać jakąś właściwość CSS
— a także pobierać wartości atrybutów przykładowo po to, by sprawdzić, na jaką
stronę prowadzi konkretny odnośnik.

http://api.jquery.com/category/manipulation/

R O Z D Z I AŁ 4 . W P R O W A D Z E N I E D O J Q U E R Y

Ustawianie i odczyt
atrybutów znaczników

161

U W A G A ! W Y S O C E U Ż Y T E C Z N E N A R Z Ę D Z I A !

Problemy z podglądem źródła strony
Jednym z problemów spotykanych podczas korzystania
z kodu JavaScript do manipulowania standardem DOM
w celu dodawania, zmieniania, usuwania i reorganizo-
wania elementów HTML są trudności, jakich nastręcza
wyświetlenie kodu HTML po zakończeniu działania skryp-
tu. Przykładowo polecenie Pokaż źródło, dostępne we
wszystkich przeglądarkach, pokazuje jedynie kod HTML
strony w takiej postaci, w jakiej został pobrany z serwera.
Innymi słowy, pokazuje, jaki był kod HTML przed wpro-
wadzeniem zmian przez skrypt. To w bardzo dużym
stopniu utrudnia określenie, czy nasz skrypt generuje
kod HTML w zamierzonej postaci. Gdybyśmy na przykład
mogli oglądnąć kod HTML strony po programowym do-
daniu do niego dziesięciu komunikatów o błędach odnale-
zionych w formularzu lub po utworzeniu rozbudowanego
okna dialogowego z formularzem, znacznie ułatwiłoby
to sprawdzenie, czy generowany kod HTML ma taką
postać, jaką planowaliśmy.

Na szczęście wszystkie nowoczesne przeglądarki udo-
stępniają zestaw narzędzi dla programistów, z których
można skorzystać w celu przeanalizowania wyświetla-
nego kodu HTML — czyli kodu, który przeglądarka wy-
świetli po zakończeniu wykonywania skryptu. Zazwyczaj
narzędzia te są prezentowane jako osobny panel umiesz-
czony u dołu okna przeglądarki, poniżej wyświetlanej
strony. Różne karty pozwalają na dostęp do kodów
JavaScript, HTML, CSS oraz innych, przydatnych zaso-
bów. Konkretne nazwy poszczególnych kart oraz me-
tody wyświetlania tych narzędzi różnią się w poszcze-
gólnych przeglądarkach.

 W przeglądarce Chrome należy kliknąć przycisk
Dostosowywanie i kontrolowanie Google Chrom,
a następnie wybrać opcję Więcej narzędzi/Narzędzia
dla programistów. W wyświetlonym u dołu okna
panelu trzeba kliknąć przycisk Elements.

 W przeglądarce Firefox należy kliknąć przycisk
Otwórz menu, a następnie ikonę Narzędzia i wy-
brać opcję Inspektor. Spowoduje to wyświetlenie
u dołu okna panelu prezentującego kod HTML
strony zmodyfikowany (lub, jak kto woli, zainfe-
kowany) przez JavaScript.

 W przeglądarce Internet Explorer trzeba nacisnąć
klawisz F12, co spowoduje wyświetlenie panelu Na-
rzędzia Deweloperskie. W przeglądarce IE na karcie
HTML początkowo wyświetlany jest kod HTML stro-
ny pobrany z serwera (czyli ten sam, który można
zobaczyć, wybierając opcję Pokaż źródło). Jednak
po kliknięciu ikony odświeżenia strony (lub naci-
śnięciu klawisza F5) na karcie zostanie wyświetlony
kod HTML, zawierający także wszelkie zmiany wpro-
wadzone przez kod JavaScript.

 W przeglądarce Safari należy upewnić się, że jest
wyświetlone menu Programowanie (kliknij przycisk
koła zębatego, wybierz opcję Preferencje, kliknij
przycisk Zaawansowane i upewnij się, że jest za-
znaczone pole wyboru Pokazuj menu Programo-
wanie w pasku menu). Teraz wystarczy otworzyć
wybraną stronę, wybrać z menu głównego opcję
Programowanie/Pokaż Inspektora www i w wyświe-
tlonym u dołu okna panelu kliknąć przycisk Elements.

 W przeglądarce Opera należy wybrać z menu
głównego opcję Narzędzia/Zaawansowne/Opera
Dragonfly. (Dragonfly to wbudowany w tę prze-
glądarkę zestaw narzędzi dla programistów). W pa-
nelu wyświetlonym u dołu okna przeglądarki trzeba
kliknąć kartę Dokumenty.

Klasy
Kaskadowe arkusze stylów są technologią o bardzo dużych możliwościach, pozwa-
lającą na stosowanie wyszukanych sposobów wizualnego formatowania kodu HTML.
Jedna reguła CSS może dodać do strony kolorowe tło, a inna — całkowicie ukryć wy-
brany element. Istnieje możliwość tworzenia zaawansowanych efektów wizualnych
już poprzez samo usuwanie, dodawanie i zmienianie klas stosowanych w ele-
mentach strony przy użyciu kodu JavaScript. Ponieważ przeglądarki WWW po-
trafią bardzo szybko i wydajnie przetwarzać oraz stosować reguły CSS, zatem już
samo dodanie klasy do znacznika może spowodować całkowitą zmianę jego wyglądu,
a nawet go ukryć.

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Ustawianie i odczyt
atrybutów znaczników

162

Biblioteka jQuery udostępnia kilka funkcji służących do manipulowania nazwami
klas w znacznikach HTML. Oto one.

 Funkcja addClass() dodaje do elementu podaną nazwę klasy. Funkcja ta wy-
woływana jest po wykonaniu selekcji elementów, a przekazywany do niej łań-
cuch znaków reprezentuje dodawaną nazwę klasy. Aby na przykład dodać klasę
externalLink do wszystkich odnośników wskazujących stronę nienależącą do
naszej witryny, można użyć następującego wywołania jQuery:

$('a[href^="http://"]').addClass('externalLink');

Takie wywołanie przekształci poniższy znacznik:

do następującej postaci:

Aby ta funkcja była do czegokolwiek przydatna, przed jej użyciem trzeba
zdefiniować odpowiednie style i dodać je do arkusza stylów używanych na stro-
nie. Dzięki temu, kiedy kod JavaScript doda do znacznika nazwę klasy, przeglą-
darka będzie w stanie zastosować właściwości zdefiniowane w regule CSS.

Uwaga: W wywołaniach funkcji addClass() oraz removeClass() podawana jest sama nazwa klasy

— należy przy tym pominąć kropkę zapisywaną przed tą nazwą w selektorach CSS. Przykładowo

wywołanie addClass('externalLink') jest prawidłowe, natomiast addClass('.externalLink')

już nie.

Funkcja działa prawidłowo także w sytuacji, gdy w znaczniku jest już podana
nazwa innej klasy — nie usuwa ona nazw klas już używanych w znaczniku, a je-
dynie dodaje do nich nową.

Uwaga: Dodawanie wielu nazw klas do jednego znacznika jest całkowicie poprawne, a niejedno-

krotnie stanowi bardzo wygodne rozwiązanie. Więcej informacji na temat tej techniki można zna-

leźć na stronie http://www.cvwdesign.com/txp/article/177/use-more-than-one-css-class.

 Funkcja removeClass() działa odwrotnie do addClass(). Usuwa podaną na-
zwę klasy z wybranych elementów. Aby na przykład usunąć klasę highlight ze
znacznika <div> o identyfikatorze alertBox, można to zrobić przy użyciu na-
stępującego wywołania:

$('#alertBox').removeClass('highlight');

 Może się także zdarzyć, że będziemy chcieli przełączać wykorzystanie konkret-
nej klasy — czyli dodawać ją, jeśli nie jest używana, oraz usuwać, jeśli jest.
Przełączanie jest bardzo popularnym sposobem prezentowania elementu na-
przemiennie w stanie włączonym i wyłączonym. Kiedy na przykład klikniemy
pole wyboru, zostanie on zaznaczony (włączony), a kiedy klikniemy go po raz
drugi — zaznaczenie zniknie (przycisk zostanie wyłączony).

Załóżmy, że na stronie WWW dostępny jest przycisk, którego kliknięcie powo-
duje zmianę klasy używanej w znaczniku <body>. Dzięki temu można całkowi-
cie zmienić wygląd strony, przygotowując drugi zestaw stylów wykorzystujących
selektory elementów potomnych. Ponowne kliknięcie przycisku spowoduje usu-
nięcie klasy ze znacznika <body>, zatem strona zostanie przywrócona do po-
czątkowego wyglądu. Na potrzeby tego przykładu załóżmy, że przycisk, który

http://helion.pl/
http://helion.pl/
http://www.cvwdesign.com/txp/article/177/use-more-than-one-css-class

R O Z D Z I AŁ 4 . W P R O W A D Z E N I E D O J Q U E R Y

Ustawianie i odczyt
atrybutów znaczników

163

użytkownik klika, by zmienić wygląd strony, ma identyfikator changeStyle i bę-
dzie przełączał klasę o nazwie altStyle. Oto kod, który zapewni takie działa-
nie strony:

$('#changeStyle').click(function() {
 $('body').toggleClass('altStyle');
});

Aktualnie nie będziemy zaprzątać sobie głowy pierwszym oraz ostatnim wier-
szem powyższego kodu — mają one związek ze zdarzeniami pozwalającymi skryp-
towi reagować na czynności wykonywane przez użytkownika na stronie — takie
jak klikanie przycisku. Funkcja toggleClass() została zastosowana w wierszu
wyróżnionym pogrubioną czcionką; w odpowiedzi na kolejne kliknięcia przycisku,
naprzemiennie, dodaje ona oraz usuwa z elementu podaną klasę.

Odczyt i modyfikacja właściwości CSS
Funkcja css() biblioteki jQuery pozwala na wprowadzanie bezpośrednich zmian we
właściwościach CSS elementów. A zatem zamiast dodawania do elementu klas mo-
żemy dodać do niego obramowanie określonego koloru, określić jego szerokość lub
położenie. Funkcji css() można używać na trzy sposoby: aby pobrać aktualną war-
tość właściwości CSS elementu, aby podać wartość konkretnej właściwości CSS
oraz by w jednym wywołaniu podać wartości wielu właściwości CSS.

W celu odczytania bieżącej wartości właściwości CSS należy podać jej nazwę w wy-
wołaniu funkcji. Załóżmy na przykład, że interesuje nas kolor tła znacznika <div>
o identyfikatorze main:

var bgColor = $('#main').css('background-color');

Po wykonaniu powyższej instrukcji zmienna bgColor będzie zawierać łańcuch zna-
ków stanowiący wartość koloru tła wskazanego elementu.

Uwaga: Może się zdarzyć, że wartości właściwości CSS zwracane przez jQuery nie będą zgodne z na-

szymi oczekiwaniami. W przypadku kolorów (takich jak kolor tła czy kolor tekstu) jQuery zawsze

zwraca wartość RGB w postaci rgb(255,0,10) bądź też, jeśli w kolorze został określony poziom

przezroczystości, zwraca wartość RGBA w postaci rgba(255,10,10,.5). jQuery zwraca wartości

RGB niezależnie od tego, czy w arkuszu stylów kolor został podany przy użyciu zapisu szesnastko-

wego (#F4477A), jako wartość RGB używająca wartości procentowych (rgb(100%,10%,0%)), czy też

za pomocą zapisu HSL (hsl(72,100%,50%)). Dodatkowo jQuery przekształca wszystkie jednostki na

piksele; a zatem, nawet jeśli w regule stylu określiliśmy wielkość czcionki elementu <body>, przypi-

sując jej wartość 150%, to w przypadku odczytu właściwości font-size jQuery zwróci wartość wy-

rażoną w pikselach.

Funkcja css() pozwala także ustawiać wartość właściwości CSS wybranego elementu.
Aby użyć jej w taki sposób, należy przekazać w jej wywołaniu dwa argumenty: nazwę
ustawianej właściwości CSS oraz jej wartość. Aby na przykład ustawić wielkość
czcionki elementu <body> na 200%, należałoby użyć następującego wywołania:

$('body').css('font-size', '200%');

Drugi z podawanych argumentów może być wartością łańcuchową, taką jak
'200%', bądź liczbową, którą jQuery przekształci na wartość wyrażoną w pikselach.

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Ustawianie i odczyt
atrybutów znaczników

164

Aby zmienić wielkość wypełnienia wszystkich znaczników należących do klasy
pullquote na 100 pikseli, można użyć następującego wywołania:

$('.pullquote').css('padding', 100);

Uwaga: Podczas określania wartości właściwości CSS przy użyciu funkcji css() jQuery można sto-

sować właściwości skrótowe. Niżej pokazano, w jaki sposób można dodać do każdego akapitu nale-

żącego do klasy highlight czarne obramowanie o szerokości jednego piksela:

 $('p.highlight').css('border', '1px solid black');

Często bardzo użyteczna może być możliwość zmieniania właściwości CSS na pod-
stawie ich bieżącej wartości. Załóżmy, że chcemy umieścić na stronie przycisk Po-
większ czcionkę, który użytkownik mógłby kliknąć i dwukrotnie zwiększyć wielkość
używanej czcionki. Aby opracować takie rozwiązanie, należy odczytać wartość wła-
ściwości, a następnie odpowiednio ją zmienić. W tym przypadku musimy najpierw
odczytać bieżącą wartość właściwości font-size, a następnie przypisać jej dwu-
krotnie większą wartość. Okazuje się jednak, że zadanie to jest nieco bardziej
skomplikowane, niż można by sądzić. Poniżej przedstawiony został kod JavaScript
realizujący to zadanie, a poniżej wyjaśnienie jego działania:

var baseFont = $('body').css('font-size');
baseFont = parseInt(baseFont,10);
$('body').css('font-size',baseFont * 2);

Pierwsza instrukcja powyższego fragmentu kodu pobiera wartość właściwości font-
size znacznika <body>; zwrócona wartość jest łańcuchem znaków i ma postać
'16px'. Ponieważ chcemy podwoić tę wartość — pomnożyć ją przez dwa — zatem
musimy zamienić łańcuch znaków na liczbę, pozbywając się umieszczonych na
końcu liter 'px'. Właśnie tę operację wykonuje drugi wiersz kodu, w którym uży-
wamy metody parseInt() języka JavaScript, opisanej bardziej szczegółowo na stro-
nie 587. Metoda ta usuwa wszystkie znaki zapisane po liczbie. A zatem po wy-
konaniu tego drugiego wiersza kodu w zmiennej baseFont będzie zapisana wartość
liczbowa, taka jak 16. I w końcu, w ostatnim wierszu kodu określamy nową wartość
właściwości font-size, mnożąc w tym celu zmienną baseFont razy 2.

Uwaga: Powyższy przykładowy kod zmodyfikuje wielkość czcionki tekstów wyświetlanych na stro-

nie wyłącznie w przypadku, gdy wielkości zostaną podane przy użyciu jednostek względnych, ta-

kich jak em, bądź w formie wartości procentowych. Jeśli jednak wielkości czcionek w innych znacz-

nikach zostaną podane przy użyciu jednostek bezwzględnych, takich jak piksele, zmiana wielkości

czcionki znacznika <body> nie da żadnego widocznego efektu.

Jednoczesna zmiana wielu właściwości CSS
Gdy chcemy zmienić wartości większej liczby właściwości CSS, wcale nie musimy
uciekać się do stosowania wielu wywołań funkcji css(). Aby na przykład dynamicz-
nie wyróżnić znacznik <div> (choćby w odpowiedzi na jakąś czynność wykonaną
przez użytkownika), można zmienić jego kolor tła oraz obramowanie, używając do
tego następującego fragmentu kodu:

$('#hightlightedDiv').css('background-color','#FF0000');
$('#hightlightedDiv').css('border','2px solid #FE0037');

R O Z D Z I AŁ 4 . W P R O W A D Z E N I E D O J Q U E R Y

Ustawianie i odczyt
atrybutów znaczników

165

Innym rozwiązaniem jest przekazanie w wywołaniu metody css() tak zwanego lite-
rału obiektowego. Można go sobie wyobrazić jako listę par, na które składa się na-
zwa właściwości oraz odpowiadająca jej wartość. Tuż za nazwą właściwości należy
zapisać dwukropek (:), a po nim wartość; poszczególne pary są od siebie oddzielone
przecinkami, a całość zapisana wewnątrz pary nawiasów klamrowych ({ }). A za-
tem literał obiektowy definiujący dwie, przedstawione wcześniej właściwości CSS,
będzie mieć następującą postać:

{ 'background-color' : '#FF0000', 'border' : '2px solid #FE0037' }

Ponieważ przeanalizowanie takiego literału zapisanego w jednym wierszu może być
kłopotliwe, zapisuje się każdy jego element w osobnym wierszu. Poniższy literał
jest dokładnym odpowiednikiem przedstawionego wcześniej:

{
 'background-color' : '#FF0000',
 'border' : '2px solid #FE0037'
}

Podstawowa struktura literałów obiektowych została zilustrowana na rysunku 4.6.

Rysunek 4.6. Literały obiektowe
języka JavaScript zapewniają
możliwość tworzenia list właści-
wości i odpowiadających im war-
tości. JavaScript traktuje każdy
literał obiektowy jako jeden blok
informacji — podobnie jak tablicę
stanowiącą listę wartości. Literały
obiektowe, takie jak ten, będziemy
często stosować podczas przeka-
zywania opcji do wtyczek jQuery

Aby użyć literału obiektowego w funkcji css(), wystarczy przekazać go w jej wy-
wołaniu, co pokazano na poniższym przykładzie:

$('#highlightedDiv').css({
 'background-color' : '#FF0000',
 'border' : '2px solid #FE0037'
});

Warto dokładnie przeanalizować ten przykład, gdyż wygląda nieco inaczej, niż to,
co widziałeś do tej pory, oraz dlatego, że w kolejnych rozdziałach podobne fragmen-
ty kodu będą się pojawiać dosyć często. Pierwszą rzeczą, na jaką należy zwrócić uwa-
gę, jest to, że powyższy kod stanowi jedną instrukcję JavaScriptu (w zasadzie jest to
jeden wiersz kodu). Można to rozpoznać po tym, że średnik umieszczony jest na sa-
mym końcu ostatniego wiersza. Instrukcja ta została podzielona i zapisana w czte-
rech wierszach, aby poprawić przejrzystość kodu.

Następnie należy zwrócić uwagę, że literał obiektowy jest argumentem (tak jak
inny, pojedynczy element danych) wywołania funkcji css(). A zatem w łańcuchu
znaków css({ widocznym w powyższym kodzie otwierający nawias okrągły jest ele-
mentem wywołania funkcji, natomiast otwierający nawias klamrowy ({) oznacza
początek literału obiektowego. Z kolei trzy znaki widoczne w ostatnim wierszu przy-
kładu należy interpretować w następujący sposób: zamykający nawias klamrowy }

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Odczyt, ustawienia
i usuwanie atrybutów HTML

166

kończy literał obiektowy przekazywany w wywołaniu funkcji; nawias) kończy wywo-
łanie funkcji — jest to ostatni nawias kodu css() — i wreszcie średnik (;) kończy
całą instrukcję JavaScriptu.

Jeśli wszystkie te zagadnienia związane z literałami obiektowymi powodują ból głowy,
nic nie stoi na przeszkodzie, być podawał wartości właściwości CSS po jednej, tak
jak w poniższym przykładzie:

$('#highlightedDiv').css('background-color','#FF0000');
$('#highlightedDiv').css('border','2px solid #FE0037');

Choć lepszym rozwiązaniem byłoby wykorzystanie charakterystycznej cechy biblio-
teki jQuery, którą jest możliwość tworzenia łańcuchów wywołań (patrz strona 156).
Polega ona na wywołaniu kilku funkcji jQuery operujących na jednej kolekcji ele-
mentów, przy czym kolejne wywołanie jest zapisywane za poprzednim i oddzielone
od niego kropką (.):

$('#highlightedDiv').css('background-color','#FF0000')
 .css('border','2px solid #FE0037');

Taki kod można czytać tak: odszukaj element o identyfikatorze hightlightedDiv,
zmień jego kolor tła, a następnie zmień postać jego obramowania. Tworzenie łańcu-
cha wywołań zapewnia lepszą wydajność niż dwukrotne pobieranie tego samego
elementu — $('#highlightedDiv') — gdyż każda taka operacja wiąże się z ko-
niecznością wykonania przez przeglądarkę całego kodu jQuery związanego z po-
bieraniem elementów stron. A zatem poniższy fragment kodu nie jest optymalny:

$('#highlightedDiv').css('background-color','#FF0000');
$('#highlightedDiv').css('border','2px solid #FE0037');

Zmusza on przeglądarkę do pobrania elementu, zmiany jego właściwości CSS, po-
brania tego samego elementu po raz wtóry (co stanowi niepotrzebne marnotrawstwo
czasu procesora) i określenie kolejnej właściwości CSS. Przy wykorzystaniu możli-
wości tworzenia łańcucha wywołań przeglądarka musi pobrać interesujący nas ele-
ment strony tylko jeden raz, a następnie wykonać dwie funkcje modyfikujące wła-
ściwości CSS. Jednokrotne pobranie elementu zajmuje mniej czasu niż wykonanie
tej czynności dwa razy.

Odczyt, ustawienia i usuwanie atrybutów HTML

Ponieważ modyfikowanie klas oraz wartości CSS przy użyciu kodu JavaScript to
czynności wykonywane bardzo często, jQuery posiada wbudowane funkcje do ich
obsługi. Jednak w rzeczywistości funkcje addClass() oraz css() są jedynie uprosz-
czonymi sposobami modyfikowania atrybutów class i style znaczników HTML.
Biblioteka jQuery udostępnia także funkcje ogólnego przeznaczenia służące do ob-
sługi atrybutów HTML. Są to funkcje attr() oraz removeAttr().

Funkcja attr() umożliwia odczyt wartości atrybutu znacznika HTML. Aby na przy-
kład określić adres obrazka aktualnie wyświetlanego w znaczniku , wystarczy
przekazać w jej wywołaniu łańcuch znaków 'src' (czyli pobrać wartość atrybutu src
znacznika):

var imageFile = $('#banner img').attr('src');

R O Z D Z I AŁ 4 . W P R O W A D Z E N I E D O J Q U E R Y

Wykonanie akcji na każdym
elemencie kolekcji

167

Funkcja attr() zwraca wartość atrybutu w takiej postaci, w jakiej został podany
w kodzie HTML. Powyższy kod zwróci wartość atrybutu src pierwszego znacznika
 umieszczonego wewnątrz innego znacznika o identyfikatorze banner; a zatem
w zmiennej imageFile zostanie zapisana ścieżka podana w kodzie HTML
strony; na przykład: 'images/banner.png' lub 'http://www.jakaswitryna.pl/
images/banner.png'.

Uwaga: Podczas podawania nazwy atrybutu w wywołaniu funkcji attr() nie trzeba zwracać uwagi

na używaną wielkość liter — można użyć dowolnego zapisu: href, HREF, hReF i tak dalej.

Jeśli w wywołaniu funkcji attr() przekazany zostanie drugi argument, spowoduje usta-
wienie wartości podanego atrybutu. Aby na przykład wyświetlić na stronie inny obrazek,
wystarczy w następujący sposób zmienić wartość atrybutu src znacznika :

$('#banner img').attr('src','images/newImage.png');

Jeśli trzeba całkowicie usunąć atrybut ze znacznika, można skorzystać z funkcji
removeAttr(). I tak poniższe wywołanie usuwa ze znacznika <body> atrybut bgColor:

$('body').removeAttr('bgColor');

Wykonanie akcji na każdym elemencie kolekcji
Zgodnie z informacjami podanymi na stronie 155, jedną z unikalnych cech bi-
blioteki jQuery jest to, że większość jej funkcji może wykonać zadaną czynność dla
każdego z pobranych elementów. Aby na przykład stopniowo ukryć wszystkie znacz-
niki na stronie, wystarczy jedno proste wywołanie jQuery:

$('img').fadeOut();

Funkcja fadeOut() powoduje powolne znikanie elementu, a gdy zastosujemy ją do
kolekcji jQuery zawierającej większą liczbę elementów, sprawi, że zniknie każdy
z nich. Istnieje wiele sytuacji, w których będziemy chcieli kolejno pobrać wszystkie
elementy kolekcji i dla każdego z nich wykonać jakąś sekwencję czynności. Właśnie
do tego celu służy funkcja .each() jQuery.

Przykładowo załóżmy, że chcemy zebrać wszystkie odnośniki prowadzące do ze-
wnętrznych stron i umieszczone na danej stronie, a także wyświetlić je na dole
w osobnej ramce z bibliografią, którą można by zatytułować „Inne strony wymie-
niane w artykule”. (No dobrze, być może wcale nie chcesz tego robić, ale nie psuj
zabawy). W każdym razie taką ramkę z bibliografią można utworzyć, wykonując
następujące czynności.

 1. Pobierz wszystkie odnośniki wskazujące strony spoza naszej witryny.

 2. Pobierz atrybuty HREF (czyli adresy URL) każdego z tych odnośników.

 3. Dodaj każdy z tych adresów URL do listy odnośników umieszczonych w ram-
ce z bibliografią.

Biblioteka jQuery nie udostępnia wbudowanej funkcji wykonującej dokładnie te
czynności, jednak możemy je wykonać samodzielnie, używając funkcji each(). Jest
to zwyczajna funkcja jQuery, a zatem można ją dodać do wywołania jQuery pobie-
rającego interesujące nas elementy strony:

$('selektor').each();

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Wykonanie akcji na każdym
elemencie kolekcji

168

Funkcje anonimowe
Aby skorzystać z funkcji each(), musimy przekazać do niej specjalny rodzaj argu-
mentu — funkcję anonimową. Funkcja anonimowa jest zwyczajną funkcją zawie-
rającą wszystkie czynności, jakie chcemy wykonać na pobranym elemencie strony.
Określamy ją słowem anonimowa, gdyż, w odróżnieniu od zwyczajnych funkcji,
które poznałeś na stronie 115, nie posiada nazwy. Poniżej przedstawiona zo-
stała podstawowa struktura funkcji anonimowej:

function() {
 // tu jest umieszczany kod funkcji
}

Ponieważ funkcja anonimowa nie ma nazwy, zatem nie mamy jak jej wywołać.
Podczas wywoływania zwyczajnej funkcji i przekazywania do niej argumentów uży-
wana jest jej nazwa — calculateSalesTax(). Funkcja anonimowa sama jest uży-
wana jako argument wywołania innej funkcji (jest to dziwne i trudne do pojęcia, ale
właśnie tak jest!). A oto sposób, w jaki można użyć funkcji anonimowej jako argu-
mentu funkcji each():

$('selektor').each(function(){
 // tu jest umieszczony kod funkcji
});

Poszczególne elementy tej konstrukcji zostały pokazane i opisane na rysunku 4.7.
Szczególnie kłopotliwy jest ostatni wiersz powyższego przykładu, gdyż zawiera trzy
symbole kończące trzy różne części konstrukcji. Nawias klamrowy (}) stanowi za-
kończenie funkcji anonimowej (a jednocześnie koniec argumentu przekazywanego
do funkcji each()), nawias ()) jest ostatnim znakiem wywołania funkcji each();
natomiast średnik (;) kończy instrukcję JavaScriptu. Innymi słowy, interpreter
JavaScript potraktuje cały ten kod jak jedną instrukcję.

Rysunek 4.7. Funkcja each() jQuery
pozwala przejrzeć całą kolekcję
wybranych elementów i na każdym
z nich wykonać jakieś operacje.
Kluczowym warunkiem, niezbędnym
do stosowania tej funkcji jest dobre
zrozumienie funkcji anonimowych

Skoro zewnętrzna struktura funkcji jest już gotowa, czas umieścić coś wewnątrz
funkcji anonimowej, a konkretnie — wszystkie czynności, jakie mają zostać wyko-
nane dla każdego z wybranych elementów strony. Funkcja each() działa jak pętla
— instrukcje umieszczone wewnątrz funkcji anonimowej zostaną wykonane jeden
raz dla każdego z pobranych elementów. Załóżmy na przykład, że mamy stronę
zawierającą pięćdziesiąt obrazków; dodamy do niej następujący kod JavaScript:

$('img').each(function() {
 alert('Znaleziono obrazek.');
});

R O Z D Z I AŁ 4 . W P R O W A D Z E N I E D O J Q U E R Y

Wykonanie akcji na każdym
elemencie kolekcji

169

Spowoduje to pięćdziesięciokrotne wyświetlenie okienka informacyjnego z komuni-
katem Znaleziono obrazek. . (To byłoby naprawdę denerwujące, więc nie próbuj
tego robić).

Uwaga: To rozwiązanie może wydać się znajome. Zgodnie z tym, czego się dowiedziałeś na stro-

nie 141, gdy dodajesz kod jQuery na stronie WWW, należy użyć funkcji $(document).ready(), by

upewnić się, że kod HTML strony zostanie w całości pobrany, zanim przeglądarka wykona jakikol-

wiek kod JavaScript. Także do tej funkcji przekazywana jest jako argument funkcja anonimowa:

 $(document).ready(function() {

 // wykonywany kod jest umieszczany

 // w tej funkcji anonimowej

 });

this oraz $(this)
Oczywiste jest, że podczas korzystania z funkcji each() będziemy chcieli pobierać
i ustawiać atrybuty każdego z przetwarzanych elementów, aby na przykład pobrać
adres URL łącza do strony zewnętrznej. Żeby pobrać aktualny element wewnątrz pętli,
używane jest specjalne słowo kluczowe this. Reprezentuje ono dowolny element
wywołujący funkcję anonimową. A zatem podczas pierwszej iteracji pętli this
będzie reprezentować pierwszy z elementów strony pobranych przez jQuery, nato-
miast podczas drugiej iteracji będzie to drugi element.

Biblioteka jQuery działa w taki sposób, że this odwołuje się do tradycyjnych ele-
mentów DOM, dzięki czemu można za jego pośrednictwem uzyskać dostęp do
tradycyjnych właściwości DOM. Jednak, zgodnie z tym, czego już się dowiedziałeś,
wyniki zwracane przez jQuery pozwalają na korzystanie ze wszystkich, cudownych
funkcji tej biblioteki. Aby zatem skonwertować this na obiekt jQuery, należy użyć
wywołania w postaci $(this).

Myślisz zapewne, że całe to zamieszanie ze słowem kluczowym this zostało wy-
myślone tylko po to, by spowodować ból głowy. Nie jest to żart, jednak bez wątpie-
nia rozwiązanie to jest nieco zagmatwane. Aby lepiej zrozumieć zasady korzystania
z wyrażenia $(this), przyjrzyjmy się ponownie zadaniu opisanemu na początku
tego podrozdziału; chodziło w nim o utworzenie u dołu strony ramki z listą odno-
śników do stron zewnętrznych.

Załóżmy, że w kodzie strony znajduje się już znacznik <div>, gotowy do utworzenia
takiej listy odnośników:

<div id="bibliography">
<h3>Inne strony wymieniane w artykule.</h3>
<ul id="bibList">

</div>

Pierwszym krokiem jest pobranie listy wszystkich odnośników wskazujących strony
spoza witryny. Możemy ją pobrać przy użyciu selektora atrybutu (patrz strona 152):

$('a[href^="http://"])

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Wykonanie akcji na każdym
elemencie kolekcji

170

Następnie, aby przetworzyć każdy z pobranych odnośników, musimy dodać do wy-
wołania funkcję each():

$('a[href^="http://"]).each()

Po czym w wywołaniu funkcji each() trzeba przekazać funkcję anonimową:
$('a[href^="http://"]).each(function(){

});

Pierwszą czynnością, jaką należy wykonać wewnątrz funkcji anonimowej, jest po-
branie adresu URL podanego w odnośniku. Ponieważ każdy z odnośników może
zawierać unikalny adres URL, musimy go pobierać z aktualnie przetwarzanego
elementu podczas każdej iteracji pętli. Możemy to zrobić, posługując się wyrażeniem
$(this):

$('a[href^="http://"]).each(function(){
 var extLink = $(this).attr('href');
});

Wiersz kodu umieszczony wewnątrz funkcji anonimowej i wyróżniony pogrubie-
niem realizuje dwa podstawowe zadania — tworzy nową zmienną lokalną (extLink)
i zapisuje w niej wartość właściwości href aktualnie przetwarzanego elementu. Pod-
czas każdej iteracji pętli wyrażenie $(this) będzie się odnosić do innego odnośnika
odnalezionego na stronie, a zatem podczas każdej z tych iteracji wartość zmiennej
extLink będzie się zmieniać.

Teraz nasze zadanie sprowadza się tylko do dodania nowego punktu do znacznika
 (został on pokazany w kodzie HTML przedstawionym powyżej). Można to
zrobić w następujący sposób:

$('a[href^="http://"]).each(function(){
 var extLink = $(this).attr('href');
 $('#bibList').append('' + extLink + '');
});

Wyrażenia $(this) będziesz używał niemal zawsze wtedy, gdy będziesz korzystał
z funkcji each(), więc po jakimś czasie stanie się Twoim drugim imieniem. Aby
przyswoić je trochę lepiej i zdobyć nieco praktyki w posługiwaniu się nim, użyjemy
go także w większym przykładzie zamieszczonym dalej w tym rozdziale.

Uwaga: Przykładowy skrypt zamieszczony w tym podrozdziale jest doskonałą ilustracją zastoso-

wania wyrażenia $(this), choć z drugiej strony, nie jest zapewne najlepszym sposobem tworzenia

na stronie listy odnośników. Przede wszystkim, nawet jeśli na stronie nie będzie żadnych odnośni-

ków, znacznik <div> (umieszczony na stałe w kodzie HTML) i tak się pojawi na stronie, choć będzie

pusty. Co więcej, jeśli użytkownik wyłączy w przeglądarce obsługę JavaScriptu, po wyświetleniu

strony nie zobaczy listy odnośników, lecz jedynie pustą ramkę. Znacznie lepszym rozwiązaniem

byłoby użycie skryptu, który tworzyłby nie tylko samą listę odnośników, lecz także znacznik <div>,

wewnątrz którego ma się ona znaleźć. Takie rozwiązanie można znaleźć w pliku bibliography.html

dołączonym do przykładów prezentowanych w tym rozdziale.

R O Z D Z I AŁ 4 . W P R O W A D Z E N I E D O J Q U E R Y

Automatycznie tworzone,
wyróżniane cytaty

171

Automatycznie tworzone, wyróżniane cytaty
W pierwszym przykładzie zamieszczonym w tym podrozdziale napiszemy skrypt,
który ułatwia tworzenie wyróżnianych cytatów (wyglądających tak jak przedsta-
wione na rysunku 4.8). Wyróżniany cytat (ang. pull quote) to ramka zawierająca
interesujący cytat wybrany z głównego tekstu publikowanego na danej stronie.
Wszystkie gazety, czasopisma oraz witryny WWW używają ich, by wzbudzić zainte-
resowanie czytelników bądź skierować ich uwagę na ważne lub interesujące zagad-
nienia. Jednak ręczne tworzenie takich wyróżnianych cytatów wymagałoby powie-
lania tekstu na stronie i umieszczania go w znacznikach — <div>, bądź
jeszcze innych.

Rysunek 4.8. Ręczne dodawanie wyróżnionych cytatów jest bolesne, zwłaszcza gdy weźmiemy pod uwagę
fakt, że przy użyciu języka JavaScript można bardzo łatwo zautomatyzować cały ten proces. W tym przykładzie,
po prawej stronie widoczne są dwa wyróżnione cytaty utworzone przy użyciu kodu JavaScript

Tworzenie kodu HTML wymaga czasu i powoduje powiększenie strony o powiela-
jące się fragmenty. Na szczęście z wykorzystaniem JavaScriptu można bardzo szybko
utworzyć na stronie dowolną liczbę wyróżnionych cytatów, dodając do niej jedynie
niewielkie fragmenty kodu HTML.

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Automatycznie tworzone,
wyróżniane cytaty

172

Opis rozwiązania
Skrypt, który napiszemy, będzie realizował kilka zadań.

 1. Odnajdzie na stronie wszystkie znaczniki należące do klasy o nazwie
pq (od angielskich słów pull quote).

Jedyną zmianą, jaką będziemy musieli wprowadzić w kodzie HTML strony,
będzie dodanie kilku znaczników , wewnątrz których umieścimy tekst,
jaki ma zostać przekształcony na wyróżnione cytaty. Załóżmy na przykład, że na
stronie znajduje się akapit, zawierający kilka słów, które chcemy pobrać i wyświe-
tlić w formie wyróżnionego cytatu. Wystarczy umieścić te słowa wewnątrz
znacznika :

... i właśnie w taki sposób odkryłem potwora
z Loch Ness..

 2. Powieli każdy ze znaczników .

Każdy wyróżniony cytat jest kolejnym znacznikiem zawierającym do-
kładnie ten sam tekst, a zatem możemy skorzystać z JavaScriptu, by powielić
istniejące na stronie znaczniki .

 3. Usunie z powielonych znaczników klasę pq i zastąpi ją klasą
pullquote.

Za całą magię formatowania — utworzenie ramki, użycie większej czcionki,
wyświetlenie obramowania i zmianę koloru tła — powodującą wizualne wyróż-
nienie wybranego cytatu nie odpowiada JavaScript. Arkusz stylów używanych na
stronie zawiera definicję stylu o nazwie pullquote, odpowiadającego za zmianę
wyglądu cytatu. A zatem całkowita zmiana wyglądu nowych znaczników
jest wyłącznie efektem użycia JavaScriptu do zmiany stosowanej w nich na-
zwy klasy.

 4. Doda powielony znacznik do kodu strony.

W końcu powielone znaczniki trzeba dodać do strony. (W kroku 2. utwo-
rzyliśmy kopię znacznika przechowywaną w pamięci przeglądarki, jednak aż do
tej pory nie dodaliśmy jej do kodu strony. Takie rozwiązanie pozwala wprowa-
dzać dodatkowe zmiany w wyglądzie powielanych znaczników, zanim zostaną
one wyświetlone na stronie).

Kod rozwiązania
Skoro wiemy już, co chcemy zrobić i osiągnąć, nadszedł czas, by otworzyć edytor
i zacząć wcielać pomysł w życie.

Uwaga: Informacje dotyczące pobierania przykładów do książki można znaleźć na stronie 46.

 1. W edytorze tekstów otwórz plik pull-quote.html umieszczony w katalogu R04.

Zaczniemy od dodania na początku pliku odwołania do zewnętrznego pliku bi-
blioteki jQuery.

R O Z D Z I AŁ 4 . W P R O W A D Z E N I E D O J Q U E R Y

Automatycznie tworzone,
wyróżniane cytaty

173

 2. Kliknij pusty wiersz umieszczony tuż powyżej zamykającego znacznika
</head> i wpisz:

<script src="../_js/jquery.min.js"></script>

Ten znacznik wczyta zewnętrzny plik jQuery przechowywany na naszej witry-
nie. Zwróć uwagę, że plik ten znajduje się w katalogu o nazwie _js (nie zapo-
mnij o znaku podkreślenia na samym początku). Teraz musisz dodać drugą
parę znaczników <script>, w której umieścisz kod JavaScript.

Uwaga: Zapewne zauważysz, że podczas dołączania pliku biblioteki jQuery do przykładowych stron

WWW nie jest podawany jej numer wersji, choć informacje zamieszczone na stronie 141 sugerują,

aby go zamieszczać, na przykład:

<script src="../_js/jquery.1.11.0.min.js"></script>

W przykładach prezentowanych w tej książce numer wersji jQuery jest pomijany celowo, aby ła-

twiej je było uaktualnić, kiedy pojawi się jej kolejna wersja. Przykładowo w czasie, kiedy powstawała

ta książka, najnowszą wersją biblioteki jQuery 1 była 1.11.0; więcej informacji na temat różnic po-

między wersjami 1. oraz 2. biblioteki jQuery można znaleźć w ramce na stronie 138. Kiedy jednak

książka trafi do Twoich rąk, najnowszą wersją jQuery może być 1.11.1 lub 1.12.0. W plikach przy-

kładowych dostępna będzie najnowsza wersja biblioteki, a zatem właśnie jej będziesz używał.

 3. Naciśnij klawisz Enter (lub Return), by utworzyć poniżej nowy, pusty wiersz
i wpisz w nim poniższy tekst wyróżniony pogrubieniem:

1 <script src="../_js/jquery.min.js"><script>
2 <script>
3
4 </script>

Uwaga: Numery wyświetlone z lewej strony wierszy kodu są jedynie dla naszej informacji — nie

wpisuj ich w kodzie strony.

Kolejnym krokiem będzie dodanie wywołania funkcji $(document).ready().

 4. Kliknij pusty wiersz umieszczony pomiędzy znacznikami <script> i wpisz
w nim poniższy tekst wyróżniony pogrubieniem:

1 <script src="../_js/jquery.min.js"><script>
2 <script>
3 $(document).ready(function() {
4
5 }); // Koniec funkcji ready.
6 </script>

Komentarz // koniec funkcji ready okaże się szczególnie przydatny w przy-
szłości, kiedy nasz program stanie się znacznie większy i bardziej skompliko-
wany. W większych programach często będą występowały sekwencje znaków
});, z których każda będzie oznaczać koniec funkcji anonimowej i wywołania
jakiejś innej funkcji. Umieszczenie za nimi komentarzy umożliwia zidentyfi-
kowanie każdej i sprawia, że kiedy w przyszłości wrócimy do takiego kodu, znacz-
nie łatwiej zrozumiemy, o co w nim chodzi.

Czynności wykonane w punktach od 1. do 4. stanowią podstawowe przygoto-
wania, które będziesz wykonywał, pisząc każdy program używający biblioteki
jQuery, zatem koniecznie się upewnij, że dobrze je rozumiesz. Teraz zajmiemy

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Automatycznie tworzone,
wyróżniane cytaty

174

się najważniejszymi czynnościami, jakie ma wykonywać nasz program — za-
czniemy do pobrania wszystkich znaczników zawierających teksty,
które chcemy wyświetlić w formie wyróżnionych cytatów.

 5. Dodaj pogrubiony tekst z czwartego wiersza poniższego przykładu:
1 <script src="../_js/jquery.min.js"><script>
2 <script>
3 $(document).ready(function() {
4 $('span.pq')
5 }); // Koniec funkcji ready.
6 </script>

Wyrażenie $('span.pq') to selektor jQuery pozwalający pobrać wszystkie znacz-
niki należące do klasy pq. Teraz dodamy kod niezbędny do przejrzenia
znaczników i wykonania na nich operacji.

 6. Dodaj pogrubiony tekst z wierszy 4. i 6. poniższego przykładu:
1 <script src="../_js/jquery.min.js"><script>
2 <script>
3 $(document).ready(function() {
4 $('span.pq').each(function() {
5
6 }); // Koniec funkcji each.
7 }); // Koniec funkcji ready.
8 </script>

Zgodnie z informacjami podanymi na stronie 167, each() jest funkcją jQuery
pozwalającą przejrzeć kolekcję wybranych elementów strony. Wymaga ona prze-
kazania jednego argumentu — funkcji anonimowej.

Teraz zaczniesz pisać kod funkcji, która będzie przetwarzać kolejne pobrane
znaczniki. Pierwszym zadaniem będzie utworzenie kopii przetwarzanego ele-
mentu .

 7. Dodaj wyróżniony pogrubieniem kod, umieszczony w 5. wierszu poniż-
szego przykładu:

1 <script src="../_js/jquery.min.js"></script>
2 <script >
3 $(document).ready(function() {
4 $('span.pq').each(function() {
5 var quote=$(this).clone();
6 }); // Koniec funkcji each.
7 }); // Koniec funkcji ready.
8 </script>

Działanie tej funkcji rozpoczyna się od utworzenia nowej zmiennej o nazwie
quote, zawierającej „klon” (czyli po prostu kopię) aktualnie przetwarzanego
elementu (zajrzyj na stronę 169, jeśli zapomniałeś, jakie znaczenie ma
wyrażenie $(this)). Funkcja .clone() biblioteki jQuery powiela aktualny ele-
ment, włącznie z całym, umieszczonym wewnątrz niego kodem HTML. W tym
przypadku tworzymy kopię znacznika , włącznie z umieszczonym we-
wnątrz niego tekstem, który chcemy wyświetlić w formie wyróżnionego cytatu.

Klonowanie elementów powoduje skopiowanie ich w całości, włącznie ze wszel-
kimi atrybutami. W naszym przypadku kopiowany znacznik należy
do klasy o nazwie pq. W kolejnym kroku usuniemy tę klasę ze skopiowanego
znacznika.

R O Z D Z I AŁ 4 . W P R O W A D Z E N I E D O J Q U E R Y

Automatycznie tworzone,
wyróżniane cytaty

175

 8. Dodaj dwa wyróżnione pogrubieniem wiersze kodu (6. i 7.):
1 <script src="../_js/jquery.min.js"></script>
2 <script>
3 $(document).ready(function() {
4 $('span.pq').each(function() {
5 var quote=$(this).clone();
6 quote.removeClass('pq');
7 quote.addClass('pullquote');
8 }); // Koniec funkcji each.
9 }); // Koniec funkcji ready.
10 </script>

Zgodnie z informacjami podanymi na stronie 160, funkcja removeClass() usuwa
podaną nazwę klasy ze wskazanego znacznika, natomiast funkcja addClass()
dodaje do znacznika podaną nazwę klasy. W tym przypadku operację zamiany
nazwy klasy wykonujemy na kopii znacznika , zatem będziemy mogli
użyć klasy CSS o nazwie pullquote, by sformatować skopiowany znacznik
i nadać mu wygląd wyróżnionego cytatu.

Kolejną czynnością będzie dodanie znacznika do kodu strony WWW.

 9. Dodaj do skryptu pogrubiony wiersz kodu (8.):
1 <script src="../_js/jquery.min.js"></script>
2 <script>
3 $(document).ready(function() {
4 $('span.pq').each(function() {
5 var quote=$(this).clone();
6 quote.removeClass('pq');
7 quote.addClass('pullquote');
8 $(this).before(quote);
9 }); // Koniec funkcji each.
10 }); // Koniec funkcji ready.
11 </script>

Wyróżniony pogrubieniem wiersz kodu jest ostatnim elementem funkcji — do
tej pory operowaliśmy na kopii znacznika przechowywanej w pamięci
przeglądarki. Użytkownik nie zobaczyłby funkcji aż do momentu dodania jej do
modelu obiektów dokumentu strony.
W tym kroku dodajemy kopię znacznika ; umieszczamy ją w kodzie
HTML strony bezpośrednio przed oryginalnym elementem. W efekcie wyni-
kowa strona będzie zawierać kod HTML w następującej postaci:

... i właśnie w taki sposób odkryłem potwora
z Loch Ness.... i właśnie w taki sposób
odkryłem potwora z Loch Ness..

Choć kod może sugerować, że na stronie prezentowanej w przeglądarce te dwa
fragmenty tekstu zostaną umieszczone tuż obok siebie, jednak zastosowane
style CSS sprawią, że cytat zostanie wydzielony i wyświetlony przy prawej kra-
wędzi strony.

Uwaga: Aby uzyskać wizualny efekt wyróżnionego cytatu, w stylu CSS używanym do określenia

jego wyglądu została zastosowana właściwość float. Sformatowany przy jego użyciu element zo-

stanie wyświetlony z prawej strony akapitu, w którym jest umieszczony, a pozostały tekst będzie

go „opływał” z lewej strony. Jeśli nie znasz tej techniki, znacznie więcej informacji na temat działa-

nia właściwości float możesz znaleźć na stronie http://css.maxdesign.com.au/floatutorial/. Jeśli

chcesz sprawdzić, jak wygląda definicja stylu pullquote, zajrzyj na początek pliku z kodem przy-

kładu — zostały tam umieszczone wszystkie style oraz używane w nich właściwości.

http://css.maxdesign.com.au/floatutorial/

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Automatycznie tworzone,
wyróżniane cytaty

176

W ten sposób udało się zakończyć tworzenie kodu JavaScript naszego przykładu.
Jednak nie uda się zobaczyć żadnych wyróżnionych cytatów, dopóki nie wpro-
wadzisz jeszcze pewnych zmian w kodzie HTML strony.

 10. Odszukaj w kodzie HTML strony pierwszy znacznik <p>, następnie od-
szukaj zdanie i umieść je wewnątrz znaczników
, na przykład tak:

Nullam ut nibh sed orci tempor rutrum.

Możesz powtórzyć powyższy proces, by dodać wyróżnione cytaty także do in-
nych akapitów tekstu.

 11. Zapisz plik i wyświetl go w przeglądarce.

Ostateczny wynik powinien wyglądać tak, jak pokazano na rysunku 4.8. Jeśli
jednak nie zobaczysz wyróżnionego cytatu, upewnij się, że prawidłowo dodałeś
do kodu strony znacznik , zgodnie z informacjami podanymi w kroku 10.
Dodatkowo przejrzyj podane na stronie 51 porady związane z poprawianiem
niedziałających programów. Pełną wersję przykładu możesz znaleźć w pliku
complete_pull-quote.html.

Akcja i reakcja
— ożywianie stron
za pomocą zdarzeń

rozmowach na temat języka JavaScript często pada słowo „interaktywny”,
na przykład: „JavaScript pozwala tworzyć interaktywne strony WWW”.
Oznacza to, że język JavaScript umożliwia reagowanie stron na działania

użytkowników. Przeniesienie wskaźnika myszy nad przycisk nawigacyjny może
powodować wyświetlenie menu z odnośnikami, zaznaczenie przycisku opcji — udo-
stępnienie zestawu nowych pól formularza, a kliknięcie miniaturki zdjęcia — przy-
ciemnienie całej strony i wyświetlenie na niej większej wersji tego samego zdjęcia.

Różne działania użytkowników, na które strona może reagować, to tak zwane zda-
rzenia. JavaScript to język sterowany zdarzeniami. Bez tego mechanizmu strona
nie może reagować na zachowania internautów ani wykonywać ciekawych operacji.
Podobnie działają komputery. Kiedy włączysz system, nic się nie dzieje, dopóki nie
zaczniesz uruchamiać programów, klikać plików, wybierać opcji z menu i ruszać
wskaźnikiem myszy po ekranie.

Czym są zdarzenia?
Przeglądarki są zaprogramowane tak, aby wykrywały podstawowe zjawiska, takie jak
wczytanie strony, przeniesienie wskaźnika, wpisanie znaku lub zmiana wielkości
okna. Wszystkie zmiany związane ze stroną WWW to zdarzenia. Aby utworzyć in-
teraktywną stronę, należy przygotować skrypty reagujące na zdarzenia. W ten
sposób można sprawić, że element <div> zniknie lub pojawi się w wyniku klik-
nięcia, na stronie znajdzie się nowy rysunek po umieszczeniu wskaźnika myszy
nad odnośnikiem lub skrypt sprawdzi zawartość pól tekstowych po kliknięciu przez
użytkownika przycisku Wyślij formularza.

W

5
ROZDZIAŁ

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Czym są zdarzenia?

178

Zdarzenie reprezentuje moment zajścia określonego zjawiska. Kiedy na przykład
klikniesz myszą element, w chwili zwolnienia przycisku przeglądarka zasygnalizuje
wystąpienie zdarzenia kliknięcia. Programiści nazywają moment poinformowania
przez przeglądarkę o zajściu zdarzenia jego zgłoszeniem.

Przy kliknięciu przeglądarki zgłaszają kilka zdarzeń. Najpierw, bezpośrednio po wci-
śnięciu przycisku, informują o zdarzeniu mousedown. Następnie, przy zwolnieniu przy-
cisku, zgłaszają zdarzenie mouseup, a później — zdarzenie click (patrz rysunek 5.1).

Rysunek 5.1. Choć może nie zdajesz sobie z tego sprawy, przeglądarki nieustannie zgłaszają zdarzenia w czasie
wpisywania tekstu, poruszania wskaźnikiem myszy i klikania. Przykładowo dwukrotne kliknięcie myszą powoduje
wygenerowanie dwóch zdarzeń mousedown i mouseup, zdarzenia dblclick, jak również zdarzenia click. Strona
events.html (dostępna wśród przykładowych plików) lustruje działanie wielu zdarzeń

Uwaga: Zrozumienie, kiedy i jak przeglądarka zgłasza zdarzenia, nie jest proste. Aby przetestować

zdarzenia różnego rodzaju, możesz użyć strony demonstracyjnej, dostępnej wśród przykładowych

plików. Otwórz w przeglądarce stronę events.html z katalogu testy. Następnie poruszaj wskaźni-

kiem myszy, kliknij dowolny element i wpisz tekst, aby zobaczyć niektóre z wielu zdarzeń nieustannie

zachodzących na stronach WWW (patrz rysunek 5.1).

R O Z D Z I AŁ 5 . A K C J A I R E A K C J A — OŻY W I A N I E S T R O N Z A P O M O CĄ Z D A R Z EŃ

Czym są zdarzenia?

179

Zdarzenia związane z myszą
Od 1984 roku, kiedy to Steve Jobs zaprezentował komputer Macintosh, mysz stała
się podstawowym urządzeniem we wszystkich komputerach osobistych (podobnie
jak płytka dotykowa w laptopach). Użytkownicy korzystają z niej do uruchamiania
aplikacji, przeciągania plików do katalogów, wybierania elementów z menu, a na-
wet do rysowania. Przeglądarki udostępniają wiele mechanizmów do śledzenia ope-
racji wykonywanych przez użytkowników myszą w czasie korzystania ze stron.
Oto one.

 Zdarzenie click. To zdarzenie jest zgłaszane po zwolnieniu przycisku myszy przy
kliknięciu. Programiści często przypisują to zdarzenie do odnośników. Na przy-
kład kliknięcie miniatury rysunku może powodować wyświetlenie jego pełnej
wersji. Jednak można używać także innych elementów. Na kliknięcie może
reagować każdy znacznik, a nawet cała strona.

Uwaga: Zdarzenie click jest uruchamiane także po wybraniu odnośnika za pomocą klawiatury.

Jeśli przejdziesz do odsyłacza za pomocą klawisza Tab, a następnie wciśniesz klawisz Enter, przeglą-

darka zgłosi zdarzenie click.

 Zdarzenie dblclick. Kiedy użytkownik szybko dwukrotnie wciśnie i zwolni
przycisk myszy, przeglądarka zgłosi zdarzenie dwukrotnego kliknięcia
(dblclick). Ta operacja służy na przykład do otwierania katalogów i plików na
pulpicie. Dwukrotne kliknięcie nie jest standardowym zachowaniem internau-
ty, dlatego jeśli chcesz użyć go na stronie, powinieneś wyraźnie opisać, które ele-
menty użytkownicy mogą kliknąć w taki sposób i do czego prowadzi ta operacja.
Warto też pamiętać, że każde kliknięcie składające się na zdarzenie dwukrotnego
kliknięcia generuje także zdarzenie click, dlatego też nie należy w tym samym
znaczniku obsługiwać obu tych zdarzeń, czyli click i dblclick. Jeśli o tym za-
pomnisz, skrypt najpierw dwa razy uruchomi funkcję powiązaną z pojedyn-
czym kliknięciem, a następnie wykona funkcję dla dwukrotnego kliknięcia.

 Zdarzenie mousedown. To zdarzenie odpowiada pierwszej części kliknięcia —
przyciśnięciu przycisku myszy przed jego zwolnieniem. Jest ono przydatne przy
przenoszeniu elementów na stronie. Można pozwolić użytkownikom na prze-
ciąganie obiektów w podobny sposób, jak przenoszą ikony na pulpicie. Technika
ta polega na kliknięciu elementu i — bez zwalniania przycisku — przeciągnię-
ciu go, a następnie upuszczeniu w wyniku zwolnienia przycisku myszy (na
stronie 421 dowiesz się, jak to zrobić przy użyciu bibliotek jQuery).

 Zdarzenie mouseup. To zdarzenie odpowiada drugiej części kliknięcia — zwol-
nieniu przycisku myszy. Pozwala ono wykryć moment upuszczenia przenoszo-
nego elementu.

 Zdarzenie mouseover. Kiedy umieścisz wskaźnik myszy nad elementem
strony, przeglądarka zgłosi zdarzenie mouseover. Przy jego użyciu można przy-
pisać uchwyty zdarzeń do przycisków nawigacyjnych i wyświetlać menu rozwi-
jane po umieszczeniu wskaźnika myszy nad danym przyciskiem. Jeśli używałeś
kiedyś pseudoklasy :hover języka CSS, wiesz już, jak działa to zdarzenie.

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Czym są zdarzenia?

180

 Zdarzenie mouseout. Przeniesienie wskaźnika myszy poza dany element wyzwala
zdarzenie mouseout. Można go użyć do zasygnalizowania, że użytkownik prze-
niósł wskaźnik myszy poza stronę, lub do ukrycia menu po opuszczeniu jego
obszaru przez wskaźnik.

 Zdarzenie mousemove. To zdarzenie jest wyzwalane przy każdym ruchu myszą,
czyli prawie cały czas. Można go używać do sprawdzania aktualnej pozycji
wskaźnika myszy na ekranie. Ponadto zdarzenie to można przypisać do okre-
ślonego znacznika strony, na przykład <div>, i reagować tylko na ruchy my-
szą w obrębie danego elementu.

Uwaga: Zdarzenia mousemove są zgłaszane bardzo często (wiele razy w trakcie każdego przesunięcia

wskaźnika myszy), dlatego obsługując to zdarzenie, należy zachować bardzo dużą ostrożność. Próby

wykonywania długotrwałych operacji w ramach obsługi tego zdarzenia mogą doprowadzić do znacz-

nego spowolnienia programu i pogorszenia szybkości reakcji strony na poczynania użytkownika.

Zdarzenia związane z dokumentem i oknem
Okno przeglądarki obsługuje liczne zdarzenia, zgłaszane od momentu wczytania
strony do czasu jej zamknięcia przez użytkownika.

 Zdarzenie load. To zdarzenie jest zgłaszane po wczytaniu przez przeglądarkę
wszystkich plików strony: pliku HTML, a także dołączonych rysunków, filmów
we Flashu oraz zewnętrznych plików CSS i JavaScript. Projektanci stron WWW
zwykli używać tego zdarzenia do uruchamiania programów JavaScript, które
służą do manipulowania stroną. Jednak wczytywanie strony i wszystkich plików
może trwać dość długo, jeśli trzeba pobrać wiele obrazków i dużych dokumentów
zewnętrznych. Czasem oznacza to, że kod JavaScript jest uruchamiany długo po
wyświetleniu strony w przeglądarce. Na szczęście jQuery udostępnia szybciej
reagujący zastępnik zdarzenia load (patrz strona 190).

 Zdarzenie resize. Kiedy zmienisz rozmiar okna przeglądarki przez kliknięcie
przycisku maksymalizacji lub przeciągnięcie krawędzi okna, przeglądarka zgłosi
zdarzenie resize. Niektórzy projektanci używają go do modyfikowania układu
strony po zmianie wielkości strony. Kiedy na przykład użytkownik zmieni
rozmiar okna, warto sprawdzić jego szerokość. Jeśli jest duża, można zmodyfi-
kować układ i zapełnić puste miejsce nowymi kolumnami.

 Zdarzenie scroll. To zdarzenie jest zgłaszane po przeciągnięciu suwaka albo
użyciu klawiatury (strzałek w górę i dół, klawiszy Home lub End i tak dalej) lub
rolki myszy do przewijania strony. Jeśli strona nie udostępnia pasków prze-
wijania, zdarzenie to nie zachodzi. Niektórzy programiści używają go do wy-
krywania, które elementy są widoczne na stronie po jej przewinięciu.

Uwaga: Podobnie jak zdarzenie mousemove (przedstawione na stronie 180), także i zdarzenie

scroll jest podczas przewijania strony zgłaszane bardzo często. Dlatego też i w jego przypadku

należy zachować dużą ostrożność, jeśli obsługa tych zdarzeń wymaga złożonych operacji.

R O Z D Z I AŁ 5 . A K C J A I R E A K C J A — OŻY W I A N I E S T R O N Z A P O M O CĄ Z D A R Z EŃ

Czym są zdarzenia?

181

 Zdarzenie unload. Kiedy klikniesz odnośnik, aby przejść do nowej strony,
albo zamkniesz kartę lub okno przeglądarki, zgłoszone zostanie zdarzenie
unload. Jest to ostatnia informacja dla skryptu JavaScript, która umożliwia wy-
konanie końcowych operacji przed opuszczeniem strony przez użytkownika.
Złośliwi programiści używali go do utrudniania zamykania strony. Każda próba
opuszczenia strony prowadziła do pojawienia się jej w nowym oknie. Jednak te-
go zdarzenia można używać także w wartościowy sposób. Przykładowo program
może ostrzegać użytkownika o tym, że nie wysłał częściowo uzupełnionego
formularza, lub przesyłać dane z formularza na serwer w celu ich zapisania.

Zdarzenia związane z formularzami
Przed pojawieniem się języka JavaScript użytkownicy wchodzili w interakcje ze stro-
nami głównie za pomocą klikania odnośników i wypełniania pól w formularzach
HTML. Wprowadzenie informacji w polach formularza było jedynym sposobem na
przesłanie danych do witryny. Ponieważ formularze wciąż są ważnym elementem
sieci WWW, dostępnych jest wiele związanych z nimi zdarzeń.
 Zdarzenie submit. To zdarzenie jest zgłaszane przy przesyłaniu formularza.

Użytkownik może to zrobić przez kliknięcie przycisku Wyślij lub wciśnięcie
klawisza Enter, kiedy kursor znajduje się w polu tekstowym. Zdarzenie submit
najczęściej używane jest do walidacji formularzy. Proces ten pozwala przed wy-
słaniem danych na serwer sprawdzić, czy wszystkie wymagane pola są prawidłowo
wypełnione. Na stronie 299 dowiesz się, jak przeprowadzić walidację formularza.

 Zdarzenie reset. Choć przycisk Wyczyść obecnie nie jest tak popularny jak
kiedyś, umożliwia anulowanie wszystkich zmian wprowadzonych w formularzu
i przywrócenie jego wyjściowego stanu. Kiedy użytkownik spróbuje wyczyścić
zawartość formularza, można uruchomić skrypt w odpowiedzi na wykrycie zda-
rzenia reset. Program ten powinien wyświetlać okno dialogowe z tekstem typu:
„Czy na pewno chcesz usunąć zmiany?”. Okno to powinno zawierać przycisk
Nie, który umożliwia zrezygnowanie z usuwania danych z formularza.

 Zdarzenie change. Wiele pól formularza zgłasza zdarzenie change przy zmianie
stanu, na przykład w wyniku kliknięcia przycisku opcji lub wybrania odnośnika
z menu rozwijanego. Zdarzenie to umożliwia natychmiastowe sprawdzenie wy-
branego odsyłacza lub zaznaczonego przycisku.

 Zdarzenie focus. Kiedy klikniesz pole tekstowe lub przejdziesz do niego za po-
mocą klawisza Tab, aktywujesz je. Oznacza to, że przeglądarka „skoncentruje
uwagę” na tym polu. Także zaznaczenie przycisku opcji lub kliknięcie pola wy-
boru powoduje ich aktywowanie i umożliwia zareagowanie w kodzie JavaScript
na zgłoszenie zdarzenia focus. Załóżmy, że w polu tekstowym znajdują się po-
mocne instrukcje, na przykład „Wpisz imię i nazwisko”. Kiedy użytkownik klik-
nie pole (aktywuje je), warto usunąć instrukcje, aby internauta mógł wprowadzić
dane w pustym obszarze.

 Zdarzenie blur. Jest to przeciwieństwo zdarzenia focus. Przeglądarka zgłasza
zdarzenie blur, kiedy użytkownik opuści aktywne pole za pomocą klawisza Tab
lub kliknięcia myszą. Także to zdarzenie jest przydatne przy walidacji formularzy.

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Obsługa zdarzeń
przy użyciu jQuery

182

Kiedy użytkownik wpisze adres e-mail w polu tekstowym, a następnie przejdzie
do następnego elementu, można natychmiast sprawdzić, czy wprowadzone dane
to poprawny adres.

Uwaga: Zdarzenia focus i blur działają także dla odnośników. Kiedy wybierzesz odsyłacz za pomocą

klawisza Tab, przeglądarka zgłosi zdarzenie focus. Kiedy ponownie wciśniesz ten klawisz (lub klikniesz

myszą inny element), zajdzie zdarzenie blur.

Zdarzenia związane z klawiaturą
Przeglądarki śledzą też operacje wykonywane za pomocą klawiatury, dlatego można
przypisać do poszczególnych klawiszy polecenia lub umożliwić użytkownikom kon-
trolowanie skryptów przy użyciu różnych znaków. Na przykład wciśnięcie klawisza
spacji może uruchamiać i zatrzymywać animację wyświetlaną przez kod JavaScript.

Niestety, poszczególne przeglądarki obsługują zdarzenia związane z klawiaturą w od-
mienny sposób, dlatego trudno nawet ustalić, który klawisz wcisnął użytkownik!
Opis jednej z technik sprawdzania użytych klawiszy znajdziesz we wskazówce na
stronie 195.

 Zdarzenie keypress. To zdarzenie jest zgłaszane w momencie wciśnięcia kla-
wisza. Wcale nie trzeba później zwalniać klawisza — zdarzenie to jest zgła-
szane bezustannie tak długo, jak długo użytkownik trzyma klawisz wciśnięty.
Z tego względu kontrola tego zdarzenia jest dobrym sposobem, aby się prze-
konać, czy użytkownik wciąż naciska klawisz. Jeśli na przykład będziemy
opracowywać wyścigi samochodowe w przeglądarce, można przypisać jakiś
klawisz pedałowi gazu. W takim przypadku wystarczy, że użytkownik wciśnie
klawisz, a samochód będzie jechał.

 Zdarzenie keydown. To zdarzenie działa podobnie jak zdarzenie keypress — jest
zgłaszane przy wciśnięciu klawisza. Zachodzi tuż przed zdarzeniem keypress.
W Operze zdarzenie to jest zgłaszane tylko raz. W pozostałych przeglądarkach
działa tak samo jak zdarzenie keypress — jest zgłaszane, dopóki użytkownik
nie zwolni klawisza.

 Zdarzenie keyup. To zdarzenie przeglądarka zgłasza w momencie zwolnienia
klawisza.

Obsługa zdarzeń przy użyciu jQuery

Programowa obsługa zdarzeń zawsze była trudna. Przez wiele lat zdarzenia w prze-
glądarce Internet Explorer były obsługiwane zupełnie inaczej niż we wszystkich in-
nych przeglądarkach, co zmuszało programistów do tworzenia dwóch odrębnych wer-
sji kodu (dla IE oraz dla pozostałych przeglądarek), by zapewnić prawidłowe działanie
strony. Na szczęście w najnowszej wersji programu — w Internet Explorerze 9 —
wykorzystywana jest już ta sama metoda obsługi zdarzeń, co w innych przeglądar-
kach, dzięki czemu programowanie stało się znacznie prostsze. Jednak wciąż sporo
osób używa przeglądarki IE8, dlatego potrzebne jest jakieś dobre rozwiązanie, które

R O Z D Z I AŁ 5 . A K C J A I R E A K C J A — OŻY W I A N I E S T R O N Z A P O M O CĄ Z D A R Z EŃ

Obsługa zdarzeń
przy użyciu jQuery

183

mogłoby ułatwić obsługę zdarzeń i zagwarantować ich spójną obsługę w wielu róż-
nych przeglądarkach. Właśnie takim rozwiązaniem jest jQuery.

W poprzednim rozdziale dowiedziałeś się, że biblioteki języka JavaScript, na przykład
jQuery, rozwiązują wiele problemów programistycznych. Między innymi pozwa-
lają zapomnieć o niezgodnościach między przeglądarkami. Ponadto biblioteki często
upraszczają podstawowe zadania związane z językiem JavaScript. JQuery sprawia,
że przypisywanie zdarzeń i funkcji obsługujących zdarzenia jest banalnie proste.

Jak mogłeś się przekonać na stronie 142, korzystanie z biblioteki jQuery polega na
wybraniu odpowiedniego elementu strony oraz wykonaniu na nim pewnej operacji.
Ponieważ zdarzenia stanowią tak ważny i integralny element programowania w języku
JavaScript, tworzenie skryptów wykorzystujących jQuery lepiej wyobrazić sobie jako
proces trójetapowy.

 1. Pobieranie elementów strony.

W poprzednim rozdziale dowiedziałeś się, jak za pomocą jQuery i selektorów
CSS pobrać elementy strony, którymi chcesz manipulować. Przy przypisywaniu
zdarzeń potrzebne są znaczniki, z którymi użytkownik będzie wchodził w inte-
rakcję. Jakie elementy internauci będą klikać — odnośniki, komórki tabeli,
a może rysunki? Nad którą częścią strony użytkownik ma umieścić wskaź-
nik myszy, aby uruchomić określony kod?

 2. Przypisywanie zdarzenia.

W jQuery większości zdarzeń modelu DOM odpowiadają funkcje biblioteczne
o takiej samej nazwie. Dlatego aby przypisać zdarzenie do elementu, wystarczy
dodać kropkę, nazwę zdarzenia i parę nawiasów. Jeśli na przykład chcesz dodać
zdarzenie mouseover do każdego odnośnika na stronie, możesz to zrobić w na-
stępujący sposób:

$('a').mouseover();

Poniższy kod dodaje zdarzenie click do elementu o identyfikatorze menu:
$('#menu').click();

W ten sposób można używać wszystkich zdarzeń opisanych na stronach od 179
do 182. Ponadto dostępnych jest kilka zdarzeń specyficznych dla biblioteki
jQuery, omówionych na stronie 192.
Jednak dodanie zdarzenia to nie koniec pracy. Aby strona reagowała na zgłosze-
nie zdarzenia, trzeba przypisać do niego funkcję.

 3. Przekazywanie funkcji do zdarzenia.
W ostatnim kroku trzeba określić, co się stanie po zgłoszeniu zdarzenia. W tym
celu należy przekazać do zdarzenia funkcję zawierającą polecenia wykonywane
przy jego wystąpieniu. Może ona na przykład wyświetlać ukryty znacznik <div>
lub wyróżniać element, nad którym użytkownik umieścił wskaźnik myszy.
Do zdarzenia można przekazać nazwę wcześniej zdefiniowanej funkcji:

$('#start').click(startSlideShow);

Podczas przypisywania funkcji do zdarzeń należy pominąć nawiasy, standardowo
umieszczane po nazwie funkcji w celu jej wywołania. Oznacza to, że poniższy
zapis jest nieprawidłowy:

$('#start').click(startSlideShow());

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Obsługa zdarzeń
przy użyciu jQuery

184

Jednak najczęściej używanym sposobem obsługi zdarzeń jest przypisywanie do
nich funkcji anonimowych. Funkcje anonimowe poznałeś na stronie 168 —
najprościej rzecz ujmując, można stwierdzić, że są to funkcje bez nazwy. Pod-
stawowa struktura funkcji anonimowej wygląda następująco:

function() {
 // Tu kod funkcji.
}

Sposób przypisywania funkcji anonimowych do zdarzeń ilustruje rysunek 5.2.

Uwaga: Aby dowiedzieć się więcej o korzystaniu ze zdarzeń za pomocą biblioteki jQuery, odwiedź

stronę http://api.jquery.com/category/events/.

Rysunek 5.2. W jQuery zdarzenia działają jak funkcje, dlatego możesz przekazywać do nich argumenty. Funkcje
anonimowe możesz traktować jak zwykłe argumenty, podobne do pojedynczych danych. Z tej perspektywy łatwiej
zrozumieć działanie wszystkich znaków specjalnych. Na przykład w ostatnim wierszu symbol } oznacza koniec
funkcji anonimowej (czyli argumentu przekazanego do funkcji mouseover), znak) kończy funkcję mouseover(),
a średnik to ostatni symbol całej instrukcji rozpoczynającej się od selektora $('a')

Oto prosty przykład. Załóżmy, że na stronie znajduje się odnośnik o identyfikatorze
menu. Kiedy użytkownik umieści wskaźnik myszy nad tym odnośnikiem, skrypt ma
wyświetlać listę dodatkowych odsyłaczy (lista ta jest zapisana w znaczniku o iden-
tyfikatorze submenu). Dlatego należy dodać do odnośnika menu zdarzenie mouseover,
a następnie wywołać funkcję wyświetlającą znacznik submenu. Proces ten można
podzielić na cztery kroki.

 1. Pobieranie odnośnika menu:
$('#menu')

 2. Dołączanie zdarzenia:
$('#menu').mouseover();

 3. Dodawanie funkcji anonimowej:
$('#menu').mouseover(function() {

}); // Koniec funkcji mouseover.

Często można zobaczyć kolekcje zamykających nawiasów klamrowych, zwy-
czajnych nawiasów i średników — }); — które zazwyczaj reprezentują koniec
funkcji anonimowej umieszczonej wewnątrz wywołania funkcji. Ponieważ wy-
stępują stosunkowo często, dobrym pomysłem jest dodawanie do kodu komen-
tarzy — w tym przypadku jest to // koniec mouseover — informujących o tym,
które wywołanie kończy dana sekwencja znaków.

http://api.jquery.com/category/events/

R O Z D Z I AŁ 5 . A K C J A I R E A K C J A — OŻY W I A N I E S T R O N Z A P O M O CĄ Z D A R Z EŃ

Przykład — prezentacja
obsługi zdarzeń

185

 4. Dodawanie potrzebnych operacji (tu jest to wyświetlanie listy submenu):
$('#menu').mouseover(function() {
 $('#submenu').show();
}); // Koniec funkcji mouseover.

Wiele osób uważa zbitek znaków specjalnych potrzebny przy używaniu funkcji
anonimowych za mało zrozumiały (sekwencja }); na końcu instrukcji). Ten
fragment jest złożony, jednak najlepszy sposób na przyzwyczajenie się do dziw-
nego świata języka JavaScript polega na ćwiczeniu, dlatego następny praktyczny
przykład pomoże Ci utrwalić zdobytą wiedzę.

Uwaga: Funkcję show() opisano na stronie 212.

Przykład — prezentacja obsługi zdarzeń
W tym samouczku przedstawione zostało krótkie wprowadzenie do zagadnień ob-
sługi zdarzeń. Utworzysz w nim stronę reagującą na kilka różnych typów zdarzeń;
będziesz miał okazję zobaczyć, w jaki sposób obsługuje się zdarzenia przy użyciu
biblioteki jQuery.

Uwaga: Na stronie 46 znajdziesz informacje o tym, skąd można pobrać gotową wersję przykładu.

 1. W edytorze otwórz plik events_intro.html, znajdujący się w katalogu R05.

Zaczniemy do samego początku, czyli od dodania odwołania do biblioteki jQuery.

 2. Kliknij pusty wiersz, tuż powyżej zamykającego znacznika </head>, i wpisz
w nim:

<script src="../_js/jquery.min.js"></script>

Znacznik ten spowoduje wczytanie biblioteki jQuery z pliku dostępnego na tej
samej witrynie. Zwróć uwagę, że katalog, w którym jest przechowywana biblio-
teka, nosi nazwę _js (nie zapomnij o znaku podkreślenia na samym początku).
Teraz dodasz kolejny znacznik <script>, w którym umieścisz kod swojego
skryptu.

 3. Naciśnij klawisz Enter, aby utworzyć nowy, pusty wiersz i dodaj do pliku
poniższy fragment kodu, wyróżniony pogrubioną czcionką:

<script src="../_js/jquery.min.js"></script>
<script>

</script>

A teraz dodaj wywołanie funkcji document.ready().

 4. Kliknij pusty wiersz pomiędzy otwierającym i zamykającym znacznikiem
<script>, a następnie wpisz poniższy kod wyróżniony pogrubioną czcionką:

<script src="../_js/jquery.min.js"></script>
<script>
$(document).ready(function() {

}); // Koniec funkcji ready.
</script>

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Przykład — prezentacja
obsługi zdarzeń

186

Nie zapomnij o dodaniu komentarza JavaScript za sekwencją znaków });. Choć
dodawanie komentarzy wymaga dodatkowego pisania, później są one niezwykle
pomocne przy identyfikowaniu różnych części programu. W ten sposób wyko-
nałeś czynności, które będziesz powtarzał na wszystkich stronach wykorzystu-
jących bibliotekę jQuery.
Teraz nadszedł czas, by dodać zdarzenie. Twoje pierwsze zadanie jest całkiem
proste: masz wyświetlać okienko dialogowe, za każdym razem gdy użytkownik
dwukrotnie kliknie w dowolnym miejscu strony. Na początek musisz wybrać
element (w tym przypadku będzie nim cała strona), do którego chcesz dodać
zdarzenie.

 5. Kliknij pusty wiersz wewnątrz funkcji ready() i wpisz poniższy kod wy-
różniony pogrubioną czcionką:

<script src="../_js/jquery.min.js"></script>
<script>
$(document).ready(function() {
 $('html')
}); // Koniec funkcji ready.
</script>

Wywołanie $('html') wybiera element HTML, czyli całe okno przeglądarki.
Kolejną czynnością będzie dodanie zdarzenia.

 6. Za selektorem jQuery wpisz .dblclick();, by kod wyglądał tak, jak na po-
niższym przykładzie:

<script src="../_js/jquery.min.js"></script>
<script>
$(document).ready(function() {
 $('html').dblclick(); // Koniec funkcji dblclick.
}); // Koniec funkcji ready.
</script>

Funkcja .dblclick() jest funkcją jQuery, która sprawia, że przeglądarka będzie
gotowa do wykonania konkretnych czynności w momencie, gdy użytkownik
dwukrotnie kliknie na stronie. Jedynym brakującym elementem są te „czynno-
ści”, a określenie ich wymaga przekazania funkcji anonimowej jako argumentu
w wywołaniu funkcji dblclick() (jeśli musisz przypomnieć sobie, jak działają
funkcje oraz czym jest „przekazywanie argumentów”, informacje na ten temat
znajdziesz na stronie 115).

 7. Teraz dodaj funkcję anonimową, czyli wpisz poniższy kod wyróżniony po-
grubioną czcionką:

<script src="../_js/jquery.min.js"></script>
<script>
$(document).ready(function() {
 $('html').dblclick(function(){

 }); // Koniec funkcji dblclick.
}); // Koniec funkcji ready.
</script>

Nie przejmuj się, w dalszej części książki zagadnienia w przykładach nie będą opi-
sywane w takim żółwim tempie. Jednak teraz bardzo ważne jest, byś dobrze zro-
zumiał, jaką rolę pełni każdy element kodu. Funkcja anonimowa function(){}
jest jedynie zewnętrznym pojemnikiem, nie da żadnego efektu, dopóki nie umie-
ścisz jakiegoś kodu wewnątrz nawiasów klamrowych { }. A tym zajmiemy się
w kolejnym kroku.

R O Z D Z I AŁ 5 . A K C J A I R E A K C J A — OŻY W I A N I E S T R O N Z A P O M O CĄ Z D A R Z EŃ

Przykład — prezentacja
obsługi zdarzeń

187

 8. Teraz dodaj funkcję alert():
<script src="../_js/jquery.min.js"></script>
<script>
$(document).ready(function() {
 $('html').dblclick(function(){
 alert('ała!');
 }); // Koniec funkcji dblclick.
}); // Koniec funkcji ready.
</script>

Jeśli wyświetlisz stronę w przeglądarce i dwukrotnie klikniesz w dowolnym
jej miejscu, zostanie wyświetlone niewielkie okienko informacyjne JavaScriptu
z komunikatem ała!. Gdyby się nie pojawił, powinieneś dokładnie sprawdzić
cały wpisany kod i upewnić się, że niczego nie pominąłeś.

Uwaga: Po wykonaniu tych wszystkich przydługich czynności przygotowawczych wyświetlenie

prostego komunikatu „ała!” może trochę rozczarować. Musisz jednak pamiętać, że samo wywołanie

funkcji alert(), zastosowane w powyższym przykładzie, nie ma żadnego znaczenia — kluczowy jest

cały pozostały kod, stanowiący podstawę do obsługi zdarzeń przy użyciu biblioteki jQuery. Kiedy

już dowiesz się nieco więcej na temat korzystania z jQuery, bez najmniejszych problemów będziesz

mógł zastąpić wywołanie funkcji alert() sekwencją innych wywołań, które (w odpowiedzi na po-

dwójne kliknięcie strony) będą przesuwać elementy wyświetlane na stronie, wyświetlać interaktywny

pokaz slajdów bądź uruchamiać napisaną w JavaScripcie grę wyścigową.

A teraz, kiedy poznałeś już podstawy, spróbujemy obsłużyć kilka innych
zdarzeń.

 1. Dodaj fragment kodu wyróżniony pogrubioną czcionką, by skrypt wyglądał
tak, jak na poniższym przykładzie:

<script src="../_js/jquery.min.js"></script>
<script>
$(document).ready(function() {
 $('html').dblclick(function(){
 alert('ała!');
 }); // Koniec funkcji dblclick.
 $('a').mouseover(function(){

 }); // Koniec funkcji mouseover.
}); // Koniec funkcji ready.
</script>

Ten nowy fragment kodu wybiera wszystkie odnośniki na stronie (odpowiada
za to wywołanie $('a')) i dodaje do nich funkcję anonimową, która będzie ob-
sługiwać zdarzenia mouseover. Innymi słowy, coś się stanie, kiedy użytkownik
umieści wskaźnik myszy w obszarze odnośnika.

 2. Do anonimowej funkcji utworzonej w poprzednim kroku dodaj dwie in-
strukcje JavaScriptu:

<script src="../_js/jquery.min.js"></script>
<script>
$(document).ready(function() {
 $('html').dblclick(function(){
 alert('ała!');
 }); // Koniec funkcji dblclick.
 $('a').mouseover(function(){
 var message = "<p>Wskazałeś odnośnik myszą!</p>";

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Przykład — prezentacja
obsługi zdarzeń

188

 $('.main').append(message);
 }); // Koniec funkcji mouseover.
}); // Koniec funkcji ready.
</script>

Pierwszy wiersz kodu — var message = <p>Wskazałeś odnośnik myszą!
</p> ; — definiuje nową zmienną o nazwie message i zapisuje w niej łańcuch
znaków. Łańcuch ten zawiera znacznik akapitu i tekst umieszczony wewnątrz
niego. Drugi wiersz wybiera określony element strony należący do klasy main
(odpowiada za to wywołanie $('.main')), a następnie na jego końcu dodaje
zawartość zmiennej message. Nasza przykładowa strona zawiera znacznik
<div> należący do klasy main, a zatem wywołanie doda na końcu jego zawarto-
ści akapit z tekstem „Wskazałeś odnośnik myszą!” za każdym razem, gdy użyt-
kownik umieści wskaźnik myszy w obszarze jakiegoś odnośnika. (Informacje
na temat działania funkcji append() jQuery możesz znaleźć na stronie 158).

 3. Zapisz stronę, wyświetl ją w przeglądarce i spróbuj przesunąć wskaźnik
muszy nad dowolnym z odnośników widocznych na stronie.

Zawsze wtedy, gdy umieścisz wskaźnik myszy w obszarze jakiegoś odnośnika,
do strony zostanie dodany nowy akapit (patrz rysunek 5.3). Teraz dodasz do
strony ostatni fragment kodu — kiedy użytkownik kliknie przycisk formularza,
przeglądarka zmieni tekst wyświetlany na tym przycisku.

Rysunek 5.3. Biblioteka jQuery znacznie ułatwia reagowanie na czynności wykonywane przez użytkownika na
stronie, na przykład poprzez wyświetlenie okienka informacyjnego w odpowiedzi na dwukrotne kliknięcie strony,
wyświetlenie tekstu po wskazaniu odnośnika myszą lub kliknięcie przycisku formularza

R O Z D Z I AŁ 5 . A K C J A I R E A K C J A — OŻY W I A N I E S T R O N Z A P O M O CĄ Z D A R Z EŃ

Przykład — prezentacja
obsługi zdarzeń

189

 4. I w końcu dodaj poniższy kod wyróżniony pogrubioną czcionką, żeby skrypt
wyglądał tak, jak na poniższym przykładzie:

<script src="../_js/jquery.min.js"></script>
<script>
$(document).ready(function() {
 $('html').dblclick(function(){
 alert('ała!');
 }); // Koniec funkcji dblclick.
 $('a').mouseover(function(){
 var message = "<p>Wskazałeś odnośnik myszą!</p>";
 $('.main').append(message);
 }); // Koniec funkcji mouseover.
 $('#button').click(function(){
 $(this).val("Przestań!");
 }); // Koniec funkcji click.
}); // Koniec funkcji ready.
</script>

Oto podstawowy cel zastosowania powyższego fragmentu kodu: $('#button')
wybiera element o identyfikatorze button (w naszym przypadku jest to przycisk
formularza) i dodaje do niego funkcję obsługi zdarzenia click; kiedy zatem użyt-
kownik kliknie przycisk, coś się stanie. W naszym przykładzie, w odpowiedzi na
kliknięcie tekst wyświetlony na przycisku zostanie zmieniony na „Przestań!”.

Na stronie 169 dowiedziałeś się, jak można używać wywołania w postaci $(this)
wewnątrz pętli. Dokładnie w taki sam sposób działa ono wewnątrz funkcji ob-
sługi zdarzenia: w tym przypadku $(this) odnosi się do elementu odpowiadają-
cego na zdarzenie — czyli elementu, który wcześniej został wybrany i z którym
skojarzyliśmy funkcję obsługi zdarzenia. W naszym przykładzie jest to przycisk
formularza. (Więcej informacji na temat funkcji val() biblioteki jQuery znaj-
dziesz na stronie 281, jednak najprościej rzecz ujmując, służy ona do odczy-
tywania lub podawania wartości elementu. W naszym przykładzie przekazanie
w wywołaniu funkcji val() łańcucha znaków Przestań! spowoduje zasto-
sowanie go jako wartości przycisku).

 5. Ponownie zapisz stronę, wyświetl ją w przeglądarce i kliknij przycisk for-
mularza.

Tekst na przycisku powinien się natychmiast zmienić (patrz rysunek 5.3).
W ramach dodatkowego ćwiczenia napisz fragment kodu, który sprawi, że ko-
lor tła pola tekstowego zmieni się na czerwony, kiedy użytkownik je kliknie lub
przejdzie do niego, używając klawisza Tab. A oto drobna podpowiedź: w tym celu
musisz (a) wybrać pole tekstowe, (b) skorzystać z funkcji focus() (patrz strona
286), (c) użyć wywołania w postaci $(this) (tego samego, z którego korzystałeś
w kroku 12.), by odwołać się do pola tekstowego wewnątrz funkcji anonimowej
obsługującej zdarzenie oraz (d) skorzystać z funkcji css() jQuery (opisanej na
stronie 163), by zmienić kolor tła pola. Odpowiedź (jak również kompletną wer-
sję strony) możesz znaleźć w pliku complete_events_intro.html w katalogu R05.

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Zdarzenia specyficzne
dla biblioteki jQuery

190

Zdarzenia specyficzne dla biblioteki jQuery

Ponieważ zdarzenia są kluczowe przy tworzeniu interaktywnych stron WWW,
jQuery zawiera kilka specyficznych funkcji, które ułatwiają programowanie i zwięk-
szają interaktywność witryn.

Oczekiwanie na wczytanie kodu HTML
W czasie wczytywania strony przeglądarka próbuje natychmiast uruchomić napo-
tkane skrypty. Dlatego kod umieszczony w sekcji nagłówkowej może zostać wyko-
nany przed wyświetleniem strony. Taką sytuację widziałeś już w przykładzie przed-
stawionym na stronie 124, w którym strona WWW była pusta aż do momentu
zakończenia działania skryptu zadającego pytania. Niestety, to zjawisko często po-
woduje problemy. Ponieważ wiele programów JavaScript manipuluje zawartością
stron (wyświetla informacje po kliknięciu odnośnika, ukrywa elementy dokumentu,
dodaje paski do wierszy tabeli i tak dalej), próba zmiany kodu strony przed jej wczyta-
niem i wyświetleniem w przeglądarce może prowadzić do błędów.

Najczęściej stosowanym rozwiązaniem tego problemu jest użycie zdarzenia load.
Pozwala ono odroczyć uruchomienie kodu JavaScript do momentu wczytania i wy-
świetlenia całej strony. Niestety, oczekiwanie na uruchomienie kodu JavaScript do
momentu wczytania całej strony prowadzi nieraz do dziwnych efektów. Przeglądarka
zgłasza zdarzenie load dopiero po pobraniu wszystkich plików strony, w tym rysun-
ków, filmów, zewnętrznych arkuszy stylów i tak dalej. Dlatego użytkownicy stron
bogatych w grafikę mogą przez kilka sekund czekać na wczytanie rysunków przed
uruchomieniem kodu JavaScript. Jeśli ten kod wprowadza wiele zmian na stronie
(na przykład nadaje styl wierszom tabeli, ukrywa widoczne menu, a nawet zarządza
układem elementów), strona będzie zmieniać się na oczach odwiedzających.

Na szczęście jQuery pozwala rozwiązać ten problem. Zamiast używać zdarzenia
load do uruchamiania programów JavaScript, jQuery udostępnia funkcję ready(),
która czeka na pobranie samego kodu HTML, a następnie wykonuje skrypty. To
podejście umożliwia natychmiastowe manipulowanie stroną bez konieczności ocze-
kiwania na wolno wczytujące się rysunki i filmy. To rozwiązanie jest skompliko-
wane, ale użyteczne, dlatego stanowi następny powód do używania bibliotek języka
JavaScript.

Z funkcją ready() zetknąłeś się już w kilku przykładach w tej książce. Jej podsta-
wowa struktura wygląda następująco:

$(document).ready(function() {
 // Tu uruchamiany kod.
});

Cały kod programu należy umieścić w tej funkcji. Ponieważ funkcja ready() jest tak
ważna, prawdopodobnie będziesz używał jej na każdej stronie, na której będziesz
korzystał z jQuery. Wystarczy użyć jej jeden raz. Zwykle funkcja ta jest pierwszym
i ostatnim wierszem skryptu. Należy umieścić ją między otwierającym a zamy-
kającym znacznikiem <script> (w końcu jest to kod JavaScript) i po elemencie
<script>… </script> dołączającym do strony bibliotekę jQuery.

R O Z D Z I AŁ 5 . A K C J A I R E A K C J A — OŻY W I A N I E S T R O N Z A P O M O CĄ Z D A R Z EŃ

Zdarzenia specyficzne
dla biblioteki jQuery

191

Dlatego w kontekście kompletnej strony WWW funkcja ta powinna wyglądać na-
stępująco:

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Tytuł strony</title>
<script src="js/jquery.js"></script>
<script>
$(document).ready(function() {
 // Tu należy umieścić cały kod JavaScript.
}); // Koniec funkcji ready.
</script>
</head>
<body>
Zawartość strony...
</body>
</html>

Wskazówka: Ponieważ funkcja ready() znajduje się na prawie wszystkich stronach, w których

kodzie używana jest biblioteka jQuery, dostępny jest skrótowy zapis. Możesz pominąć fragment

$(document) i użyć poniższego kodu:

 $(function() {

 // Tu można wykonać operacje na wczytanym dokumencie.

 });

Alternatywa dla funkcji $(document).ready()

Umieszczanie funkcji $(document).ready() w sekcji nagłówka strony ma na
celu opóźnienie wykonania kodu JavaScript aż do momentu, kiedy cała strona
będzie już pobrana i wyświetlona. Jednak dokładnie ten sam efekt można uzy-
skać także w inny sposób: wystarczy umieścić kod JavaScript za kodem HTML.
Przykładowo wielu twórców stron umieszcza swój kod JavaScript bezpośrednio
przed zamykającym znacznikiem </body>, tak jak pokazano na poniższym
przykładzie:

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Tytuł strony</title>
</head>
<body>
Zawartość strony...
<script src="js/jquery.js"></script>
<script>
 // Tu można umieścić cały kod JavaScript.
</script>
</body>
</html>

W tym przypadku stosowanie funkcji $(document).ready() nie jest konieczne,
gdyż w chwili wczytania skryptu dokument już będzie gotowy. Takie rozwiąza-
nie może mieć spore zalety. Przede wszystkim nie trzeba wpisywać dodatkowego
kodu, czyli wywołania funkcji .ready(). Poza tym wczytywanie i uruchamianie
kodu JavaScript wstrzymuje działanie przeglądarki aż do momentu, gdy zostanie
on wczytany i wykonany. Jeśli do strony dołączonych zostanie wiele zewnętrznych

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Zdarzenia specyficzne
dla biblioteki jQuery

192

plików JavaScript, których wczytywanie zajmuje sporo czasu, może ona działać
nieprawidłowo. W takim przypadku osoby, które z niej korzystają, mogą odnieść
wrażenie, że strona długo się wczytuje.

Na wielu blogach poświęconych projektowaniu i tworzeniu stron można wyczytać,
że umieszczanie skryptów na końcu dokumentów HTML jest prawidłowym roz-
wiązaniem. Jednak także ono ma swoje wady. Czasami używany kod JavaScript
wprowadza ogromne zmiany w wyglądzie strony. Może on na przykład całkowi-
cie modyfikować złożoną tabelę HTML, poprawiając jej przejrzystość i ułatwiając
nawigację. Ewentualnie skrypt może zmieniać prostą typografię stosowaną na
stronie i przekształcać ją na coś fantastycznego (http://letteringjs.com/).

W takim przypadku, jeśli będziemy czekać, aż kod HTML zostanie wczytany i wy-
świetlony, zanim zostanie wczytana biblioteka jQuery i wykonany kod JavaScript,
użytkownik najpierw zobaczy stronę w jej początkowej (nieprzetworzonej przez
skrypty) postaci, a następnie, na jego oczach, zmieni ona wygląd. Taka „nagła
zmiana wyglądu” może być niepokojąca. Co więcej, jeśli tworzymy aplikację in-
ternetową, która nie może działać bez wykorzystania kodu JavaScript, to wyświe-
tlanie kodu HTML, a następnie zmuszanie użytkownika do czekania na wczytanie
kodu JavaScript nie ma większego sensu — w końcu przyciski, widżety oraz
wszelkie inne elementy interfejsu użytkownika obsługiwane przez skrypty będą
jedynie bezużytecznymi fragmentami kodu HTML aż do momentu „ożywienia
ich” przez JavaScript.

A zatem odpowiedź na pytanie, gdzie umieścić kod JavaScript, brzmi: „To zale-
ży”. Czasami strona będzie reagować sprawniej, kiedy kod JavaScript zostanie
umieszczony za kodem HTML, a czasami, kiedy umieścimy go w sekcji nagłów-
ka strony. Na szczęście dzięki temu, że przeglądarki korzystają z pamięci pod-
ręcznej, kiedy strona z naszej witryny wczyta już cały niezbędny kod JavaScript,
pozostałe strony będą miały do niego błyskawiczny dostęp i nie będą musiały tracić
czasu na jego ponowne pobieranie. Innymi słowy, nie ma powodu, żeby się tym
specjalnie przejmować: jeśli uznamy, że nasza strona nie wyświetla się dosta-
tecznie szybko, możemy spróbować przenieść skrypty na jej koniec. Jeśli to po-
może, dobrze. Jednak w wielu przypadkach to, czy użyjesz funkcji .ready() na
początku strony, czy zrezygnujesz z niej i umieścisz kod na końcu strony, nie ma
żadnego znaczenia.

Uwaga: Tworząc strony na własnym komputerze i wyświetlając je bezpośrednio w przeglądarce, nie

zauważymy opisanych wcześniej problemów. Takie problemy związane z czasem pobierania i wyświe-

tlania stron można zaobserwować wyłącznie wtedy, gdy witryna będzie umieszczona na serwerze

WWW, a strony i wszystkie dodatkowe pliki będą pobierane przez stosunkowo wolne łącze.

Umieszczanie i usuwanie wskaźnika myszy z elementu
Zdarzenia mousover i mouseout często są używane razem. Kiedy na przykład
użytkownik umieści wskaźnik nad przyciskiem, pojawia się menu, a gdy wskaźnik
znajdzie się poza elementem, menu znika. Ponieważ łączenie tych dwóch zdarzeń
jest tak powszechne, jQuery udostępnia skrótowy zapis uwzględniający oba.
Funkcja hover() biblioteki jQuery działa tak, jak każde inne zdarzenie, jednak

http://letteringjs.com/

R O Z D Z I AŁ 5 . A K C J A I R E A K C J A — OŻY W I A N I E S T R O N Z A P O M O CĄ Z D A R Z EŃ

Zdarzenia specyficzne
dla biblioteki jQuery

193

jako argument przyjmuje dwie funkcje zamiast jednej. Pierwsza funkcja jest urucha-
miana po umieszczeniu wskaźnika myszy nad elementem, a druga — kiedy użytkow-
nik przeniesie wskaźnik myszy w inne miejsce. Podstawowa struktura tej funkcji
wygląda następująco:

$('#selektor').hover(funkcja1, funkcja2);

Często napotkasz funkcję hover(), używaną wraz z dwiema funkcjami anoni-
mowymi. Taki kod wygląda dziwnie, jednak następny przykład powinien ułatwić jego
zrozumienie. Załóżmy, że po najechaniu wskaźnikiem myszy na odnośnik o iden-
tyfikatorze menu skrypt ma wyświetlać niewidoczny początkowo znacznik DIV
o identyfikatorze submenu. Przeniesienie wskaźnika myszy w inne miejsce ma po-
wodować ponowne ukrycie znacznika. Ten efekt można uzyskać za pomocą funkcji
hover():

$('#menu').hover(function() {
 $('#submenu').show();
}, function() {
 $('#submenu').hide();
}); // Koniec funkcji hover.

Aby poprawić czytelność instrukcji z wieloma funkcjami anonimowymi, warto
umieścić każdą funkcję w odrębnym wierszu. Oto nieco bardziej przejrzysta forma
tego samego kodu:

$('#menu').hover(
 function() {
 $('#submenu').show();
 }, // Koniec funkcji mouseover.
 function() {
 $('#submenu').hide();
 } // Koniec funkcji mouseout.
); // Koniec funkcji hover.

Na rysunku 5.4 przedstawiono działanie tego kodu przy wystąpieniu zdarzeń
mouseover i mouseout.

Rysunek 5.4. Funkcja hover() biblioteki
jQuery przyjmuje jako argumenty dwie
funkcje. Pierwsza jest uruchamiana po
umieszczeniu wskaźnika nad elementem,
a druga — kiedy użytkownik przeniesie
wskaźnik w inne miejsce

Jeśli uważasz, że metoda oparta na funkcjach anonimowych jest zbyt skomplikowana,
możesz uzyskać ten sam efekt za pomocą zwykłych funkcji (patrz strona 115).
Najpierw utwórz standardową funkcję, którą skrypt ma uruchamiać po zajściu zda-
rzenia mouseover. W drugiej standardowej funkcji umieść kod wykonywany po zgło-
szeniu zdarzenia mouseout. Następnie przekaż nazwy obu tych funkcji do funkcji
hover():

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Zdarzenia specyficzne
dla biblioteki jQuery

194

function showSubmenu() {
 $('#submenu').show();
}
function hideSubmenu() {
 $('#submenu').hide();
}
$('#menu').hover(showSubmenu, hideSubmenu);

Jeśli ta technika wydaje Ci się łatwiejsza, możesz jej używać. Oba podejścia działają
tak samo, jednak część programistów ceni funkcje anonimowe, ponieważ pozwalają
umieścić cały kod w jednym miejscu, bez dzielenia go na kilka odrębnych instrukcji.

Uwaga: Biblioteka jQuery w wersjach do 1.9 udostępniała przydatną funkcję toggle(). Działała ona

podobnie jak funkcja hover() z tą różnicą, że obsługiwała zdarzenia click. Pierwszy zestaw kodu ob-

sługiwał pierwsze kliknięcie, a drugi zestaw — drugie. Innymi słowy, pozwalała ona „przełączać" kod ob-

sługujący kliknięcia — stanowiła przez to doskonałe narzędzie do wyświetlania wybranego elementu

strony w ramach pierwszego kliknięcia i ukrywania go po drugim kliknięciu. Jednak funkcja ta nie jest

już dostępna, dlatego w dalszej części rozdziału, w przykładzie rozpoczynającym się na stronie 204 na-

uczysz się odtwarzać jej możliwości funkcjonalne.

Obiekt reprezentujący zdarzenie
Kiedy przeglądarka zgłasza zdarzenie, rejestruje informacje na jego temat i zapisuje go
w obiekcie zdarzenia. Obiekt ten zawiera dane zebrane w momencie wystąpienia
zdarzenia, na przykład współrzędne wskaźnika myszy, element powiązany ze zda-
rzeniem lub informacje o tym, czy wciśnięty był klawisz Shift.

W jQuery obiekt zdarzenia jest dostępny w funkcji odpowiedzialnej za obsługę danego
zdarzenia. Obiekt ten jest przekazywany do funkcji, dlatego aby uzyskać do niego
dostęp, należy użyć parametru. Poniższy kod sprawdza, jakie były współrzędne X i Y
wskaźnika w momencie kliknięcia dowolnego fragmentu strony:

$(document).click(function(evt) {
 var xPos = evt.pageX;
 var yPox = evt.pageY;
 alert('X:' + xPos + ' Y:' + yPos);
}); // Koniec funkci click.

Istotna jest tu zmienna evt. W momencie wywołania funkcji (w wyniku kliknięcia
dowolnego miejsca w oknie przeglądarki) program zapisuje obiekt zdarzenia w zmien-
nej evt. W ciele funkcji można uzyskać dostęp do różnych właściwości tego obiektu
dzięki używaniu notacji z kropką, na przykład wyrażenie evt.pageX zwraca współ-
rzędną X wskaźnika, czyli liczbę pikseli od lewej krawędzi okna.

Uwaga: W tym kodzie evt to nazwa zmiennej podana przez programistę. Nie jest to słowo kluczowe

języka JavaScript, a jedynie zmienna służąca do przechowywania obiektu zdarzenia. Możesz użyć

też dowolnej innej nazwy, na przykład event lub e.

Obiekt zdarzenia ma wiele właściwości, jednak — niestety — ich lista jest różna
w poszczególnych przeglądarkach. W tabeli 5.1 znajdziesz kilka właściwości obsłu-
giwanych przez większość przeglądarek.

R O Z D Z I AŁ 5 . A K C J A I R E A K C J A — OŻY W I A N I E S T R O N Z A P O M O CĄ Z D A R Z EŃ

Zdarzenia specyficzne
dla biblioteki jQuery

195

Tabela 5.1. Każde zdarzenie związane jest z obiektem o różnych właściwościach, które można
sprawdzić w funkcji obsługującej dane zdarzenie

Właściwość
zdarzenia

Opis

pageX Odległość w pikselach wskaźnika myszy od lewej krawędzi okna przeglądarki.

pageY Odległość w pikselach wskaźnika myszy od górnej krawędzi okna przeglądarki.

screenX Odległość w pikselach wskaźnika myszy od lewej krawędzi monitora.

screenY Odległość w pikselach wskaźnika myszy od górnej krawędzi monitora.

shiftKey Ma wartość true, jeśli w momencie wystąpienia zdarzenia wciśnięty był
klawisz Shift.

which Należy jej używać w zdarzeniu keypress. Pozwala sprawdzić kod
wciśniętego klawisza (patrz następna wskazówka).

target Obiekt docelowy zdarzenia. Na przykład kliknięty element w zdarzeniu click().

data Obiekt jQuery użyty w funkcji on() do przekazania danych do funkcji
obsługi zdarzenia (patrz strona 197).

Wskazówka: Za pomocą właściwości which obiektu zdarzenia keypress() można pobrać kod wci-

śniętego klawisza. Jeśli chcesz ustalić, jaki znak wcisnął użytkownik (a, K, 9 i tak dalej), musisz przekazać

wartość właściwości which do metody języka JavaScript, która przekształci numer klawisza na literę,

liczbę lub symbol:

 String.fromCharCode(evt.which)

Blokowanie standardowych reakcji na zdarzenia
Niektóre elementy języka HTML mają wbudowane reakcje na zdarzenia. I tak uży-
cie odnośnika powoduje przejście do nowej strony, a kliknięcie przycisku Wyślij
przesyła dane formularza na serwer w celu ich przetworzenia. Czasem takie domyślne
reakcje są niepożądane. Na przykład warto zablokować przesyłanie formularza (zda-
rzenie submit()), jeśli użytkownik pominął wymagane dane.

Aby wyłączyć standardową reakcję przeglądarki na zdarzenie, należy użyć funkcji
preventDefault(). Jest to funkcja obiektu zdarzenia (patrz poprzedni punkt), dla-
tego można ją wywołać w funkcji obsługującej dane zdarzenie. Załóżmy, że na stronie
znajduje się odnośnik o identyfikatorze menu. Prowadzi on do następnej strony
z menu, co umożliwia dostęp do menu w przeglądarkach z wyłączoną obsługą języka
JavaScript. Jednak na stronie znajduje się też kod JavaScript, który po kliknięciu tego
odnośnika wyświetla menu w prawej części bieżącej strony. Domyślnie przeglądarka
użyje odnośnika do przejścia do nowej strony z menu, dlatego należy zablokować
tę reakcję:

$('#menu').click(function(evt){
 // Kod JavaScript.
 evt.preventDefault(); // Program nie przejdzie do strony z menu.
});

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Zdarzenia specyficzne
dla biblioteki jQuery

196

Inne rozwiązanie polega na zwróceniu wartości false w ostatnim wierszu funkcji.
Poniższy fragment kodu działa tak samo jak wcześniejszy:

$('#menu').click(function(evt){
 // Kod JavaScript.
 return false; // Program nie przejdzie do strony z menu.
});

Usuwanie zdarzeń
Czasem trzeba usunąć zdarzenie przypisane wcześniej do znacznika. Można to zrobić
za pomocą funkcji off(). Aby jej użyć, najpierw należy utworzyć obiekt jQuery, re-
prezentujący element z usuwanym zdarzeniem. Następnie wystarczy dodać funkcję
off() i przekazać do niej łańcuch znaków z nazwą zbędnego zdarzenia. Jeśli chcesz
sprawić, aby wszystkie znaczniki tabButton nie reagowały na kliknięcie, możesz
wywołać poniższą instrukcję:

$('.tabButton').off('click');

Poniższy krótki skrypt ilustruje działanie funkcji off():
1 $('a').mouseover(function() {
2 alert('Wskaźnik myszy znajduje się nade mną!');
3 });
4 $('#disable').click(function() {
5 $('a').off('mouseover');
6 });

Wiersze od 1. do 3. przypisują funkcję do zdarzenia mouseover wszystkich odnośni-
ków (znaczników <a>). Umieszczenie wskaźnika myszy nad odnośnikiem spowo-
duje wyświetlenie okna dialogowego z tekstem „Wskaźnik myszy znajduje się nade
mną!”. Jednak ponieważ ciągłe wyświetlanie tego komunikatu jest irytujące, wier-
sze od 4. do 6. umożliwiają wyłączenie powiadomień. Kiedy użytkownik kliknie
odnośnik o identyfikatorze disable (na przykład przycisk formularza), skrypt
odłączy zdarzenie mouseover od wszystkich odnośników, dlatego okno dialogowe
przestanie się pojawiać.

Jeśli chcesz usunąć ze znacznika wszystkie obsługiwane w nim zdarzenia, wystar-
czy wywołać funkcję off() bez żadnych argumentów. Aby na przykład usunąć
wszystkie zdarzenia — mouseover, click, dblclick i tak dalej — z przycisku
przesyłającego formularz na serwer, mógłbyś użyć następującego fragmentu kodu:

$('input[type="submit"]').off();

To dość drastyczne rozwiązanie i w większości przypadków nie będziesz chciał
usuwać z elementu wszystkich obsługiwanych zdarzeń.

Uwaga: Więcej informacji o funkcji off() biblioteki jQuery znajdziesz na stronie

http://api.jquery.com/off/.

http://api.jquery.com/off/

R O Z D Z I AŁ 5 . A K C J A I R E A K C J A — OŻY W I A N I E S T R O N Z A P O M O CĄ Z D A R Z EŃ

Zaawansowane
zarządzanie zdarzeniami

197

P O R A D N I A D L A Z A A W A N S O W A N Y C H

Wstrzymywanie przekazywania zdarzeń
Internet Explorer oraz model zdarzeń organizacji W3C,

używany w przeglądarkach Firefox, Safari i Opera, umoż-

liwiają przekazywanie zdarzeń poza element, który zare-

jestruje zdarzenie jako pierwszy. Załóżmy, że przypisałeś

funkcję obsługującą zdarzenia click odnośnika. Po jego

kliknięciu przeglądarka zgłasza to zdarzenie i uruchamia

funkcję. Jednak to jeszcze nie koniec. Na to samo klik-

nięcie zareaguje też każdy przodek (czyli element, we-

wnątrz którego jest umieszczony kliknięty element). Dla-

tego jeśli przypisałeś też funkcję obsługującą zdarzenia

click znacznika <div>, w którym znajduje się wspomnia-

ny odnośnik, uruchomiona zostanie także ta funkcja.

Ten mechanizm (tak zwane przekazywanie zdarzeń)

sprawia, że jedno zdarzenie może wywołać reakcję kilku

elementów. Oto następny przykład. Do rysunku można

dodać zdarzenie click, aby jego kliknięcie powodo-

wało wyświetlenie nowego obrazka. Rysunek znajduje

się w znaczniku <div>, który także reaguje na zdarzenie

click (na przykład wyświetla okno dialogowe). Kliknięcie

rysunku spowoduje uruchomienie funkcji określonych

dla obu znaczników, ponieważ zdarzenie zajdzie także

dla znacznika <div>.

Taka sytuacja zdarza się rzadko, jednak prowadzi zwykle

do niepożądanych skutków. Nie chcesz przecież, aby

znacznik <div> reagował na kliknięcie rysunku. Dlatego

należy zablokować przekazywanie zdarzeń do znacz-

nika <div>, a przy tym uruchomić funkcję przypisaną

do zdarzenia click rysunku. Oznacza to, że kliknięcie

obrazka powinno prowadzić do zmiany grafiki i zatrzy-

mania zdarzenia click.

Funkcja stopPropagation() zatrzymuje przekazywanie

zdarzenia do przodków. Jest to metoda obiektu zdarze-

nia (patrz strona 194), dlatego można jej użyć w funkcji

obsługującej dane zdarzenie:

$('#theLink').click(function(evt){
 // Wykonywane operacje.
 evt.stopPropagation(); // Zatrzymuje
 // przekazywanie zdarzenia.
});

Zaawansowane zarządzanie zdarzeniami
Możesz napisać wiele programów, używając tylko metod i technik obsługi zdarzeń
biblioteki jQuery, opisanych na poprzednich stronach. Jednak jeśli chcesz w pełni
wykorzystać możliwości obsługi zdarzeń oferowane przez tę bibliotekę, powinieneś
nauczyć się stosowania funkcji on().

Uwaga: Jeśli wciąż przyswajasz sobie materiał przedstawiony w poprzednim podrozdziale, możesz

pominąć ten fragment i przejść bezpośrednio do przykładu na stronie 204. Zawsze możesz wrócić

do tego punktu, kiedy nabierzesz doświadczenia w obsłudze zdarzeń.

Metoda on() umożliwia bardziej elastyczne zarządzanie zdarzeniami niż specy-
ficzne dla zdarzeń funkcje biblioteki jQuery, na przykład click() i mouseover().
Metoda ta nie tylko pozwala na określenie zdarzenia i reagującej na nie funkcji, ale
też na przekazanie dodatkowych danych do funkcji obsługującej zdarzenie. Umoż-
liwia to różnym elementom i zdarzeniom (na przykład kliknięciu odnośnika lub
umieszczeniu wskaźnika myszy nad rysunkiem) przekazywanie odmiennych
informacji do tej samej funkcji obsługi zdarzeń. Oznacza to, że jedna funkcja może
działać w inny sposób, w zależności od tego, które zdarzenie obsługuje.

Podstawowa składnia funkcji on() wygląda następująco:
$('#selektor').on('click', selector, myData, functionName);

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Zaawansowane
zarządzanie zdarzeniami

198

Uwaga: Wraz z rozwojem biblioteki jQuery zmieniały się także nazwy funkcji używanych do obsługi

zdarzeń. Jeśli czytasz starsze książki lub wpisy na blogach, zapewne spotkałeś się z takimi funkcjami jak

bind(), live() lub delegate(). Jednak obecnie wszystkie te funkcje służące do dodawania zdarzeń

do elementów zostały zastąpione jedną funkcją on(). Oprócz tego funkcja unbind(), służąca wcześniej

do usuwania zdarzeń z elementów, została zastąpiona funkcją off().

Pierwszy argument to łańcuch znaków zawierający nazwę zdarzenia (na przykład
click, mouseover lub dowolne inne zdarzenie wymienione na stronach od 179
do 182).

Drugi argument jest opcjonalny, więc podawanie jego wartości w wywołaniach funkcji
on() nie jest konieczne. Jeśli jednak zdecydujesz się go podać, musi to być prawidłowy
selektor, taki jak tr, .callout bądź #alarm.

Uwaga: Tego drugiego argumentu można używać do obsługi zdarzenia w innym elemencie umiesz-

czonym wewnątrz elementu, który został wybrany. Technika ta jest określana jako delegowanie zda-

rzeń (ang. event delegation) i dowiesz się o niej na stronie 200.

Trzecim argumentem funkcji on() są dodatkowe dane, które mają zostać do niej
przekazane. Może to być literał obiektowy lub zmienna zawierająca taki literał. Lite-
rały obiektowe (patrz strona 165) to listy nazw i wartości właściwości:

{
 firstName : 'Robert',
 lastName : 'Kowalski'
}

Literał obiektowy można zapisać w zmiennej w następujący sposób:
var linkVar = {message:'Pozdrowienia od odnośnika'};

Czwarty argument funkcji on() to następna funkcja. Jest ona uruchamiana po zgło-
szeniu zdarzenia. Można użyć tu funkcji anonimowej lub standardowej, podobnie
jak podczas używania zwykłych zdarzeń biblioteki jQuery, co opisano na stronie 182.

Uwaga: Przekazywanie danych w funkcji on() nie jest konieczne. Jeśli chcesz jej użyć do dołącze-

nia zdarzenia i funkcji do elementu, możesz pominąć zmienną z danymi:

 $('selektor').on('click', functionName);

Ten kod działa tak samo jak poniższa instrukcja:

 $('selektor').click(functionName);

Załóżmy, że chcesz wyświetlić okno dialogowe w reakcji na zgłoszenie zdarzenia,
jednak komunikat ma być dopasowany do elementu powiązanego z tym zdarzeniem.
Aby uzyskać ten efekt, można utworzyć zmienne przechowujące różne literały obiek-
towe, a następnie przekazywać te zmienne do funkcji on(), powiązanej z różnymi
elementami:

var linkVar = { message:'Pozdrowienia od odnośnika'};
var pVar = { message:'Pozdrowienia od akapitu'};
function showMessage(evt) {
 alert(evt.data.message);
}
$('a').on('click',linkVar,showMessage);
$('p').on('mouseover',pVar,showMessage);

R O Z D Z I AŁ 5 . A K C J A I R E A K C J A — OŻY W I A N I E S T R O N Z A P O M O CĄ Z D A R Z EŃ

Zaawansowane
zarządzanie zdarzeniami

199

Na rysunku 5.5 pokazano działanie tego kodu. Skrypt tworzy dwie zmienne —
linkVar w wierszu pierwszym i pVar w wierszu drugim. Obie zmienne zawierają
literał obiektowy z właściwością o tej samej nazwie, message, ale z innym tekstem
komunikatu. Funkcja showMessage() przyjmuje obiekt zdarzenia (patrz strona 194)
i zapisuje go w zmiennej evt. Funkcja ta wyświetla wartość właściwości message
(jest ona zapisana we właściwości data obiektu zdarzenia) za pomocą polecenia
alert(). Warto pamiętać, że message to nazwa właściwości zdefiniowana w literale
obiektowym.

Rysunek 5.5. Funkcja on() bi-
blioteki jQuery umożliwia prze-
kazywanie danych do funkcji
obsługujących zdarzenia. W ten
sposób można użyć jednej
standardowej funkcji do obsługi
k lku elementów (a nawet róż-
nych zdarzeń) i jednocześnie
korzystać w tej funkcji z danych
specyficznych dla funkcji
obsługujących zdarzenia

Inne sposoby stosowania funkcji on()

Funkcja on() biblioteki jQuery zapewnia bardzo dużą elastyczność. Oprócz technik
opisanych w poprzednim podrozdziale, pozwala także wyznaczyć jedną funkcję do ob-
sługi dwóch lub nawet większej liczby zdarzeń. Na przykład załóżmy, że piszemy pro-
gram, który w odpowiedzi na kliknięcie miniaturki zdjęcia będzie wyświetlał na
ekranie jego powiększoną wersję (jest to popularne rozwiązanie o nazwie „lightbox”,

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Zaawansowane
zarządzanie zdarzeniami

200

które możemy znaleźć na tysiącach stron). Chcemy też, by powiększony obrazek
zniknął, gdy użytkownik kliknie w dowolnym miejscu strony bądź naciśnie do-
wolny klawisz (udostępnienie obu tych możliwości sprawi, że ze strony wygodnie bę-
dą mogły korzystać zarówno osoby preferujące stosowanie myszy, jak i klawiatury).
Oto kod, który zapewnia stosowną funkcjonalność:

$(document).on('click keypress', function() {
 $('#lightbox').hide();
}); // Koniec funkcji on.

Najważniejszym fragmentem powyższego przykładu jest pierwszy argument me-
tody bind() — 'click keypress'. Podając nazwy kilku zdarzeń, oddzielone od
siebie znakami odstępu, informujemy jQuery, że każde z nich ma być obsługiwane
przy użyciu przekazanej funkcji anonimowej. W naszym przypadku nastąpi to, gdy
zostanie zgłoszone zarówno zdarzenie click, jak i keypress, skierowane do całego
dokumentu.

Jeśli oprócz tego chcemy obsługiwać kilka zdarzeń i każdemu z nich przypisać inną
funkcję obsługi, nie musimy w tym celu używać kilku odrębnych wywołań metody
on(). Innymi słowy, jeśli chcemy, by po kliknięciu elementu została wykonana
jedna czynność, a inna w momencie, gdy użytkownik umieści na nim wskaźnik
myszy, moglibyśmy to zrobić za pomocą następującego fragmentu kodu:

$('#theElement').on('click', function() {
 // tu robimy coś interesującego
}); // Koniec funkcji on.
$('#theElement').on('mouseover', function() {
 // tu robimy coś interesującego
}); // Koniec funkcji on.

Jednak dokładnie to samo można uzyskać, przekazując w wywołaniu metody on() li-
terał obiektowy (patrz strona 165) składający się z nazwy zdarzenia oraz podanej po
dwukropku funkcji anonimowej. Poniżej przedstawiona została zmodyfikowana
wersja powyższego fragmentu kodu, w której funkcja on() jest wywoływana tylko
raz, a przy tym w jej wywołaniu jest przekazywany literał obiektowy (wyróżniony po-
grubioną czcionką):

$('#theElement').on({
 'click' : function() {
 // Tu robimy coś interesującego.
 }, // Koniec funkcji click.
 'mouseover' : function() {
 // Tu robimy coś interesującego
 }; // Koniec funkcji mouseover.
}); // Koniec funkcji on.

Delegowanie zdarzeń przy użyciu funkcji on()
Zgodnie z informacjami podanymi na stronie 197, drugim, opcjonalnym argu-
mentem metody on() może być selektor innego elementu:

$('#selektor).on('click', selector, myData, functionName);

Tym drugim argumentem może być dowolny, prawidłowy selektor jQuery, na
przykład selektor identyfikatora, elementu lub dowolny spośród selektorów opi-
sanych na stronie 147. Przekazanie takiego selektora w wywołaniu funkcji on()

R O Z D Z I AŁ 5 . A K C J A I R E A K C J A — OŻY W I A N I E S T R O N Z A P O M O CĄ Z D A R Z EŃ

Zaawansowane
zarządzanie zdarzeniami

201

znacząco zmienia jej działanie. Bez niego zdarzenie jest obsługiwane w elemen-
cie wskazanym przez początkowy selektor, w powyższym przykładzie będzie to
$('selektor'). Załóżmy, że umieściłeś na stronie następujący fragment kodu:

$('li').on('click', function() {
 $(this).css('text-decoration', 'line-through');
}); // Koniec funkcji on.

Powyższy kod powoduje, że każdy znacznik , który klikniesz, zostanie prze-
kreślony. Pamiętaj, że w tym przypadku $(this) reprezentuje element obsługu-
jący zdarzenie, czyli kliknięty znacznik . Innymi słowy, zdarzenie click zo-
stało „powiązane” ze znacznikiem . W większości przypadków właśnie o to
będzie chodziło — o zdefiniowanie funkcji, która zostanie wykonana w momen-
cie, gdy użytkownik wejdzie w interakcję z wybranym elementem strony. Dzięki
temu można wykonywać określone funkcje, kiedy użytkownik kliknie odnośnik,
wskaże myszą opcję w menu, prześle formularz i tak dalej.

Uwaga: Wciąż nie jesteś pewny, co oznacza $(this)? Szczegółowe informacje na ten temat znaj-

dziesz na stronie 169, natomiast na stronie 189 dowiesz się wszystkiego o tym, w jaki sposób wyra-

żenie $(this) jest używane podczas obsługi zdarzeń.

Jednak z takim sposobem obsługi zdarzeń w elementach wiąże się jeden pro-
blem: można go zastosować wyłącznie w przypadku, gdy wybrany element już
istnieje na stronie. Jeśli kod HTML zostanie dodany do strony dynamicznie, już
po wcześniejszym określeniu funkcji obsługującej zdarzenia przy użyciu takich
funkcji jQuery jak click(), mouseover() lub on(), to te nowe elementy nie będą
reagowały na żadne zdarzenia. No dobrze, to całkiem rozsądne, jednak wymaga
nieco dokładniejszego wyjaśnienia.

Załóżmy, że utworzyłeś aplikację pozwalającą użytkownikowi na zarządzanie li-
stą zadań do zrobienia. Bezpośrednio po wczytaniu takiej aplikacji lista jest pusta
(patrz punkt 1. na rysunku 5.6.). Użytkownik może wpisać coś w polu tekstowym
i kliknąć przycisk Dodaj zadanie, aby dodać do listy nowe zadania (patrz punkt 2.
na rysunku 5.6). Kiedy użytkownik wykona zadanie, może je kliknąć na liście,
by oznaczyć, że zostało zrobione (patrz punkt 3. na rysunku 5.6).

Na pewno domyślasz się, że aby oznaczyć zadanie jako wykonane, musisz dodać
do każdego znacznika obsługę zdarzeń click. W przykładzie przedstawionym
na rysunku 5.6 wykonane zadania są przekreślone i wyświetlone na szaro. Pro-
blem jednak polega na tym, że w momencie wczytywania i wyświetlania strony nie
ma jeszcze żadnych znaczników , zatem dodanie funkcji obsługującej zdarzenia
click do tych właśnie znaczników nie da żadnego efektu. Innymi słowy, kod
przedstawiony na stronie 200 nie będzie działał.

Uwaga: Więcej informacji na temat delegowania zdarzeń możesz znaleźć na stronie http://

api.jquery.com/on/.

Dlatego też konieczne jest delegowanie zdarzeń, czyli obsługa zdarzenia w ele-
mencie umieszczonym wyżej w hierarchii (już istniejącym na stronie) i odbieranie
zdarzeń związanych z konkretnym elementem potomnym. Ponieważ zdarzenie
jest definiowane dla elementu, który już istnieje na stronie, zatem dodawanie
nowych elementów potomnych nie będzie miało żadnego wpływu na jego obsługę.

http://api.jquery.com/on/
http://api.jquery.com/on/

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Zaawansowane
zarządzanie zdarzeniami

202

Rysunek 5.6. Czasami używany
kod JavaScript będzie dodawał
do strony WWW nowe elementy.
W tym przypadku użytkownik
może dodawać nowe elementy
(zadania) do listy wypunktowanej.
Po wyświetleniu strony lista jest
pusta — zawiera jedynie pustą
parę znaczników (wi-
doczną u góry). Użytkownik może
wpisywać zadania w polu teksto-
wym i klikać przycisk Dodaj zada-
nie, co będzie powodowało do-
dawanie nowych znaczników
(środkowy zrzut). Aby oznaczyć
zadanie jako wykonane, wystar-
czy je kliknąć (dolny zrzut).
Działającą aplikację listy zadań
możesz znaleźć w pliku
to-do-list.html w katalogu R05

Innymi słowy, rozwiązanie to polega na przekazaniu obsługi zdarzenia do ist-
niejącego elementu rodzica. Bardziej szczegółowe informacje na temat tego roz-
wiązania możesz znaleźć w ramce na stronie 205. Na razie jednak zajmiemy się
wykorzystaniem funkcji on() do uruchomienia naszej przykładowej aplikacji:

$('li').on('click', 'li', function() {
 $(this).css('text-decoration', 'line-through');
}); // Koniec funkcji on.

Tworząc stronę, umieściliśmy na niej pusty znacznik , stanowiący pojemnik,
do którego później będą dodawane znaczniki . W efekcie po wczytaniu strony
ten pusty znacznik jest już na niej dostępny. Zatem wykonanie przedsta-
wionego powyżej fragmentu kodu dodaje do tego znacznika funkcję on(). Użyt-
kownik nie dodał do swojej listy żadnych zadań, a więc na stronie nie ma jeszcze

R O Z D Z I AŁ 5 . A K C J A I R E A K C J A — OŻY W I A N I E S T R O N Z A P O M O CĄ Z D A R Z EŃ

Zaawansowane
zarządzanie zdarzeniami

203

znaczników . Kiedy jednak dodamy do wywołania funkcji on() drugi argu-
ment, selektor 'li', stwierdzamy, że nie interesują nas zdarzenia związane ze
znacznikiem , lecz z umieszczonymi w nim znacznikami . To, kiedy te
znaczniki zostaną dodane do strony, nie ma większego znaczenia, gdyż zdarzenia
są obsługiwane przez istniejący znacznik .

Wpływ delegowania zdarzeń na wartość $(this)

Zgodnie z informacjami podanymi już wcześniej, wartością wyrażenia $(this) jest
obiekt reprezentujący aktualnie przetwarzany element pętli (patrz strona 169)
lub element związany z aktualnie obsługiwanym zdarzeniem (patrz strona 189).
Zazwyczaj w funkcjach obsługujących zdarzenia wyrażenie $(this) reprezentuje
zastosowany selektor, na przykład:

$('ul').on('click', function() {
 $(this).css('text-decoration': 'line-through');
}

W tym przykładzie $(this) odwołuje się do klikniętego znacznika . Jednak
w przypadku korzystania z delegowania zdarzeń ten pierwszy selektor nie okre-
śla już elementu, z którym jest prowadzona interakcja (czyli który użytkownik
kliknął, wskazał myszą i tak dalej), lecz element, który go zawiera. Przyjrzyjmy
się jeszcze raz przykładowi wykorzystującemu delegowanie zdarzeń:

$('ul').on('click', 'li', function() {
 $(this).css('text-decoration', 'line-through');
}); // Koniec funkcji on.

W tym przypadku znacznikiem, który użytkownik klika, jest i to właśnie
on powinien odpowiedzieć na zdarzenie. Innymi słowy, znacznik pełni je-
dynie rolę kontenera, natomiast funkcja ma być wykonana w momencie kliknię-
cia znacznika . A zatem w tym przykładzie wyrażenie $(this) będzie się
odwoływało do znacznika , a powyższa funkcja będzie przekreślać każdy
kliknięty przez użytkownika element listy.

W bardzo wielu przypadkach stosowanie delegowania zdarzeń nie będzie po-
trzebne. Jednak technika ta okaże się przydatna, kiedy konieczne będzie doda-
wanie obsługi zdarzeń do elementów, których jeszcze nie ma na stronie w mo-
mencie jej wczytywania. Przykładowo podczas korzystania z technologii AJAX
(opisanej w rozdziale 13.) konieczne będzie stosowanie delegowania do obsługi
zdarzeń przez kod HTML dynamicznie pobierany z serwera i dodawany do strony.

Uwaga: W niektórych przypadkach delegowanie zdarzeń można także stosować w celu poprawienia

wydajności działania kodu JavaScript. Jeśli ta sama funkcja obsługi zdarzeń jest używana w bardzo wielu

znacznikach, na przykład w setkach komórek bardzo dużej tabeli, lepszym rozwiązaniem może być

przekazanie ich do znacznika <table> w sposób pokazany poniżej:

$('table').on('click', 'td', function() {
 // kod obsługi kliknięcia
}

Dodając funkcję obsługującą zdarzenia do tabeli, unikamy konieczności dodawania jej do setek, a może

nawet tysięcy komórek, co mogłoby dodatkowo obciążyć pamięć przeglądarki i doprowadzić do spadku

wydajności jej działania.

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Przykład —
jednostronicowa lista FAQ

204

Przykład — jednostronicowa lista FAQ

W sieci WWW znajduje się wiele stron z listami często zadawanych pytań (ang.
Frequently Asked Questions — FAQ). Pozwalają one błyskawicznie uzyskać odpo-
wiedź na pytanie — 24 godziny na dobę 7 dni w tygodniu, co usprawnia obsługę
klienta. Niestety, większość list FAQ to albo bardzo długie strony pełne pytań
i kompletnych odpowiedzi, albo krótkie strony z pytaniami w formie odnośników,
które prowadzą do odrębnych stron z odpowiedziami. Oba te rozwiązania wydłu-
żają wyszukiwanie informacji, gdyż w pierwszym przypadku zmuszają użytkownika
do przewijania długiej strony w poszukiwaniu interesującego go pytania i odpowiedzi,
a w drugim — oczekiwania na pobranie i wyświetlenie kolejnej strony.

W tym przykładzie rozwiążesz ten problem przez utworzenie strony z listą FAQ
opartej na kodzie JavaScript. Wczytana strona będzie zawierać wszystkie pytania,
dlatego użytkownik będzie mógł szybko znaleźć to, które go interesuje. Jednak od-
powiedź ma być ukryta do momentu kliknięcia wybranego pytania. Wtedy skrypt
powinien stopniowo wyświetlać pożądaną odpowiedź (patrz rysunek 5.7).

Rysunek 5.7. Przy użyciu kilku wierszy kodu JavaScript można sprawić, że elementy strony będą pojawiać się
i znikać w odpowiedzi na kliknięcie myszą

Omówienie zadania
Kod JavaScript w tym zadaniu ma wykonywać kilka operacji:

 Wyświetlać ukrytą odpowiedź po kliknięciu powiązanego z nią pytania.

 Ukrywać widoczną odpowiedź po kliknięciu pytania.

R O Z D Z I AŁ 5 . A K C J A I R E A K C J A — OŻY W I A N I E S T R O N Z A P O M O CĄ Z D A R Z EŃ

Przykład —
jednostronicowa lista FAQ

205

Ponadto kod JavaScript posłuży do ukrycia wszystkich odpowiedzi w momencie
wczytywania strony. Dlaczego nie użyć do tego stylów CSS? Aby ukryć odpowiedzi,
wystarczy przecież ustawić w stylu właściwość display na none. Jednak jeśli prze-
glądarka ma wyłączoną obsługę języka JavaScript, użytkownik nie zobaczy odpowie-
dzi ani nie będzie mógł ich wyświetlić. Aby strona była przydatna zarówno w prze-
glądarkach z włączoną, jak i wyłączoną obsługą skryptów, najlepiej ukryć jej zawartość
przy użyciu kodu JavaScript.

Uwaga: Informacje o pobieraniu przykładowych plików znajdziesz na stronie 46.

Tworzenie kodu
 1. Otwórz w edytorze tekstu plik faq.html z katalogu R05.

Ten plik zawiera już funkcję $(document).ready() (patrz strona 190) i kod do-
łączający bibliotekę jQuery. Najpierw należy ukryć wszystkie odpowiedzi w czasie
wczytywania strony.

 2. Kliknij pusty wiersz pod kodem $(document).ready() i dodaj fragment
$('.answer').hide();.

Poszczególne odpowiedzi znajdują się w znacznikach <div> klasy answer.
Dodany wiersz kodu pobiera wszystkie te znaczniki i ukrywa je (opis funkcji

C Z Ę S T O Z A D A W A N E P Y T A N I A

Magia delegowania zdarzeń?
No dobrze, rozumiem podstawy delegowania zdarzeń,

ale jak naprawdę działa to rozwiązanie?

Zgodnie z informacjami podanymi w ramce na stronie

197, zdarzenie jest przekazywane ku górze hierarchii

strony WWW. Kiedy klikniemy odnośnik umieszczony

w akapicie, zdarzenie click najpierw trafi do odno-

śnika, następnie otrzyma je element rodzica odnośni-

ka, czyli akapit, później element <body>, a na samym

końcu element <html>. Innymi słowy, zdarzenie wy-

wołane przez jeden element strony jest przekazywane

ku górze, do każdego kolejnego rodzica.

Ten fakt może być bardzo pomocny w razie użycia

delegowania zdarzeń. Jak już wspomniałem na stronie

200, może się zdarzyć, że będziemy chcieli obsługiwać

zdarzenia w kodzie, który jeszcze nie istnieje — na

przykład w zadaniach do zrobienia, które pojawią się do-

piero po wczytaniu strony i dodaniu zadania przez

użytkownika. Choć nie możemy dodać obsługi zdarzeń

click do nieistniejących znaczników , jednak możemy

ją dodać do już istniejącego znacznika, takiego jak

lub nawet <div>, w którym jest umieszczony.

Zgodnie z informacjami podanymi na stronie 194,

każdemu zdarzeniu towarzyszy obiekt zdarzenia, któ-

ry przechowuje wiele różnych informacji. W kontek-

ście delegowania zdarzeń najważniejszą z tych infor-

macji jest właściwość target. Precyzyjnie określa ona

element, który jako pierwszy odebrał zdarzenie. Jeśli

na przykład klikniemy odnośnik, to właśnie on będzie

zapisany we właściwości target. Jednak ze względu na

przekazywanie zdarzeń zdarzenie może trafić także

do elementu rodzica, który z kolei na podstawie wła-

ściwości target może określić, do którego elementu

zdarzenie było skierowane.

A zatem delegowanie zdarzeń sprawia, że mogą one

być odbierane przez elementy położone wyżej w hie-

rarchii strony; na przykład element może odbie-

rać zdarzenia click. Jeśli zdarzenie było kierowane do

znacznika , możemy na to odpowiednio zareagować

— na przykład przekreślić tekst, oznaczając zadanie

jako wykonane.

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Przykład —
jednostronicowa lista FAQ

206

hide() znajdziesz na stronie 212). Zapisz stronę i wyświetl ją w przeglądarce.
Wszystkie odpowiedzi powinny być ukryte.

Uwaga: Elementy są ukrywane przy użyciu kodu JavaScript, a nie przez style CSS dlatego, że nie-

którzy użytkownicy mogą wyłączać w przeglądarkach obsługę języka JavaScript. W takim przypad-

ku nie zobaczą oni fantastycznych efektów, które tworzysz w tym przykładzie, lecz przynajmniej

będą w stanie obejrzeć wszystkie odpowiedzi.

Następny krok wymaga określenia, do których elementów program ma dodać
odbiornik zdarzenia. Ponieważ odpowiedzi pojawiają się po kliknięciu pytania,
trzeba pobrać wszystkie pytania z listy FAQ. Na tej stronie znajdują się one
w znacznikach <h2> w elemencie o identyfikatorze main.

 3. Wciśnij klawisz Enter, aby dodać nowy wiersz, i wpisz w nim kod wyróżniony
pogrubieniem:

<script src="../_js/jquery.min.js"></script>
<script>
$(document).ready(function() {
 $('.answer').hide();
 $('.main h2')
}); // Koniec funkcji ready.
</script>

Nowy kod to prosty selektor potomków, który pobiera wszystkie znaczniki <h2>
zapisane w elemencie klasy main (dlatego skrypt nie modyfikuje pozostałych
znaczników <h2> znajdujących się na stronie). Teraz należy dodać zdarzenie.
Dobrym kandydatem jest zdarzenie click, jednak aby wykonać postawione za-
danie, będziesz musiał zrobić coś więcej. W tym przykładzie każde kliknięcie bę-
dzie wyświetlać odpowiedź bądź ją chować. To wygląda jak sytuacja, w której
należało użyć instrukcji warunkowej. Konkretnie rzecz biorąc, będziesz chciał
sprawdzić, czy znacznik <div> umieszczony za znacznikiem <h2> jest ukryty;
jeśli jest, będziesz musiał go wyświetlić, a w przeciwnym razie, gdy jest wi-
doczny, będziesz musiał go ukryć.

 4. Do znaczników <h2> dodaj funkcję anonimową wyróżnioną poniżej pogru-
bioną czcionką:

$(document).ready(function() {
 $('.answer').hide();
 $('.main h2').click(function() {

 }); // Koniec funkcji click.
}); // Koniec funkcji ready.

Powyższy kod dodaje do znaczników <h2> zdarzenie click. Komentarz na
końcu funkcji click nie jest konieczny, jednak, zgodnie z informacjami poda-
nymi na stronie 89, może pomóc w określeniu, do czego należy sekwencja)};.
Teraz dowolny kod, który umieścisz wewnątrz funkcji anonimowej, zostanie
wykonany za każdym razem, gdy użytkownik kliknie jeden ze znaczników <h2>.

 5. W pustym wierszy wewnątrz funkcji anonimowej wpisz:
var $answer = $(this).next('.answer');

Ten wiersz kodu tworzy zmienną — $answer — która będzie zawierać obiekt
jQuery. Zgodnie z informacjami podanymi na stronie 189, $(this) odwo-
łuje się do elementu odpowiadającego na zdarzenie — w tym przypadku jest

R O Z D Z I AŁ 5 . A K C J A I R E A K C J A — OŻY W I A N I E S T R O N Z A P O M O CĄ Z D A R Z EŃ

Przykład —
jednostronicowa lista FAQ

207

to konkretny element <h2>. Biblioteka jQuery udostępnia kilka funkcji znacz-
nie ułatwiających poruszanie się po strukturze strony. Funkcja .next() od-
najduje znacznik, który jest umieszczony bezpośrednio za aktualnie wybra-
nym znacznikiem. Innymi słowy, w naszym przypadku odnajduje ona znacznik
umieszczony bezpośrednio za znacznikiem <h2>. Przekazując w wywołaniu
funkcji .next() dodatkowy selektor, można jeszcze dokładniej określić, o jaki
znacznik chodzi; wywołanie .next('.answer') odnajdzie pierwszy znacznik
umieszczony za <h2>, należący do klasy answer.

Inaczej mówiąc, zapisujesz w zmiennej odwołanie do znacznika <div>
umieszczonego bezpośrednio za znacznikiem <h2>. Znacznik ten zawiera
odpowiedź na pytanie. Odwołanie zapisujesz w zmiennej, gdyż będziesz musiał
użyć go kilka razy: aby sprawdzić, czy odpowiedź jest ukryta, oraz wyświetlić
ją, jeśli jest schowana, bądź ukryć, jeśli jest widoczna. Za każdym razem,
kiedy odwołujesz się do jQuery przy użyciu wywołania $(), wykonujesz cał-
kiem sporo kodu biblioteki. A zatem kod o postaci $(this).next('.answer')
sprawia, że jQuery wykona trochę pracy. Zamiast kilkakrotnego wykony-
wania tych samych czynności lepiej będzie zapisać ich wynik w zmiennej
i używać jej do wykonywania operacji na znaczniku <div>, który chcesz ukryć
lub wyświetlić.

Gdy trzeba wielokrotnie używać tych samych wyników jQuery, zawsze war-
to zapisać je za pierwszym razem w zmiennej, a następnie stosować do wy-
konywania dalszych operacji. Takie rozwiązanie poprawia wydajność dzia-
łania programu, eliminuje konieczność wykonywania dodatkowych operacji
przez przeglądarkę i poprawia szybkość reagowania strony na poczynania
użytkownika.

Nazwa zmiennej rozpoczyna się od znaku $ (jak w $answer), by zaznaczyć,
że zawiera obiekt jQuery (czyli wynik zwrócony przez wywołanie $()). Do-
danie tego znaku nie jest konieczne, stanowi jedynie konwencję, którą po-
wszechnie stosują programiści używający biblioteki jQuery, aby pokazać, że
dana zmienna pozwala na stosowanie wszystkich cudownych funkcji jQuery,
takich jak .hide().

Uwaga: Funkcja .next() jest tylko jedną spośród wielu funkcji jQuery (nazywanych także metodami),
pozwalających na poruszanie się po DOM strony. Aby poznać więcej funkcji zaliczanych do tej kategorii,

zajrzyj na stronę http://docs.jquery.com/Traversing. Dodatkowe informacje na ten temat znajdziesz

w podrozdziale „Poruszanie się po DOM”, na stronie 554.

 6. Do kodu dodaj pustą instrukcję if z klauzulą else:
$(document).ready(function() {
 $('.answer').hide();
 $('.main h2').click(function() {
 var $answer = $(this).next('.answer');
 if () {

 } else {

 }
 }); // Koniec funkcji click.
}); // Koniec funkcji ready.

http://docs.jquery.com/Traversing

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Przykład —
jednostronicowa lista FAQ

208

Doświadczeni programiści zazwyczaj nie wpisują instrukcji warunkowych w taki
sposób, jednak kiedy się uczysz, takie tworzenie kodu krok po kroku może być
naprawdę użyteczne. A teraz może warto sprawdzić, czy odpowiedź jest ukryta?

 7. Wewnątrz nawiasów instrukcji warunkowej wpisz $answer.is(':hidden'):
$(document).ready(function() {
 $('.answer').hide();
 $('.main h2').click(function() {
 var $answer = $(this).next('.answer');
 if ($answer.is(':hidden')) {

 } else {

 }
 }); // Koniec funkcji click.
}); // Koniec funkcji ready.

Jak widać, zastosowałeś tu zmienną $answer, utworzoną w kroku 5. Zmienna
ta zawiera element należący do klasy answer, umieszczony bezpośrednio za
znacznikiem <h2> klikniętym przez użytkownika. Pamiętasz zapewne, że jest
to znacznik <div> zawierający odpowiedź na pytanie umieszczone w znacz-
niku <h2>.

Aby sprawdzić, czy element jest ukryty, w instrukcji warunkowej użyłeś funkcji
is() jQuery. Metoda ta sprawdza, czy bieżący element pasuje do podanego
selektora, przy czym w jej wywołaniu można przekazać dowolny selektor
CSS lub jQuery. Jeśli element pasuje do selektora, funkcja zwraca wartość
true, w przeciwnym razie zwracana jest wartość false. Coś wspaniałego!
Doskonale wiesz, że do działania instrukcji warunkowych potrzebne są war-
tości logiczne true lub false (patrz strona 99).

Zastosowany w powyższym kodzie selektor :hidden jest specjalnym selek-
torem jQuery reprezentującym ukryte elementy. W tym przypadku spraw-
dzasz, czy odpowiedź jest ukryta.

 8. Do kodu dodaj szósty wiersz widoczny na poniższym przykładzie:
$(document).ready(function() {
 $('.answer').hide();
 $('.main h2').click(function() {
 var $answer = $(this).next('.answer');
 if ($answer.is(':hidden')) {
 $answer.slideDown();
 } else {

 }
 }); // Koniec funkcji click.
}); // Koniec funkcji ready.

Funkcja slideDown() jest jedną z funkcji jQuery służących do tworzenia ani-
macji (więcej na ich temat dowiesz się w następnym rozdziale). Wyświetla ona
ukryty wcześniej element, wsuwając go od góry na właściwe miejsce. Teraz
możesz już sprawdzić efekty swojej ciężkiej pracy. Zapisz stronę i wyświetl ją
w przeglądarce. Kliknij jedno z widocznych pytań. Odpowiedź powinna się
wysunąć na miejsce (jeśli tego nie zrobi, dokładnie sprawdź kod skryptu, mo-
żesz przy tym skorzystać ze wskazówek dotyczących rozwiązywania proble-
mów, zamieszczonych na stronie 51).

R O Z D Z I AŁ 5 . A K C J A I R E A K C J A — OŻY W I A N I E S T R O N Z A P O M O CĄ Z D A R Z EŃ

Przykład —
jednostronicowa lista FAQ

209

Kiedy spojrzysz na stronę, zauważysz niebieski znak „+”, umieszczony z le-
wej strony nagłówka. Taki „plusik” to popularna ikona, która zazwyczaj ma
znaczenie: hej, tutaj jest coś więcej. Teraz, aby pokazać, że użytkownik może
ukryć odpowiedź, będziesz musiał zastąpić znak plus znakiem minus. Możesz
to zrobić w bardzo prosty sposób, dodając do znacznika <h2> jakąś klasę.

 9. Poniżej wiersza kodu dodanego w poprzednim kroku wpisz:
$(this).addClass('close');

Pamiętasz zapewne, że $(this) reprezentuje element, do którego zostało
skierowanie zdarzenie (patrz strona 189). W tym przypadku jest to znacznik
<h2>. A zatem powyższy wiersz kodu dodaje do klikniętego znacznika klasę
o nazwie close. Ikona znaku minus jest zdefiniowana w stylu tej klasy jako
obraz tła. (I ponownie zastosowanie CSS pozwoliło uprościć kod JavaScript).

W następnym kroku dokończymy drugą połowę efektu tworzonego efektu
wizualnego — czyli chowanie odpowiedzi po ponownym kliknięciu pytania.

 10. Wewnątrz klauzuli else instrukcji warunkowej dodaj dwa wiersze wy-
różnione pogrubioną czcionką. Pełny kod przykładu powinien mieć na-
stępującą postać:

<script src="../_js/jquery.min.js"></script>
<script>
$(document).ready(function() {
 $('.answer').hide();
 $('.main h2').click(function() {
 var $answer = $(this).next('.answer');
 if ($answer.is(':hidden')) {
 $answer.slideDown();
 $(this).addClass('close');
 } else {
 $answer.fadeOut();
 $(this).removeClass('close');
 }
 }); // Koniec funkcji click.
}); // Koniec funkcji ready.

Ten fragment kodu odpowiada za ukrycie odpowiedzi. Choć mogłeś zasto-
sować funkcję slideUp(), która ukrywa element, wysuwając go ku górze,
jednak w tym przypadku, w celu uatrakcyjnienia i urozmaicenia rozwiąza-
nia, element będzie stopniowo wygaszany, aż całkowicie zniknie. Taki efekt
zapewnia funkcja fadeOut() (więcej informacji na jej temat możesz znaleźć
na stronie 214).

Druga z dodanych instrukcji usuwa klasę close z elementu <h2>: w ten
sposób przy pytaniu ponownie zostanie wyświetlony znak „+”.

Zapisz stronę i wyświetl ją w przeglądarce. Kiedy klikniesz jedno z pytań, nie
tylko poniżej pojawi się odpowiedź, lecz dodatkowo zmieni się wyświetlona
obok ikona (patrz rysunek 5.7).

Uwaga: Kiedy już skończysz prace nad stroną, spróbuj zastąpić funkcję slideDown() funkcją fadeIn(),

a funkcję fadeOut() funkcją slideUp(). Która z tych animacji podoba Ci się najbardziej?

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

210

Animacje i efekty

odczas lektury dwóch poprzednich rozdziałów zdobyłeś podstawową wiedzę
dotyczącą stosowania biblioteki jQuery: wiesz, jak można dodawać plik jQuery
do swoich stron WWW, wybierać elementy strony oraz reagować na zdarzenia

związane z czynnościami wykonywanymi przez użytkownika, takimi jak kliknięcie
przycisku bądź wskazanie odnośnika myszą. Większość programów wykorzystują-
cych bibliotekę jQuery wymaga wykonania trzech kroków; są to wybór elementów
strony, dołączenie do nich procedur obsługi zdarzeń oraz odpowiedzi na te zdarze-
nia poprzez wykonanie odpowiednich czynności. W tym rozdziale dowiesz się czegoś
na temat „wykonywania odpowiednich czynności”, a konkretnie — poznasz wbu-
dowane w bibliotekę jQuery efekty wizualne oraz animacje. Przypomnisz sobie tak-
że nieco wiadomości związanych z kilkoma ważnymi właściwościami CSS, zwią-
zanymi z tworzeniem efektów wizualnych. Dodatkowo dowiesz się także, jak
stosować animacje CSS3 z narzędziami biblioteki jQuery, by (bardzo łatwo) tworzyć
płynne efekty animacji.

Efekty biblioteki jQuery
Częstym zadaniem realizowanym przy użyciu języka JavaScript jest ukrywanie i wy-
świetlanie elementów stron WWW. Rozwijane menu nawigacyjne, etykietki ekra-
nowe i automatyczne pokazy slajdów — wszystkie te rozwiązania bazują na możliwo-
ści ukrywania i wyświetlania wybranych elementów stron w odpowiednim momencie.

Aby zastosować każdy z takich efektów, należy użyć go na elemencie wybranym przy
użyciu jQuery, podobnie jak robimy podczas stosowania wszelkich innych funkcji
tej biblioteki. Aby na przykład ukryć wszystkie znaczniki należące do klasy submenu,
wystarczy wykonać następujący wiersz kodu:

$('.submenu').hide();

Każda funkcja realizująca jakieś efekty wizualne umożliwia także podanie dwóch
opcjonalnych argumentów: czasu odtwarzania efektu oraz funkcji zwrotnej (ang.
callback function). Szybkość określa długość okresu czasu, jaki zajmie wykonanie

P

6
ROZDZIAŁ

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Efekty biblioteki jQuery

212

efektu, natomiast funkcja zwrotna określa kod, który zostanie wykonany po za-
kończeniu tego efektu. (Więcej informacji na temat funkcji zwrotnych można
znaleźć na stronie 223).

W celu ustalenia szybkości efektu można podać jeden z trzech predefiniowanych łań-
cuchów znaków — 'fast', 'normal' lub 'slow' — bądź też liczbę określającą czas
trwania efektu wyrażony w milisekundach (czyli wartość 1000 to sekunda, 500 — pół
sekundy i tak dalej). Przykładowo kod ukrywający stopniowo element mógłby wy-
glądać tak:

$('element').fadeOut('slow');

Gdybyśmy chcieli, żeby element zanikał naprawdę wolno — przez 10 sekund —
miałby następującą postać:

$('element').fadeOut(10000);

Podczas stosowania efektu w celu ukrycia elementu nie jest on usuwany ze strony.
Wciąż jest dostępny w DOM — modelu obiektów dokumentu (patrz strona 145).
Kod HTML elementu wciąż jest przechowywany w pamięci przeglądarki, jednak nie
ma żadnej wizualnej reprezentacji (określanej za pomocą właściwości display CSS;
ukrycie elementu jest możliwe poprzez przypisanie jej wartości none). Właśnie dzięki
temu nie zajmuje żadnego widocznego miejsca w treści strony, przez co miejsce
to mogą zająć inne elementy. Wszystkie dostępne efekty jQuery można poznać na
stronie effects.html, w przykładach dołączonych do książki, w katalogu testy (patrz
rysunek 6.1).

Uwaga: Słowa kluczowe służące do określania szybkości odtwarzania efektów wizualnych — 'fast',

'normal' oraz 'slow' — odpowiadają wartościom liczbowym 200, 400 oraz 600. A zatem wywołanie:

 $('element').fadeOut('slow');

da dokładnie taki sam efekt jak wywołanie:

 $('element').fadeOut(600);

Podstawowe wyświetlanie i ukrywanie
Biblioteka jQuery udostępnia trzy funkcje służące do prostego ukrywania i wyświe-
tlania elementów. Oto one.
 show() — funkcja ta sprawia, że element będzie widoczny. Nie powoduje żad-

nej zmiany, jeśli element już jest widoczny. Jeśli w jej wywołaniu nie zostanie
określona szybkość efektu, element będzie wyświetlony bezzwłocznie. Jeśli jed-
nak szybkość efektu zostanie określona — show(1000) — to pojawianie się ele-
mentu jest animowane — będzie rozwijany od lewego górnego do prawego
dolnego wierzchołka.

 hide() — ta funkcja służy do ukrywania elementów. Nie powoduje żadnej
zmiany, jeśli element już jest niewidoczny. Podobnie jak w funkcji show(),
także i ona ukrywa element bezzwłocznie, jeśli nie zostanie określona szybkość
efektu. Jeśli jednak szybkość zostanie podana, element będzie animowany —
stopniowo zmniejszany.

R O Z D Z I AŁ 6 . A N I M A C J E I E F E K T Y

Efekty biblioteki jQuery

213

Rysunek 6.1. Wszystkie efekty wizualne jQuery można przetestować przy użyciu strony effects.html umiesz-
czonej w katalogu testy. Wystarczy kliknąć element fadeOut('#photo'), by zobaczyć, w jaki sposób tekst oraz
obrazki stopniowo zanikają, są wysuwane ze strony lub powoli się na niej pojawiają. Niektóre z elementów bę-
dą szare, co oznacza, że nie można ich użyć w odniesieniu do danego elementu, na przykład nie ma większego
sensu, by starać się wyświetlić obrazek, który już jest widoczny

 toggle() — funkcja ta zmienia stan elementu, naprzemiennie go ukrywając lub
wyświetlając. Jeśli element jest aktualnie widoczny, wywołanie funkcji toggle()
spowoduje jego ukrycie; jeśli natomiast element jest ukryty, wywołanie funkcji
spowoduje jego wyświetlenie. Funkcja idealnie nadaje się, gdy chcemy, by jeden
element sterujący (taki jak przycisk) naprzemiennie pokazywał i ukrywał element.

W przykładzie przedstawionym na stronie 205 w rozdziale 5. mogłeś zobaczyć funk-
cję hide()w działaniu. Funkcja ta ukrywała wszystkie odpowiedzi w momencie wy-
świetlania strony.

Wygaszanie oraz rozjaśnianie elementów
Aby uzyskać bardziej spektakularny efekt, można wygaszać (ukrywać) oraz rozja-
śniać (wyświetlać) elementy poprzez regulację stopnia ich nieprzezroczystości. Bi-
blioteka jQuery udostępnia trzy funkcje realizujące operacje tego typu. Oto one.

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Efekty biblioteki jQuery

214

 fadeIn() powoduje, że początkowo ukryty element stopniowo się pojawia.
W pierwszym etapie na stronie zostanie przydzielone miejsce dla jeszcze
niewidocznego elementu (co może się wiązać z przesunięciem innych elemen-
tów strony), a później wybrany element stopniowo będzie się pojawiał. Funkcja
ta nie powoduje żadnych zmian, kiedy element już jest widoczny. Jeśli w jej
wywołaniu nie zostanie określona szybkość efektu, element zostanie rozja-
śniony przy użyciu szybkości 'normal' (czyli w czasie 400 milisekund).

 fadeOut() — ta funkcja sprawia, że element będzie się stawał coraz słabiej wi-
doczny — jak duch — aż w końcu zniknie. Nie powoduje żadnych wizualnych
zmian, kiedy element już jest niewidoczny i, podobnie jak w przypadku funkcji
fadeIn(), pominięcie argumentu określającego szybkość efektu sprawi, że zo-
stanie on wykonany w czasie 400 milisekund. Funkcja ta była używana do
ukrywania elementów strony w przykładzie listy często zadawanych pytań
przedstawionym na stronie 205.

 fadeToggle() — łączy funkcje fadeIn() oraz fadeOut(). Jeśli w momencie
wywoływania funkcji element jest niewidoczny, zostanie stopniowo rozjaśnio-
ny, jeśli natomiast początkowo jest widoczny — funkcja go wygasi. Funkcji tej
można używać, by wyświetlać i ukrywać na stronie ramkę z instrukcjami dla
użytkownika. Załóżmy na przykład, że na naszej stronie jest umieszczony przy-
cisk Instrukcje. Kiedy użytkownik go kliknie, na stronie stopniowo pojawi się
element <div> zawierający instrukcje; kolejne kliknięcie przycisku spowoduje
wygaszenie tego elementu. Aby przy użyciu tej funkcji naprzemiennie wyświetlać
i ukrywać element w czasie pół sekundy (500 milisekund), wystarczy skorzy-
stać z następującego fragmentu kodu:

$('#button').click(function() {
 $('#instructions').fadeToggle(500);
}); // Koniec funkcji click.

 fadeTo() — ta funkcja działa nieco inaczej niż trzy poprzednie. Powoduje stop-
niową zmianę nieprzezroczystości elementu, aż do osiągnięcia określonej war-
tości, za jej pomocą można na przykład częściowo wygasić obrazek, tak że sta-
nie się półprzezroczysty. W odróżnieniu od poprzednich, w wywołaniu tej funkcji
trzeba podać szybkość efektu. Co więcej, konieczne jest także podanie drugiego
argumentu z zakresu od 0 do 1, określającego docelowy stopień nieprzezroczy-
stości. By na przykład zmienić stopień nieprzezroczystości elementu do po-
ziomu 75%, należałoby użyć następującego wywołania:

$('p').fadeTo('normal', .75);

Funkcja ta zmienia poziom nieprzezroczystości elementu niezależnie od tego,
czy jest widoczny na stronie, czy nie. Przykładowo załóżmy, że zmienimy nie-
przezroczystość ukrytego elementu do poziomu 50%, w takim przypadku ele-
ment pojawi się i będzie półprzezroczysty. Jeśli ukryjemy półprzezroczysty ele-
ment, a następnie go ponownie wyświetlimy, poziom jego nieprzezroczystości
będzie taki sam jak wcześniej.

Jeśli w wywołaniu funkcji fadeTo() przekażemy wartość 0, wybrany element
będzie niewidoczny, choć wciąż będzie zajmował miejsce na stronie. Innymi
słowy, w odróżnieniu od innych efektów powodujących ukrycie elementu, w przy-
padku jego całkowitego wygaszenia miejsce, które zajmuje na stronie, i tak po-
zostanie zajęte.

R O Z D Z I AŁ 6 . A N I M A C J E I E F E K T Y

Efekty biblioteki jQuery

215

Jeśli wygasimy element, a następnie go ukryjemy, element ten zniknie ze
strony. Jeśli później taki element ponownie wyświetlimy, będzie „pamiętał”
ustawienie nieprzezroczystości, a zatem, choć przeglądarka go wyświetli, je-
go poziom nieprzezroczystości wyniesie 50%.

W I E D Z A W P I G U Ł C E

Bezwzględne pozycjonowanie przy użyciu CSS
Zazwyczaj, kiedy ukrywamy jakiś element strony, po-

zostałe jej elementy są przesuwane tak, by wypełnić zaj-

mowane przez niego dotychczas miejsce. Jeśli na przykład

ukryjesz obrazek, zniknie on ze strony, a umieszczony pod

nim tekst zostanie przesunięty do góry. Podobnie wy-

świetlanie elementu powoduje przesunięcie pozostałej

zawartości strony tak, by powstało dla niego miejsce.

Może się zdarzyć, że nie będziemy chcieli, by zawartość

strony skakała w górę bądź w dół. W takim przypadku mo-

żemy skorzystać z arkuszy stylów CSS oraz możliwości

bezwzględnego pozycjonowania, by usunąć wybrany

element z normalnego rozkładu treści strony. Innymi

słowy, możemy sprawić, że znacznik <div>, akapit lub

obrazek pojawią się ponad pozostałą zawartością strony,

tak jakby były umieszczone na osobnej warstwie. Efekt

ten możemy uzyskać, stosując właściwość position.

Aby element został wyświetlony ponad pozostałą za-

wartością strony, w stylu określającym jego wygląd nale-

ży użyć właściwości position i przypisać jej wartość

absolute. Następnie można określić położenie elementu

na stronie, korzystając z właściwości left, right, top

oraz bottom. Załóżmy, że na naszej stronie znajduje się

znacznik <div> zawierający formularz do logowania.

Normalnie formularz ten nie będzie widoczny, kiedy jed-

nak użytkownik kliknie odpowiedni odnośnik, zostanie

on wsunięty na stronę i umieszczony ponad pozostałą

zawartością strony, na jej środku. Element <div> można

by umieścić w wybranym miejscu strony przy użyciu na-

stępującej reguły CSS:

#login {
 position: absolute;
 left: 536px;
 top: 0;
 width: 400px;
}

Powyższa reguła umieszcza element na górze okna

przeglądarki, 536 pikseli na prawo od jej lewej krawędzi.

Można także rozmieścić element, odnosząc się do prawej

krawędzi strony — w tym przypadku należałoby sko-

rzystać z właściwości right oraz względem jej dolnej

krawędzi użyć właściwości bottom.

Oczywiście, może się także zdarzyć, że będziemy chcieli

rozmieszczać elementy, uwzględniając inną zawartość

strony, a nie okno przeglądarki, na przykład etykietki

ekranowe są zazwyczaj rozmieszczane obok innych

elementów. Przy jakimś słowie wyświetlanym na stronie

może zostać umieszczony znak zapytania, którego klik-

nięcie otwiera niewielką ramkę zawierającą na przykład de-

finicję tego słowa. W takim przypadku etykieta ekrano-

wa nie powinna nie być rozmieszczona względem

którejś z krawędzi okna przeglądarki, lecz obok odpo-

wiedniego słowa. Wtedy położenie bezwzględnie po-

zycjonowanego elementu należy określić względem

nadrzędnego elementu strony, wewnątrz którego się

on znajduje. W ramach przykładu przeanalizujmy na-

stępujący kod HTML:

Hefalump
Nieistniejące
w rzeczywistości stworzenie,
podobne do słonia występujące
w książkach o Kubusiu Puchatku

Aby znacznik zawierający definicję został wy-

świetlony poniżej słowa, musimy najpierw pozycjono-

wać zewnętrzny znacznik względnie, a dopiero

później skorzystać z bezwzględnego pozycjonowania

znacznika wewnętrznego:

.word { position: relative; }

.definition {
 position: absolute;
 bottom: -30px;
 left: 0;
 width: 200px;
}

Więcej informacji na temat pozycjonowania bez-

względnego można znaleźć na stronie http://www.
elated.com/articles/css-positioning/ bądź w książce

CSS3: The Missing Manual1.

1 Wydanie polskie: CSS3. Nieoficjalny podręcznik. Wydanie III, Helion, Gliwice 2013 —
przyp. tłum.

http://www.elated.com/articles/css-positioning/
http://www.elated.com/articles/css-positioning/

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Przykład — wysuwany
formularz logowania

216

Przesuwanie elementów
Jeśli chcemy mieć na stronie nieco więcej ruchu, możemy użyć wbudowanych funk-
cji jQuery, by wysuwać i wsuwać elementy na stronę. Funkcje te działają podobnie
do przedstawionych we wcześniejszym punkcie rozdziału, gdyż umożliwiają wy-
świetlanie i ukrywanie elementów oraz określanie czasu trwania efektu.

 slideDown() sprawia, że niewidoczne elementy są wsuwane na stronę. Naj-
pierw pojawia się górna część elementu, a wszelkie inne elementy strony
umieszczone poniżej niego zostają przesunięte w dół; następnie pojawia się
pozostała część wyświetlanego elementu. Funkcja ta nie daje żadnego efektu,
kiedy element już jest widoczny. Jeśli nie zostanie określona szybkość
efektu, funkcja użyje wartości domyślnej 'normal' (odpowiadającej 400
milisekundom). W przykładzie przedstawionym na stronie 208 funkcja ta zo-
stała użyta do wyświetlania odpowiedzi na stronie.

 slideUp() usuwa element ze strony, ukrywając jego dolną część, a następnie
przesuwając całą pozostałą zawartość strony ku górze, aż element całkowicie
zniknie. Wywołanie tej funkcji nie powoduje żadnego widocznego efektu, kiedy
element już jest ukryty. Podobnie jak w przypadku funkcji slideDown(), także
i w tej, jeśli nie przekażemy argumentu określającego szybkość efektu, zostanie
on wykonany w czasie 400 milisekund.

 slideToggle() — użycie tej funkcji powoduje wywołanie funkcji slide-
Down(), jeśli element jest aktualnie ukryty, oraz wywołanie funkcji slideUp(),
jeśli aktualnie jest widoczny. Za pomocą tej funkcji można utworzyć na stronie
jeden element sterujący (taki jak przycisk), którego klikanie będzie naprzemien-
nie wyświetlało i ukrywało element.

Przykład — wysuwany formularz logowania
W tym przykładzie nabierzesz nieco praktyki w stosowaniu efektów wizualnych
udostępnianych przez bibliotekę jQuery; utworzysz popularny element interfejsu
użytkownika, czyli panel, który się wysuwa i chowa po kliknięciu myszą odpo-
wiedniego elementu strony (patrz rysunek 6.2).

Rysunek 6.2. Najpierw go nie widać,
a potem widać. Normalnie formularz
jest ukryty (górna część rysunku),
lecz kliknięcie nagłówka powoduje,
że zostaje wyświetlony

R O Z D Z I AŁ 6 . A N I M A C J E I E F E K T Y

Przykład — wysuwany
formularz logowania

217

Zasada działania tego przykładu jest prosta.

 1. Pobierasz akapit zawierający nagłówek "Formularz logowania".

Pamiętasz zapewne, że znaczna część programów jQuery rozpoczyna się od
pobrania odpowiednich elementów strony. W tym przypadku interesuje nas
akapit zawierający słowa Formularz logowania , który użytkownicy będą
klikali.

 2. Dodajesz do akapitu procedurę obsługi zdarzeń click.

JavaScript nie zapewnia interaktywności bez wykorzystania zdarzeń: aby coś się
stało, użytkownik musi rozpocząć interakcję z elementami strony (w naszym
przypadku jest to akapit tekstu).

 3. Przełączasz widoczność formularza.

Poprzednie dwie czynności to jedynie przypomnienie (choć niezbędne w tak wielu
programach pisanych z wykorzystaniem biblioteki jQuery). Jednak to właśnie
w ramach tej ostatniej czynności wykorzystasz efekty jQuery opisywane w tym
rozdziale. Możemy sprawić, by formularz pojawił się natychmiast (za pomocą
funkcji show()), możemy wsunąć go (przy użyciu funkcji slideDown()) bądź
stopniowo wyświetlić, gdy spowodujemy zmianę jego przezroczystość (z wyko-
rzystaniem funkcji fadeIn()).

Uwaga: Informacje na temat pobierania przykładów dołączonych do tej książki można znaleźć na

stronie 46.

Tworzenie kodu
 1. W edytorze tekstów otwórz plik login.html umieszczony w katalogu R06.

Plik zawiera już odwołanie do pliku jQuery oraz wywołanie funkcji $(document).
ready() (patrz strona 190). Na początek zajmiesz się wybraniem akapitu za-
wierającego tekst Formularz logowania .

 2. Kliknij pusty wiersz widoczny poniżej funkcji $(document).ready() i wpisz
w nim $('#open').

Tekst Formularz logowania jest umieszczony wewnątrz akapitu znajdu-
jącego się wewnątrz odnośnika — <p id= open >
Formularz logowania</p>. Ten odnośnik spowoduje wyświetlenie
w przeglądarce nowej strony zawierającej formularz logowania. Odnośnik został
zastosowany dlatego, gdyż inaczej użytkownicy, którzy wyłączyli w przeglądar-
ce obsługę języka JavaScript, nie byliby w stanie zobaczyć ukrytego formu-
larza. Dodając odnośnik, zapewniasz, że nawet osoby, które wyłączyły obsługę
JavaScript, będą mogły dotrzeć do formularza logowania.

Wyrażenie $('#open') powoduje wybranie akapitu tekstu. Teraz nadszedł już
czas, by dodać procedurę obsługi zdarzeń.

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Przykład — wysuwany
formularz logowania

218

Uwaga: Znacznik <p>, o którym była mowa w kroku 2 , jest umieszczony wewnątrz znacznika <a>.

Osoby, które przez jakiś czas nie zajmowały się tworzeniem stron WWW, mogłyby przypuszczać, że ta-

ka konstrukcja jest nieprawidłowa. I owszem, tak właśnie było w języku HTML 4 i jego wcześniejszych

wersjach. Jednak w przypadku zastosowania definicji typu dokumentu (doctype) HTML5 (patrz strona

21) umieszczanie elementów blokowych, takich jak <p>, <h1>, a nawet <div>, w odnośnikach jest

prawidłowe. Takie rozwiązanie pozwala na tworzenie dużych, klikalnych obszarów stron.

 3. Dodaj kod wyróżniony w poniższym przykładzie pogrubioną czcionką, tak
by miał następującą postać:

$(document).ready(function() {
 $('#open').click(function(evt) {

 }); // Koniec funkcji click.
}); // Koniec funkcji ready.

Powyższy kod dodaje procedurę obsługi zdarzeń click, a zatem, za każdym ra-
zem gdy użytkownik kliknie akapit, coś się stanie. W naszym przypadku kliknię-
cie powinno powodować wyświetlenie formularza, który zniknie po ponownym
kliknięciu; następne kliknięcie ponownie powinno go wyświetlić i tak w dalej.
Innymi słowy, formularz ma być naprzemiennie wyświetlany i ukrywany. Biblio-
teka jQuery udostępnia trzy funkcje zapewniające takie możliwości: toggle(),
fadeToggle() oraz slideToggle(). Jedyna różnica pomiędzy nimi polega na
sposobie wyświetlania i ukrywania wybranego elementu.

Funkcja anonimowa umieszczona wewnątrz wywołania metody click() ma
jeden argument. Zgodnie z informacjami podanymi na stronie 194, do każ-
dego zdarzenia jest automatycznie przekazywany obiekt zawierający różne
właściwości i metody. Będziesz potrzebował tego obiektu, by poinformować
jQuery, że powinna uniemożliwić przeglądarce standardowe obsłużenie od-
nośnika i wyświetlenie strony z formularzem do logowania.

 4. Kliknij pusty wiersz wewnątrz funkcji click() i wpisz w nim:
evt.preventDefault();

W tym przypadku wywołanie metody preventDefault() sprawi, że przeglą-
darka nie przejdzie na stronę wskazywaną przez odnośnik, wewnątrz którego
został umieszczony akapit tekstu. Pamiętaj, że odnośnik został umieszczony
w kodzie po to, by zapewnić możliwość wyświetlenia formularza do logowania
osobom, które wyłączyły w przeglądarce obsługę języka JavaScript. Jednak we
wszystkich pozostałych przypadkach musisz nakazać przeglądarce, by pozostała
na tej samej stronie i wykonała dodatkowy kod JavaScript.

 5. W kolejnym wierszu kodu wpisz następujące wywołanie:
$('#login form').slideToggle(300);

Ten kod powoduje pobranie formularza oraz wsunięcie go na stronę, jeśli nie
jest widoczny, bądź jego ponowne wysunięcie i ukrycie. Kolejną czynnością
będzie zmiana klasy używanej w akapicie, dzięki czemu akapit tekstu zmieni
wygląd.

 6. Dodaj poniższy, wyróżniony pogrubieniem fragment kodu, by końcowy skrypt
wyglądał tak, jak ten:

R O Z D Z I AŁ 6 . A N I M A C J E I E F E K T Y

Przykład — wysuwany
formularz logowania

219

1 $(document).ready(function() {
2 $('#open').click(function(evt) {
3 evt.preventDefault();
4 $('#login form').slideToggle(300);
5 $(this).toggleClass('close');
6 }); // Koniec funkcji click.
7 }); // Koniec funkcji ready.

Po przeczytaniu informacji zamieszczonych na stronie 189 wiesz już, że we-
wnątrz procedury obsługi zdarzeń można korzystać z wyrażenia $(this), by
odwołać się do elementu odpowiadającego na zdarzenie. W naszym przykładzie
$(this) odwołuje się do akapitu klikniętego przez użytkownika — pobranego
w 2. wierszu przy użyciu wywołania $('#open'). Funkcja toggleClass() do-
daje lub usuwa klasę z elementu. Podobnie jak wszystkie inne funkcje przełą-
czające, także i toggleClass() dodaje podaną nazwę klasy, jeśli jeszcze nie jest
używana w wybranym elemencie, bądź też usuwa ją, kiedy aktualnie jest sto-
sowana. W naszym przykładzie korzystamy z klasy o nazwie close, zdefinio-
wanej w arkuszu stylów umieszczonym na stronie. (Znajdziesz go w kodzie
strony, wewnątrz sekcji <head>).

 7. Zapisz stronę i wyświetl ją w przeglądarce.

Koniecznie kliknij kilka razy akapit z tekstem Formularz logowania , by
przekonać się, jak działa. Gotową wersję strony znajdziesz w pliku complete_
login.html, w katalogu R06. Możesz także wypróbować inne efekty wizualne,
zastępując funkcję slideToggle() funkcjami toggle() lub fadeToggle().

A co zrobić, gdy będziesz chciał zastosować dwa różne efekty wizualne? Chcesz na
przykład wysuwać formularz podczas jego wyświetlania, a wygaszać podczas ukry-
wania. W takim przypadku kod przedstawiony w kroku 5. powyższej listy nie spełni
oczekiwań, gdyż funkcja click() nie zapewnia możliwości stosowania i wyboru
jednej z dwóch różnych akcji. Musisz zatem zastosować tę samą sztuczkę, którą
wykorzystałeś w przykładzie z listą pytań i odpowiedzi, przedstawionym w po-
przednim rozdziale (na stronie 204): kiedy użytkownik kliknie odnośnik Formularz
logowania , musisz sprawdzić, czy formularz jest ukryty. Jeśli jest, to go wyświe-
tlisz, jeśli nie jest, to go ukryjesz.

Aby formularz został wsunięty na stronę, a następnie wygaszony podczas kolejnego
kliknięcia, powinieneś użyć następującego kodu:

$(document).ready(function() {
 $('#open').click(function(evt) {
 evt.preventDefault();
 if ($('#login form').is(':hidden')) {
 $('#login form').fadeIn(300);
 $(this).addClass('close');
 } else {
 $('#login form').slideUp(600);
 $(this).removeClass('close');
 }
 }); // Koniec funkcji click.
}); // Koniec funkcji ready.

Uwaga: Powyższy kod możesz znaleźć w pliku complete_login2.html w katalogu R06.

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Animacje

220

Animacje
Nasze możliwości nie ograniczają się wyłącznie do wbudowanych efektów jQuery.
Korzystając z funkcji animate(), można animować dowolną właściwość CSS akcep-
tującą wartości liczbowe, na przykład wyrażone w pikselach, w jednostkach em lub
wartości procentowe. Przykładowo można animować wielkość tekstu, położenie ele-
mentu na stronie, jego przezroczystość czy też szerokość obramowania.

Uwaga: Biblioteka jQuery nie umożliwia samodzielnego animowania kolorów — na przykład koloru

tekstu, tła czy też krawędzi elementu. Jednak biblioteka jQuery UI udostępnia wiele dodatkowych

efektów animacji, w tym także możliwość animowania kolorów. Informacje na temat możliwości

tworzenia animacji w bibliotece jQuery UI znajdziesz w rozdziale 12.

Aby skorzystać z tej funkcji, należy przekazać w jej wywołaniu literał obiektowy
(patrz strona 165) zawierający listę właściwości CSS, które mają być animowane, oraz
ich wartości docelowych. Załóżmy, że animacja elementu ma polegać na przesunięciu
go w miejsce oddalone o 650 pikseli od lewej krawędzi strony, zmianie poziomu
jego nieprzezroczystości do wartości 50% oraz powiększeniu używanej w nim
czcionki do 24 pikseli. Poniższy fragment kodu definiuje obiekt zawierający te wła-
ściwości i wartości:

{
 left: '650px',
 opacity: .5,
 fontSize: '24px'
}

Warto zwrócić uwagę, że wartości należy zapisywać w apostrofach wyłącznie wtedy,
gdy zawierają jednostki miary, takie jak px, em lub %. W naszym przykładzie war-
tość '650px' musimy zatem zapisać w apostrofach, gdyż zawiera jednostkę 'px';
natomiast w przypadku wartości .5, przypisywanej właściwości opacity, nie musimy
tego robić, gdyż nie zawiera ona żadnych dodatkowych liter ani znaków. Opcjonalne
jest także zapisywanie w apostrofach nazw właściwości (takich jak left, opacity
oraz fontSize).

Uwaga: JavaScript nie pozwala na zapisywanie nazw właściwości CSS z łącznikami, na przykład

font-size jest prawidłową nazwą właściwości CSS, jednak język JavaScript nie zrozumiałby jej

prawidłowo, gdyż łącznik ma w nim specjalne znaczenie — jest używany jako operator odejmowania.

A zatem podczas podawania nazw właściwości CSS w kodzie JavaScript należy pomijać łączniki, a pierw-

szy znak słowa umieszczonego po łączniku zapisać wielką literą. Przykładowo font-size należy zapisać

jako fontSize, a border-left-width jako borderLeftWidth.

Jeśli jednak chcesz posługiwać się nazwami właściwości CSS (by uniknąć niepotrzebnego zamieszania),

musisz je zapisywać w apostrofach, jak w poniższym przykładzie:

 {

 'font-size': '24px',

 'border-left-width': '2%'

 }

Załóżmy, że chcemy animować element o identyfikatorze message przy użyciu po-
wyższych ustawień. W takim przypadku moglibyśmy wywołać funkcję animate()
w następujący sposób:

R O Z D Z I AŁ 6 . A N I M A C J E I E F E K T Y

Animacje

221

$('#message').animate(
 {
 left: '650px',
 opacity: .5,
 fontSize: '24px'
 },
 1500
);

Funkcja animate() może przyjmować kilka argumentów. Pierwszym z nich jest
literał obiektowy zawierający właściwości CSS, które chcemy animować. Drugim
jest liczba określająca czas trwania animacji (wyrażona w milisekundach). W po-
wyższym przykładzie animacja ma trwać 1500 milisekund, czyli 1,5 sekundy.

Uwaga: Jeśli chcemy animować położenie elementu, używając przy tym właściwości left, right,

top oraz bottom, konieczne jest także przypisanie jego właściwości CSS position wartości absolute

lub relative. Tylko w tych dwóch przypadkach możliwe jest określanie położenia elementu (patrz

ramka na stronie 215).

Istnieje także możliwość określania docelowych wartości animowanych właściwo-
ści w odniesieniu do ich wartości bieżących. Służy do tego zapis += oraz –=. Załóżmy
na przykład, że chcemy animować element, przesuwając go o 50 pikseli w prawo,
za każdym razem gdy zostanie kliknięty. Oto sposób, w jaki można to zrobić:

$('#moveIt').click(function() {
 $(this).animate(
 {
 left:'+=50px'
 },
 1000); // Koniec funkcji animate.
}); // Koniec funkcji click.

Tempo animacji
Wszystkie funkcje jQuery tworzące efekty wizualne (slideUp(), fadeIn() i tak dalej)
oraz funkcja animate() pozwalają na podanie dodatkowego argumentu kontrolują-
cego tempo animacji (ang. easing) — określa on szybkość zmian podczas różnych
etapów animacji. Przykładowo w czasie przesuwania elementu na stronie można
zażądać, by ruch elementu początkowo był wolny, następnie przyspieszył, a w końcu,
gdy zbliżał się będzie koniec animacji, ponownie zwolnił. Określanie tempa anima-
cji sprawia, że efekty wizualne mogą być naprawdę interesujące i dynamiczne.

Biblioteka jQuery udostępnia dwie metody określania tempa animacji: linear (li-
niowa) oraz swing (zmienna). Pierwsza z nich zapewnia stałe tempo animacji, a zatem
każdy jej krok będzie identyczny (jeśli na przykład przesuwamy element na ekranie,
każdy krok animacji będzie go przesuwał o identyczny odcinek). Metoda 'swing'
jest nieco bardziej dynamiczna, gdyż animacja rozpoczyna się szybciej, a następnie
zwalnia. Metoda ta jest stosowana domyślnie, a zatem, jeśli jawnie nie podamy
sposobu określania tempa animacji, jQuery użyje właśnie jej.

Metoda określania tempa animacji jest podawana jako drugi argument funkcji two-
rzących efekty wizualne; aby zatem element został wysunięty ze strony ze stałą
szybkością, możemy to zrobić przy użyciu następującego wywołania:

$('#element').slideUp(1000,'linear');

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Animacje

222

W funkcji animate() metoda określania tempa animacji jest podawana jako trzeci
argument wywołania, za literałem obiektowym z właściwościami oraz całkowitym
czasem trwania animacji. Aby na przykład wykorzystać metodę linear w wywoła-
niu funkcji animate() przedstawionym na stronie 221, należałoby użyć nastę-
pującego kodu:

$('#message').animate(
{
 left: '650px',
 opacity: .5,
 fontSize: '24px'
},
1500,
'linear'
);

Nasze możliwości nie ograniczają się do stosowania tylko tych dwóch domyślnych
metod, udostępnianych przez bibliotekę jQuery. Dzięki pracowitości innych pro-
gramistów można także korzystać z licznej grupy innych metod — niektóre z nich
zapewniają bardzo dramatyczne i interesujące efekty wizualne. Przykładowo biblio-
teka jQuery UI zawiera wiele dodatkowych sposobów określania tempa animacji.
Poznasz ją dokładniej w trzeciej części książki, jednak nie ma powodu, byś już te-
raz nie mógł zacząć używać jej do poprawienia atrakcyjności tworzonych animacji.

Aby skorzystać z biblioteki jQuery UI (będącej zwyczajnym zewnętrznym plikiem
JavaScript), trzeba dodać jej plik do strony tuż za znacznikiem dołączającym bi-
bliotekę jQuery. Po dołączeniu biblioteki można będzie używać udostępnianych
przez nią metod określania tempa animacji (ich pełną listę można znaleźć na stronie
http://api.jqueryui.com/easings/). Załóżmy na przykład, że chcemy, by po kliknięciu
element div umieszczony na stronie został powiększony. Aby dodatkowo animacja
była bardziej interesująca, chcemy określać jej tempo metodą easeInBounce. Jeśli
założymy, że animowany element ma identyfikator animate, kod strony realizujący
taką animację może wyglądać następująco:

1 <script src="_js/jquery.min.js"></script>
2 <script src="_js/jquery-ui.min.js"></script>
3 <script>
4 $(document).ready(function() {
5 $('#animate').click(function() {
6 $(this).animate(
7 {
8 width: '400px',
9 height: '400px'
10 },
11 1000,
12 'easeInBounce'); // Koniec funkcji animate.
13 }); // Koniec funkcji click.
14 }); // Koniec funkcji ready.
15 </script>

Wiersze 1. oraz 2. powodują dołączenie do strony bibliotek jQuery oraz jQuery
UI. W wierszu 4. znajduje się wszechobecna funkcja ready() (przedstawiona na
stronie 190), natomiast w wierszu 5. przypisujemy interesującemu nas elementowi
div procedurę obsługi zdarzeń click. Najważniejszym fragmentem tego przykładu
jest jednak kod zapisany w wierszach od 6. do 12. Jak zapewne pamiętasz (była
o tym mowa na stronie 189), wewnątrz procedury obsługi zdarzeń używane jest wy-
rażenie $(this), pozwalające odwołać się do elementu odpowiadającego na zdarze-

http://api.jqueryui.com/easings/

R O Z D Z I AŁ 6 . A N I M A C J E I E F E K T Y

Wykonywanie operacji
po zakończeniu efektu

223

nie — w naszym przypadku jest to znacznik <div>. Innymi słowy, w odpowiedzi na
kliknięcie tego elementu rozpoczynamy animację powodującą zmianę jego szero-
kości i wysokości (wiersze 8. i 9.). W wierszu 11. określamy, że animacja ma trwać
1 sekundę (czyli 1000 milisekund), a w wierszu 12. podajemy, że używaną metodą
zmiany tempa ma być easeInBounce (zamiast niej można jednak wybrać dowolną
inną spośród dostępnych metod, na przykład easeInOutSine bądź easeInCubic).

Uwaga: Powyższy fragment kodu można znaleźć w przykładach dołączonych do książki, umiesz-

czonych w katalogu R06. Wystarczy otworzyć w przeglądarce plik easing_example1.html. Przykład

easing_example2.html pokazuje, w jaki sposób można wykorzystać zdarzenie toggle(), by w jednym

elemencie <div> stosować dwa różne sposoby animacji: po pierwszym kliknięciu zostanie użyty

pierwszy sposób, a po kolejnym — drugi.

Wykonywanie operacji po zakończeniu efektu

Czasami może się zdarzyć, że będziemy chcieli wykonać jakieś operacje po zakoń-
czeniu efektu. Załóżmy, że chcemy, by po stopniowym wyświetleniu na stronie ja-
kiegoś obrazka poniżej niego został pokazany podpis. Zazwyczaj efekty nie są wy-
konywane jeden po drugim — ich realizacja rozpoczyna się dokładnie w momencie
wywołania. A zatem, jeśli w naszym kodzie jeden wiersz odpowiada za stopniowe
wyświetlenie obrazka, a następny za wyświetlenie podpisu, podpis pojawi się jeszcze
w czasie wyświetlania obrazka.

Aby wykonać jakąś czynność po zakończeniu odtwarzania efektu, do funkcji gene-
rującej efekt można przekazać dodatkową funkcję zwrotną. Zostanie ona wykona-
na dopiero po zakończeniu prezentowania efektu. Zazwyczaj jest przekazywana
jako drugi argument większości funkcji generujących efekty wizualne jQuery (trzeci
argument funkcji fadeTo()).

Załóżmy, że na naszej stronie znajduje się obrazek o identyfikatorze photo, a poni-
żej niego akapit tekstu o identyfikatorze caption. Aby stopniowo wyświetlić obra-
zek, a następnie, w podobny sposób, wyświetlić jego podpis, musimy skorzystać
z funkcji zwrotnej w następujący sposób:

$('#photo').fadeIn(1000, function() {
 $('#caption').fadeIn(1000);
});

Oczywiście, gdybyśmy chcieli wykonać taką funkcję w momencie wczytywania strony,
najpierw zapewne ukrylibyśmy zarówno obrazek, jak i jego podpis, a dopiero później
wywołali funkcję fadeIn():

$('#photo, #caption').hide();
$('#photo').fadeIn(1000, function() {
 $('#caption').fadeIn(1000);
});

Podczas stosowania funkcji animate() funkcja zwrotna określana jest jako ostatnia,
za wszelkimi innymi argumentami — obiektem zawierającym animowane właści-
wości CSS, czasem trwania animacji oraz metodą określania jej tempa. Metoda
określania tempa animacji jest jednak argumentem opcjonalnym, a zatem do funk-
cji animate() wystarczy przekazać jedynie literał obiektowy z właściwościami,

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Wykonywanie operacji
po zakończeniu efektu

224

czas trwania efektu oraz funkcję zwrotną. Przykładowo załóżmy, że nie interesuje nas
jedynie stopniowe wyświetlenie obrazka, lecz jednocześnie powiększenie go od zera
do pełnej wielkości (tworząc w ten sposób coś, co mogłoby przypominać efekt powięk-
szania). W takim przypadku wszystkie zamierzone operacje można wykonać przy
użyciu wywołania funkcji animate() przedstawionego w poniższym przykładzie:

1 $('#photo').width(0).height(0).css('opacity',0);
2 $('#caption').hide();
3 $('#photo').animate(
4 {
5 width: '200px',
6 height: '100px',
7 opacity: 1
8 },
9 1000,
10 function() {
11 $('#caption').fadeIn(1000);
12 }
13); // Koniec funkcji animate.

W 1. wierszu powyższego przykładu została przypisana wartość 0 właściwościom
width, height oraz opacity obrazka. (W ten sposób obrazek jest ukrywany, a jed-
nocześnie zostaje przygotowany do rozpoczęcia animacji). Wiersz 2. odpowiada za
ukrycie elementu zawierającego podpis pod obrazkiem. Wiersze od 3. do 13. za-
wierają wywołanie funkcji animate() wraz z umieszczoną w wierszach od 10. do 12.
funkcją zwrotną. Cały ten kod może się wydawać nieco przerażający, jednak funkcja
zwrotna jest jedynym sposobem wykonania operacji (a także kolejnego efektu wizu-
alnego operującego na zupełnie innym elemencie strony) po zakończeniu animacji.

Uwaga: Powyższy przykład można znaleźć w pliku callback.html umieszczonym w przykładach

dołączonych do książki, w katalogu R06.

Funkcje zwrotne mogą się stać bardzo kłopotliwe, jeśli będziemy chcieli animować
kilka elementów jeden po drugim; na przykład gdybyśmy chcieli przesunąć obrazek
na środek strony, następnie stopniowo wyświetlić pod nim podpis, by w końcu ukryć
oba elementy. Aby utworzyć taką animację, konieczne byłoby przekazanie jednej
funkcji zwrotnej wewnątrz innej funkcji zwrotnej, w sposób podobny do przedsta-
wionego poniżej:

$('#photo').animate(
 {
 left: '+=400px',
 },
 1000,
 function() { // Pierwsza funkcja zwrotna.
 $('#caption').fadeIn(1000,
 function() { // Druga funkcja zwrotna.
 $('#photo, #caption').fadeOut(1000);
 } // Koniec drugiej funkcji zwrotnej.
); // Koniec funkcji fadeIn.
 } // Koniec pierwszej funkcji zwrotnej.
); // Koniec funkcji animate.

Uwaga: Powyższy przykład można znaleźć w pliku multiple-callbacks.html umieszczonym w przy-

kładach dołączonych do książki, w katalogu R06.

R O Z D Z I AŁ 6 . A N I M A C J E I E F E K T Y

Przykład — animowany
pasek ze zdjęciami

225

Jeśli do tego samego elementu strony chcemy dodać kolejne animacje, nie musimy
stosować funkcji zwrotnych. Przykładowo załóżmy, że chcemy wsunąć obrazek na
stronę, a następnie stopniowo go wygasić. W takim przypadku wystarczy użyć
funkcji animate(), by przesunąć obrazek w odpowiednie miejsce, a następnie wy-
wołać funkcję fadeOut(), by go wygasić. Można to zrobić, używając następującego
fragmentu kodu:

$('#photo').animate(
 {
 left: '+=400px',
 },
 1000
); // Koniec funkcji animate.
$('#photo').fadeOut(3000);

W tym przypadku, choć przeglądarka wykona ten kod natychmiast, jQuery umieści
oba efekty w kolejce, dzięki czemu najpierw zostanie wykonana funkcja animate(),
a dopiero potem funkcja fadeOut(). Korzystając z techniki tworzenia sekwencji wy-
wołań, charakterystycznej dla biblioteki jQuery (opisanej na stronie 156), powyższy
kod można by zapisać w następującej postaci:

$('#photo').animate(
 {
 left: '+=400px',
 },
 1000).fadeOut(3000);

Gdybyśmy chcieli najpierw rozjaśnić obrazek, następnie go wygasić i, w końcu, po-
nownie rozjaśnić, korzystając przy tym z techniki tworzenia sekwencji wywołań,
moglibyśmy to zrobić w następujący sposób:

$('#photo').fadeIn(1000).fadeOut(2000).fadeIn(250);

Uwaga: Więcej informacji na temat sposobu działania mechanizmu kolejkowania efektów wizual-

nych w bibliotece jQuery można znaleźć na stronie http://api.jquery.com/jQuery.queue/.

Dodatkową funkcją, która może się przydać podczas tworzenia kolejek efektów wi-
zualnych, jest delay(). Powoduje ona odczekanie określonego okresu czasu (wyra-
żonego w milisekundach) przed rozpoczęciem kolejnego efektu zapisanego w kolejce.
Załóżmy, że chcemy stopniowo wyświetlić obrazek, odczekać 10 sekund, a następnie
go wygasić. Korzystając z funkcji delay(), możemy to zrobić w następujący sposób:

$('#photo').fadeIn(1000).delay(10000).fadeOut(250);

Przykład — animowany pasek ze zdjęciami
W tym przykładzie użyjemy funkcji animate() do przesunięcia znacznika <div>,
który początkowo jest ukryty poza lewą krawędzią strony. Znacznik ten jest pozy-
cjonowany w sposób bezwzględny (więcej informacji na temat tego sposobu pozy-
cjonowania można znaleźć w ramce na stronie 215), a zatem większa część jego ob-
szaru pozostaje niewidoczna — ukryta za lewą krawędzią strony i okna przeglądarki
(co widać po lewej stronie rysunku 6.3). Kiedy użytkownik umieści wskaźnik myszy
w widocznym obszarze znacznika <div>, zostanie on wysunięty w prawo, tak by stał

http://api.jquery.com/jQuery.queue/

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Przykład — animowany
pasek ze zdjęciami

226

się w całości widoczny (co widać z prawej strony rysunku 6.3). Aby cały efekt był
bardziej zabawny, zastosujemy dodatkowo wtyczkę pozwalającą na animowanie
koloru tła oraz kilka różnych sposobów określania tempa animacji.

Rysunek 6.3. Bardzo ciekawe
efekty można uzyskać, chowając
różne elementy strony poza
krawędziami okna przeglądarki
(tak jak pokazany z lewej strony
rysunku element div, którego
większa część jest niewidoczna).
Korzystając z funkcji animate(),
można przesuwać takie elementy,
tak by były widoczne w całości
(prawa część rysunku)

Uwaga: Informacje na temat pobierania przykładów dołączonych do tej książki można znaleźć na

stronie 46.

Podstawowe zadania, jakie należy wykonać, są raczej proste. Oto one.

 1. Pobranie znacznika <div>.

Pamiętasz zapewne, że bardzo wiele programów używających biblioteki jQuery
zaczyna działanie od pobrania odpowiednich elementów strony — w tym przy-
padku będzie to znacznik <div>, który użytkownik ma wskazać myszą.

 2. Dołączenie procedury obsługi zdarzeń hover.

Zdarzenie hover (opisane na stronie 192) jest specjalną funkcją jQuery, a nie
faktycznym zdarzeniem języka JavaScript. Pozawala ono na wykonywanie pierw-
szego zbioru czynności, w momencie gdy użytkownik wskaże element myszą,
oraz drugiego, gdy użytkownik usunie wskaźnik myszy z obszaru elementu
(w rzeczywistości zdarzenie to jest kombinacją zdarzeń mouseEnter oraz
mouseLeave).

 3. Dodanie wywołania funkcji animate() w procedurze obsługi zdarzenia
mouseEnter.

Kiedy użytkownik wskaże znacznik <div> myszą, przesuniesz go w prawo,
tak że pojawi się w całości, wysuwając się zza lewej krawędzi okna przeglądarki.
Dodatkowo dodasz animację koloru tła znacznika.

R O Z D Z I AŁ 6 . A N I M A C J E I E F E K T Y

Przykład — animowany
pasek ze zdjęciami

227

 4. Dodanie kolejnego wywołania funkcji animate() w ramach obsługi zda-
rzenia mouseLeave.

Kiedy użytkownik usunie wskaźnik myszy z obszaru znacznika, przesuniesz go
z powrotem w początkowe położenie i zmienisz kolor tła na oryginalny.

Tworzenie kodu
 1. W edytorze tekstów otwórz plik animate.html umieszczony w katalogu R06.

Przygotowany plik już zawiera odwołanie do biblioteki jQuery oraz wywołanie
funkcji $(document).ready() (patrz strona 190). Ponieważ jednak mamy za-
miar animować kolor tła elementu oraz wykorzystać kilka interesujących me-
tod określania tempa animacji, konieczne jest także dołączenie dwóch dodat-
kowych wtyczek jQuery, takich jak color oraz easing.

 2. Kliknij pusty wiersz umieszczony poniżej pierwszego znacznika <script>
i dodaj wyróżniony pogrubieniem kod przedstawiony poniżej:

<script src="../_js/jquery.min.js"></script>
<script src="../_js/jquery-ui.min.js"></script>

jQuery UI jest wtyczką biblioteki jQuery. W świecie jQuery wtyczki są zwy-
kłymi zewnętrznymi plikami JavaScript rozszerzającymi możliwości biblioteki,
które często pozwalają dodawać do tworzonych witryn złożone efekty lub
możliwości funkcjonalne bez konieczności samodzielnego pisania rozbudowa-
nego kodu. Kolejnym zadaniem będzie wybranie odpowiedniego znacznika <div>
i wywołanie funkcji hover().

 3. Kliknij pusty wiersz umieszczony wewnątrz funkcji $(document).ready()
i wpisz w nim $('#dashboard').hover(); // Koniec funkcji hover., by
kod wyglądał tak, jak przedstawiony poniżej:

$(document).ready(function() {
 $('#dashboard').hover(); // Koniec funkcji hover.
}); // Koniec funkcji ready.

Wywołanie $('#dashboard') powoduje pobranie znacznika <div> (o iden-
tyfikatorze dashboard). Funkcja hover() wymaga podania dwóch argumen-
tów — dwóch funkcji anonimowych (patrz strona 193) — opisujących, co
należy zrobić w momencie umieszczenia wskaźnika myszy w obszarze elemen-
tu oraz w momencie jego usunięcia. Zamiast wpisywać cały kod za jednym razem,
utworzymy go etapami. Najpierw dodamy samą funkcję hover(), a następnie
dwie, początkowo puste funkcje anonimowe. Takie rozwiązanie jest bardzo przy-
datne, bo kiedy nie zachowamy należytej uwagi, ogromna liczba zagnieżdżonych
nawiasów, nawiasów klamrowych, przecinków i średników może być przytła-
czająca.

 4. Kliknij pomiędzy nawiasami w wywołaniu funkcji hover() i dodaj dwie
puste funkcje anonimowe:

$(document).ready(function() {
 $('#dashboard').hover(
 function() {

 },
 function() {

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Przykład — animowany
pasek ze zdjęciami

228

 }
); // Koniec funkcji hover.
}); // Koniec funkcji ready.

Kiedy już dokończysz pisanie tego wywołania funkcji .hover(), będzie ono wy-
glądało na naprawdę skomplikowane (patrz krok 12.). Jednak w rzeczywistości
jest to jedynie funkcja przyjmująca dwa argumenty będące funkcjami. Dobrym
rozwiązaniem jest rozpoczęcie od wstawienia dwóch pustych, anonimowych
funkcji, dzięki czemu jeszcze będziesz miał pewność, że struktura kodu jest
prawidłowa.

Wskazówka: Dobrym pomysłem jest możliwie jak najczęstsze testowanie kodu, by upewnić się, że nie

zawiera żadnych prostych błędów typograficznych. W kroku 4., w pierwszej funkcji anonimowej można

wpisać na przykład console.log('mouseOver'), a w drugiej — console.log('mouseLeave'), a na-

stępnie wyświetlić stronę w przeglądarce. Aby zobaczyć efekty, będziesz musiał otworzyć konsolę

JavaScript przeglądarki; w tym celu w Internet Explorerze naciśnij klawisz F12; w Chrome naciśnij kom-

binację klawiszy Ctrl+Shift+J (w systemie Windows) lub +Option+J (w systemie Mac OS), w przeglą-

darce Firefox naciśnij kombinację klawiszy Ctrl+Shift+K (w systemie Windows) lub +Option+K (w sys-

temie Mac OS), a w przeglądarce Safari naciśnij kombinację klawiszy +Option+C. Kiedy umieścisz

wskaźnik myszy w obszarze elementu div, w oknie konsoli powinien się pojawić komunikat mouseOver,

a kiedy usuniesz wskaźnik myszy z elementu — komunikat mouseLeave. Jeśli w oknie konsoli nie zo-

staną wyświetlone żadne okienka informacyjne, będzie to oznaczało, że gdzieś popełniłeś błąd. W ta-

kim przypadku ponownie sprawdź kod strony bądź też wykonaj opisane na stronie 51 czynności

pozwalające na odszukanie przyczyny błędu przy użyciu konsoli JavaScript.

 5. Wewnątrz pierwszej funkcji anonimowej wpisz: $(this).animate();
// Koniec funkcji animate..

Zgodnie z informacjami podanymi na stronie 189, wyrażenie $(this) używane
wewnątrz procedur obsługi zdarzeń odwołuje się do elementu, z którym proce-
dura została skojarzona. W tym przypadku wyrażenie to odwołuje się do znacz-
nika <div> o identyfikatorze dashboard. Innymi słowy, przesuwanie wskaźnika
myszy w obszarze elementu także będzie powodować jego animację.

 6. Dodaj literał obiektowy określający właściwości CSS, które chcesz animować:
$(document).ready(function() {
 $('#dashboard').hover(
 function() {
 $(this).animate(
 {
 left: '0',
 backgroundColor: 'rgb(27,45,94)'
 }
); // Koniec funkcji animate.
 },
 function() {

 }
); // Koniec funkcji hover.
}); // Koniec funkcji ready.

Pierwszym argumentem wywołania funkcji animate() jest literał obiektowy
(patrz strona 165) określający animowane właściwości CSS. W naszym przy-
padku aktualna wartość właściwości left znacznika <div> wynosi -92px, co
oznacza, że jego znacząca część jest ukryta poza lewą krawędzią okna przeglą-
darki. Jeśli w ramach animacji zmienimy wartość tej właściwości na 0, w efekcie

R O Z D Z I AŁ 6 . A N I M A C J E I E F E K T Y

Przykład — animowany
pasek ze zdjęciami

229

przesuniemy element w prawo i w całości wyświetlimy go na stronie. Podob-
nie, dzięki zastosowaniu wtyczki color, możemy płynnie zmienić kolor tła tego
znacznika z różowego na niebieski. Kolejną czynnością będzie określenie
czasu trwania animacji.

 7. Za zamykającym nawiasem klamrowym } wpisz przecinek, naciśnij klawisz
Enter i wpisz 500.

Przecinek oznacza koniec pierwszego argumentu przekazywanego w wywołaniu
funkcji animate(), natomiast liczba 500 określa czas trwania animacji (wyra-
żony w milisekundach). Teraz możesz podać metodę określania tempa animacji.

 8. Za cyfrą 500 wpisz przecinek, naciśnij klawisz Enter i wpisz 'easeInSine',
tak by kod wyglądał tak samo jak przedstawiony poniżej:

$(document).ready(function() {
 $('#dashboard').hover(
 function() {
 $(this).animate(
 {
 left: '0',
 backgroundColor: 'rgb(27,45,94)'
 },
 500,
 'easeInSine'
); // Koniec funkcji animate.
 },
 function() {

 }
); // Koniec funkcji hover.
}); // Koniec funkcji ready.

Ostatni argument wywołania funkcji animate() — w naszym przypadku ma on
postać 'easeInSine' — nakazuje zastosować metodę określania tempa animacji,
która sprawia, że animacja zaczyna się dosyć wolno, a następnie przyspiesza.

 9. Zapisz plik, wyświetl stronę w przeglądarce i wskaż znacznik <div> myszą.

Znacznik powinien przesunąć się w prawo i w całości pojawić na stronie. Jeśli
tak się nie stanie, spróbuj określić źródło problemów, posługując się technikami
opisanymi na stronie 51. Oczywiście, kiedy usuniesz wskaźnik myszy z obsza-
ru elementu, nic się nie stanie. Wciąż musisz jeszcze uzupełnić kod drugiej
funkcji anonimowej.

 10. W drugiej funkcji anonimowej umieść następujący fragment kodu:
$(this).animate(
 {
 left: '-92px',
 backgroundColor: 'rgb(255,211,224)'
 },
 1500,
 'easeOutBounce'
); // Koniec funkcji animate.

Powyższy kod odwraca zmiany wprowadzone przez pierwszą animację — prze-
suwa element w lewo, poza krawędź okna przeglądarki i ponownie zmienia jego
tło na różowe. W tym przypadku animacja trwa nieco dłużej — półtorej, a nie pół
sekundy — oraz używamy innej metody określania tempa.

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Przykład — animowany
pasek ze zdjęciami

230

 11. Zapisz plik. Wyświetl go w przeglądarce, wskaż znacznik <div> myszą, a na-
stępnie usuń jej wskaźnik z obszaru elementu.

Jak się przekonasz, znacznik <div> jest przesuwany na stronę, a następnie z niej
wysuwany. Jeśli jednak spróbujesz kilkakrotnie i szybko umieścić wskaźnik my-
szy w jego obszarze, a następnie go usunąć, zauważysz pewne dziwne zachowanie:
znacznik będzie wsuwany na stronę oraz z niej wysuwany na długo po tym, jak
przestałeś poruszać wskaźnikiem myszy. Przyczyną tego problemu jest sposób,
w jaki jQuery kolejkuje wykonywane animacje. Zgodnie z informacjami
podanymi na stronie 223, wszelkie animacje operujące na pewnym elemencie
trafiają do specjalnej, powiązanej z nim kolejki. Jeśli na przykład chcemy stop-
niowo wyświetlić element, a następnie go wygasić, jQuery wykona każdy z tych
efektów w kolejności, jeden po drugim.

Problem, jaki mogłeś zaobserwować, polegał na tym, że wraz z każdym umiesz-
czeniem wskaźnika myszy w obszarze znacznika oraz jego usunięciem z tego
obszaru do kolejki była dodawana następna animacja. A zatem wielokrotne,
szybkie powtarzanie tych czynności doprowadziło do utworzenia długiej listy
efektów — wsunięcia znacznika na stronę, wysunięcia go poza nią, ponownego
wsunięcia i tak dalej — które biblioteka jQuery miała wykonać. Rozwiązaniem
tego problemu jest przerwanie wykonywania wszelkich animacji znacznika przed
rozpoczęciem kolejnej. Innymi słowy, jeśli umieścimy wskaźnik myszy w ob-
szarze znacznika, który aktualnie jest w trakcie animacji, animację tę należy
przerwać, a następnie rozpocząć kolejną — zgodnie ze sposobem obsługi zdarzenia
mouseEnter. Na szczęście biblioteka jQuery udostępnia funkcję, która pozwala
na takie przerwanie aktualnie wykonywanej animacji; jest nią stop().

 12. Dodaj wywołanie funkcji .stop() pomiędzy $(this) oraz .animate, we-
wnątrz obu funkcji anonimowych. Uzupełniony, końcowy kod przykładu
powinien wyglądać następująco:

$(document).ready(function() {
 $('#dashboard').hover(
 function() {
 $(this).stop().animate(
 {
 left: '0',
 backgroundColor: 'rgb(27,45,94)'
 }
 500,
 'easeInSine'
); // Koniec funkcji animate.
 },
 function() {
 $(this).stop().animate(
 {
 left: '-92px',
 backgroundColor: 'rgb(255,211,224)'
 },
 1500,
 'easeOutBounce'
); // Koniec funkcji animate.
 }
); // Koniec funkcji hover.
}); // Koniec funkcji ready.

R O Z D Z I AŁ 6 . A N I M A C J E I E F E K T Y

jQuery i przejścia oraz
animacje CSS3

231

Wywołanie funkcji stop() powoduje zakończenie wszelkich animacji wyko-
nywanych na elemencie <div> przed rozpoczęciem kolejnej i nie dopuszcza do
umieszczenia w kolejce większej liczby animacji.

Zapisz stronę i spróbuj wyświetlić ją w przeglądarce. Pełną wersję tego przykładu
możesz znaleźć w pliku complete_animate.html, w katalogu R06.

jQuery i przejścia oraz animacje CSS3
Jeśli jesteś na bieżąco z najnowszymi i najwspanialszymi technikami stosowania
kaskadowych arkuszy stylów, to być może zastanawiasz się nad tym, po co w ogóle
bawić się w tworzenie animacji przy użyciu biblioteki jQuery? W końcu przejścia
(ang. transitions) CSS pozwalają na wykorzystanie samej technologii CSS do two-
rzenia animacji pomiędzy dwoma stylami; zapewniają one tym samym możliwość
opracowania bardzo złożonych efektów wizualnych (patrz rysunek 6.4).

Rysunek 6.4. Rachel Nabors,
rysowniczka, specjalistka do
spraw języka JavaScript i twór-
czyni animacji połączyła jQuery
oraz animacje CSS3, aby stwo-
rzyć kompletną, animowaną
przygodę dostępną na stronie
http://codepen.io/rachelnabors
/full/lqswg. Korzysta ona
z jQuery, by wykonywać anima-
cje utworzone przy użyciu CSS.
Niestety, ten ultranowoczesny
przykład nie działa we wszystkich
przeglądarkach

Nowe możliwości animacji opracowywanych przy użyciu CSS są niesamowite,
jednak nie wszystkie przeglądarki je obsługują. Konkretnie chodzi o dwie, wciąż
popularne wersje przeglądarki Internet Explorer — 8. i 9. — które nie obsługują
ani animacji, ani przejść CSS. A zatem, jeśli chcesz uwzględnić te przeglądarki
podczas tworzenia swojej witryny, konieczne będzie zastosowanie innego sposo-
bu tworzenia animacji. W takim przypadku opisane wcześniej w tym rozdziale
animacje budowane przy użyciu jQuery są najlepszym sposobem opracowania strony
działającej we wszystkich przeglądarkach.

http://codepen.io/rachelnabors/full/lqswg
http://codepen.io/rachelnabors/full/lqswg

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

jQuery i przejścia oraz
animacje CSS3

232

Uwaga: Przeglądarki nie potrafią animować wszystkich dostępnych właściwości CSS. Przykładowo

nie ma możliwości animowania właściwości font-family i tworzenia tekstu, który przechodzi od

jednego kroju czcionki do innego. Jednak w przejściach oraz animacjach i tak można używać

wielu właściwości CSS. Ich pełna lista jest dostępna na stronie https://developer.moz lla.org/en-

US/docs/Web/CSS/CSS_animated_properties.

Jeśli jednak chcesz korzystać z przejść oraz animacji CSS, biblioteka jQuery i tak
może się okazać bardzo pomocna. W odróżnieniu od języka JavaScript, CSS nie
udostępnia żadnych zdarzeń. Istnieje, co prawda, pseudoklasa :hover, która po-
zwala zastosować wybraną klasę po wygenerowaniu zdarzenia mouseEnter oraz
zmienić ją na inną po wygenerowaniu zdarzenia mouseLeave. Z kolei pseudokla-
sa :active może posłużyć do symulacji kliknięcia. Mimo to, bardzo wiele zda-
rzeń, takich jak podwójne kliknięcie, przewinięcie strony czy też naciśnięcie
klawiszy, nie ma żadnych odpowiedników w CSS. Oznacza to, że nie można za-
stosować samych kaskadowych arkuszy stylów, by rozpocząć animacje, kiedy
użytkownik wpisze coś w polu tekstowym lub dwukrotnie kliknie przycisk. Co
więcej, CSS nie umożliwia uruchomienia animacji w jednym elemencie strony,
w odpowiedzi na akcję wykonaną przez użytkownika na innym elemencie; na
przykład kliknięcie przycisku „Pokaż ustawienia” u góry strony nie spowoduje
wyświetlenia elementu div umieszczonego w innym miejscu.

Uwaga: W tej książce nie znajdziesz szczegółowych informacji na temat przejść oraz animacji CSS. Jeśli

chcesz dowiedzieć się czegoś więcej na ich temat, warto sięgnąć po książkę CSS3. Nieoficjalny podręcznik.
Wydanie III. Szybkie wprowadzenie do tworzenia przejść CSS można znaleźć na stronie http://www.
css3files.com/transition/. Podobne wprowadzenie do tworzenia animacji jest dostępne na stronie

http://www.css3files.com/animation/.

jQuery i przejścia CSS
Przejścia powodują płynną modyfikację wartości właściwości CSS. Najprościej
można to zrobić poprzez zastosowanie w elemencie nowego stylu, a następnie
animowanie wprowadzonej zmiany. Możesz na przykład zmienić wygląd przyci-
sku określony przez klasę .button, która ustawia kolor tła na niebieski. Używa-
jąc pseudoklasy — .button:hover — możesz zmienić kolor tła przycisku na żółty.
Teraz poprzez zastosowanie przejścia operującego na klasie .button możesz zażą-
dać, by przeglądarka animowała zmianę koloru tła z niebieskiego na żółty w mo-
mencie umieszczenia wskaźnika myszy w obszarze przycisku, oraz z żółtego na
niebieski, kiedy użytkownik usunie wskaźnik myszy z przycisku.

Możesz dodać przejście, by płynnie zmienić jedną wartość właściwości CSS na inną.
Załóżmy przykładowo, że chcesz powoli wygasić wszystkie obrazki na stronie, uży-
wając do tego przejścia CSS. Zacznij od określenia początkowego stylu obrazków:

img {
 opacity: 1;
}

Właściwość opacity kontroluje poziom nieprzezroczystości elementu. Wartość 1
oznacza, że dany element jest całkowicie widoczny (nieprzezroczysty), a wartość 0,
że jest zupełnie przezroczysty. Następnie możesz utworzyć klasę, która nadaje
właściwości opacity wartość 0:

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_animated_properties
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_animated_properties
http://www.css3files.com/transition/
http://www.css3files.com/animation/
http://www.css3files.com/transition/

R O Z D Z I AŁ 6 . A N I M A C J E I E F E K T Y

jQuery i przejścia oraz
animacje CSS3

233

img.faded {
 opacity: 0;
}

Aby dodać animację powodującą płynne przejście pomiędzy tymi dwoma styla-
mi, musisz skorzystać z właściwości CSS o nazwie transition. Należy ją dodać
do stylu początkowego (czyli tego, który określi domyślny wygląd elementów na
stronie). W tym przypadku jest to styl określający postać wszystkich elementów
img. Oprócz tego, aby upewnić się, że przejście będzie działało we wszystkich
przeglądarkach, które na to pozwalają, do właściwości transition należy dodać
odpowiednie prefiksy; co pokazano na poniższym przykładzie:

img {
 opacity: 1;
 -webkit-transition: opacity 1s;
 -moz-transition: opacity 1s;
 -o-transition: opacity 1s;
 transition: opacity 1s;
}

W tym przykładzie określasz, że chcesz animować zmiany wartości właściwości
opacity. Co więcej, określasz, że chcesz, by animacja ta trwała jedną sekundę —
informuje o tym fragment 1s umieszczony w przedstawionych regułach.

Uwaga: Kiedy twórcy przeglądarek dodają do nich nowe, innowacyjne możliwości, zazwyczaj zaczynają

od poprzedzenia nazwy właściwości specjalnym prefiksem odpowiadającym nazwie przeglądarki, na

przykład -webkit-transition. Dzięki tym prefiksom twórcy przeglądarek mogą w bezpieczny sposób

przetestować nowe możliwości, aż do momentu gdy dodawane właściwości będą działały całkowicie

poprawnie. Kiedy już wszyscy uzgodnią, jak ma działać nowa właściwość CSS, prefiksy zostają usunięte

w nowszych wersjach przeglądarek i można stosować wyłącznie standardową nazwę danej właściwości

CSS, na przykład zamiast -webkit-transition można używać właściwości transition.

Kiedy po dodaniu klasy faded zastosujesz ją w obrazku, zostanie wykonana
animacja, która w ciągu 1 sekundy sprawi, że całkowicie widoczne obrazki staną
się zupełnie przezroczyste. Innymi słowy, efekt będzie przypominał zastosowanie
funkcji jQuery fadeOut() tworzącej animację o czasie trwania jednej sekundy.
W tym przypadku najważniejsze jest dodanie do obrazków na stronie klasy faded.
I właśnie do tego celu może się przydać jQuery. Jeśli zechcesz zastosować wybrany
styl, kiedy użytkownik kliknie obrazek, wystarczy użyć funkcji click() w sposób
przedstawiony na poniższym przykładzie:

$('img').click(function() {
 $(this).addClass('faded');
}

Kiedy użytkownik kliknie obrazek, jQuery doda do niego klasę, a przeglądarka
zajmie się najtrudniejszym zadaniem, czyli animacją zmiany właściwości opacity
(patrz rysunek 6.5). Gdybyś chciał płynnie wyświetlić obrazek po jego ponow-
nym kliknięciu, zamiast funkcji addClass() wystarczyłoby zastosować funkcję
toggleClass():

$('img').click(function() {
 $(this).toggleClass('faded');
}

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

jQuery i przejścia oraz
animacje CSS3

234

Rysunek 6.5. Biblioteka jQuery i przejścia CSS doskonale ze sobą współpracują. Dzięki użyciu procedur obsługi
zdarzeń określanych przy użyciu jQuery można uruchamiać przejścia. W tym przykładzie kliknięcie obrazka
powoduje jego płynne ukrycie, ponowne kliknięcie pustego obszaru powoduje wyświetlenie obrazka. Przedsta-
wiony kod nie działa w przeglądarce IE9 i wcześniejszych — nie obsługują one przejść CSS. Kompletną wersję tego
przykładu znajdziesz w pliku jquery-trigger-css-animation.html, w katalogu R06

Funkcja toggleClass() dodaje klasę, jeśli nie jest używana w elemencie, a jeśli jest,
to ją usuwa. Ponieważ w CSS nie istnieje selektor odpowiadający kliknięciu elemen-
tu, zatem zastosowanie jQuery stanowi prosty sposób uruchamiania przejść CSS.

Uwaga: Przypisanie wartości 0 właściwości opacity elementu nie powoduje usunięcia go ze strony.

Element wciąż istnieje, zajmuje miejsce na stronie (oraz w DOM), przy czym jest niewidoczny. I to wła-

śnie dlatego zastosowanie funkcji toggleClass() w powyższym przykładzie daje efekt naprzemien-

nego znikania i pojawiania się obrazków. Wciąż można kliknąć niewidoczny obrazek, by usunąć z niego

klasę faded. Gdybyśmy jednak faktycznie ukryli element, na przykład przy użyciu stylu display: hidden,

zostałby on usunięty ze strony i nie można by go było ponownie kliknąć.

jQuery i animacje CSS
Animacje CSS zapewniają znacznie większą kontrolę niż proste przejścia. W ich
przypadku definiuje się klatki kluczowe (ang. keyframes), które ustalają wartości
właściwości CSS na określonych etapach animacji. Można na przykład utworzyć
animację, która będzie kilkakrotnie zmieniać kolor przycisku — z niebieskiego
na czerwony, następnie na pomarańczowy i w końcu na zielony – bądź przesuwać
element <div> na górę strony, następnie na sam dół, w lewo, a później w prawo.
Innymi słowy, w odróżnieniu od przejść, które pozwalają na określenie jedynie
początkowego i końcowego stanu animacji, animacje CSS dają możliwość okre-
ślenia serii etapów pośrednich, przez które animacja będzie kolejno przechodzić.

Poziom złożoności animacji CSS może bardzo szybko rosnąć, jednak istnieje
wiele zasobów zawierających informacje na ich temat. Aby ułatwić Ci rozpoczę-
cie ich stosowania, w tym rozdziale przedstawiony zostanie przykład użycia jQuery
do wyzwalania animacji. Załóżmy, że chcesz, by po kliknięciu przycisku wybrany
element <div> zmienił kolor i został poszerzony. (Możesz na przykład zastosować
takie rozwiązanie do wyróżnienia i wyświetlenia tekstu ukrytego w tym elemencie).

R O Z D Z I AŁ 6 . A N I M A C J E I E F E K T Y

jQuery i przejścia oraz
animacje CSS3

235

Pierwszym krokiem jest utworzenie animacji. Do tego celu należy użyć dyrektywy
@keyframes:

@keyframes growProgressBar{
 0% {
 width: 0%;
 background-color: red;
 }
 50% {
 background-color: yellow;
 }
 100% {
 width:88%;
 background-color: green;
 }
}

Taki kod może wyglądać obco, jednak jego znaczenie jest proste: tworzy anima-
cję o podanej nazwie — w tym przypadku jest to growProgressBar — oraz serię
klatek kluczowych. Każda klatka określa wartości jednej lub kilku właściwości
CSS, które będą modyfikowane podczas trwania animacji. Przykładowo pierwsza
z klatek przedstawionych w powyższym przykładzie — 0% — odpowiada momentowi
rozpoczynania animacji i określa, że szerokość elementu ma wynosić 0%, a jego
tło ma być czerwone.

Uwaga: Aby powyższy kod działał w przeglądarkach Chrome i Safari, konieczne jest zastosowanie pre-

fiksu —@webkit-keyframes. Poza tym, ten kod nie będzie działał w przeglądarce Internet Explorer 9

i starszych.

Podczas przechodzenia do kolejnych klatek kluczowych tło elementu będzie
zmieniać kolor z czerwonego na żółty, a następnie na zielony. Wartość procen-
towa użyta do zdefiniowania poszczególnych klatek kluczowych określa, w którym
momencie animacji wartości właściwości CSS mają osiągać żądane wartości.
Załóżmy, że powyższa animacja ma trwać 10 sekund (czas trwania animacji jest
określany osobno, o czym dowiesz się już niebawem). A zatem, w momencie od-
powiadającym 0% z 10 sekund kolor tła ma być czerwony, a szerokość elementu ma
wynosić 0%. W momencie odpowiadającym 50% z 10 sekund, czyli po 5 sekundach
od rozpoczęcia animacji kolor tła ma być żółty. I w końcu, kiedy minie 100%
czasu trwania animacji, czyli całe 10 sekund, tło elementu ma być zielone i zaj-
mować 88% szerokości.

Ponieważ w powyższym przykładzie szerokość elementu została określona tylko
dla pierwszej i ostatniej klatki kluczowej, będzie się ona zmieniać od 0% do 88%
podczas całego czasu odtwarzania animacji.

Po określeniu klatek kluczowych można dodać animację do dowolnej liczby
elementów. Załóżmy na przykład, że na stronie umieściłeś następujący fragment
kodu HTML: <div class= progressBar >. Poniższy przykład pokazuje, w jaki
sposób możesz dodać do tego elementu zdefiniowaną wcześniej animację:

.progressBar {
 animation-name: growProgressBar;
 animation-duration: 10s;
 animation-fill-mode: forwards;
}

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

jQuery i przejścia oraz
animacje CSS3

236

Powyższy kod zastosuje animację w wybranym elemencie i określa, że ma ona
trwać przez 10 sekund. Ostatni wiersz kodu — animation-fill-mode: forwards;
— zapewnia, że gdy animacja zostanie zakończona, element zachowa wartości wła-
ściwości określone w ostatniej klatce kluczowej. (Gdyby został on pominięty,
element powróciłby do stanu sprzed rozpoczęcia animacji).

Jednak powyższa animacja zostałaby rozpoczęta bezpośrednio po wczytaniu strony.
A Twoim celem było rozpoczęcie jej, kiedy użytkownik kliknie przycisk. Animację
można „wstrzymać” (czyli zatrzymać, jeszcze zanim w ogóle została rozpoczęta),
używając kolejnej właściwości, czyli animation-play-state. Aby odtwarzanie ani-
macji nie rozpoczynało się natychmiast po wczytaniu strony, do stylu elementu
należy dodać tę właściwość i przypisać jej wartość paused:

.progressBar {
 animation-name: growProgressBar;
 animation-duration: 10s;
 animation-fill-mode: forwards;
 animation-play-state: paused;
}

Najprostszym zadaniem jest zastosowanie jQuery do rozpoczęcia animacji. W tym
celu będziesz musiał jedynie zmienić wartość właściwości animation-play-state
z paused na running. Bardzo łatwo zrobisz, używając funkcji css(). Możesz na
przykład utworzyć przycisk o identyfikatorze start, którego kliknięcie rozpocznie
animację. A tak mógłby wyglądać odpowiedni kod jQuery:

$('#start').click(function() {
 $('.progressBar').css('animation-play-state', 'running');
}

Gdybyś umieścił na stronie także drugi przycisk „Zatrzymaj”, na przykład o identy-
fikatorze pause, poniższy kod pozwoliłby na zatrzymywanie animacji:

$('#pause').click(function() {
 $('.progressBar').css('animation-play-state', 'paused');
}

Na szczęście jQuery zwraca uwagę na prefiksy przeglądarek i potrafi z nich pra-
widłowo korzystać. Podczas ustawiania wartości właściwości CSS wymagającej
takiego prefiksu, jQuery ustawi także wartość tej samej właściwości w każdym
z istniejących prefiksów. Dziękujemy jQuery!

Innym rozwiązaniem jest tworzenie klatek kluczowych oraz odrębnego stylu,
definiującego wartości wszystkich właściwości związanych z animacją. Mógłby
on wyglądać następująco:

.animateDiv {
 animation-name: growProgessBar;
 animation-duration: 10s;
 animation-fill-mode: forwards;
}

W momencie wczytywania strony animowany element nie będzie należał do kla-
sy .animateDiv, co oznacza, że nie będzie animowany — i właśnie o to chodziło.
Potem możesz użyć jQuery, by dodać tę klasę do elementu. Gdy tylko to zrobisz,
przeglądarka zacznie animację. Takie rozwiązanie pozwala uniknąć stosowania
właściwości animation-play-state:

R O Z D Z I AŁ 6 . A N I M A C J E I E F E K T Y

jQuery i przejścia oraz
animacje CSS3

237

$('#start').click(function() {
 $('.progressBar').addClass('animateDiv');
}

W przykładach dołączonych do książki znajdziesz oba rozwiązania; znajdują się one
w plikach jquery-trigger-css-animation1.html oraz jquery-trigger-css-animation2.html.

Trzeba wspomnieć, że stosowanie animacji CSS ma także jedną wadę — Internet
Explorer 9 i starsze wersje tej przeglądarki w ogóle ich nie obsługują. Poza tym,
kontrola przebiegu animacji CSS nie jest równie łatwa, jak animacji tworzonych
przy użyciu biblioteki jQuery.

Uwaga: Najprawdopodobniej programiści będą stosować animacje CSS w połączeniu z odpowiednim

kodem JavaScript. W3C oraz twórcy przeglądarek pracują nad wieloma różnymi sposobami kontrolo-

wania animacji CSS przy użyciu JavaScriptu, dodając do języka nowe zdarzenia pozwalające na śledzenie

postępu odtwarzania animacji. Jeśli chciałbyś wykonać jakiś kod jQuery po zakończeniu animacji CSS,

sposób rozwiązania takiego problemu znajdziesz na stronie http://blog.teamtreehouse.com/using-

jquery-to-detect-when-css3-animations-and-transitions-end.

http://blog.teamtreehouse.com/using-jquery-to-detect-when-css3-animations-and-transitions-end
http://blog.teamtreehouse.com/using-jquery-to-detect-when-css3-animations-and-transitions-end
http://blog.teamtreehouse.com/using-jquery-to-detect-when-css3-animations-and-transitions-end

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

238

Popularne zastosowania
jQuery

odczas projektowania stron WWW bezustannie pracujemy, korzystając z gru-
py godnych zaufania elementów. Obrazy mogą poprawiać projekt strony i wy-
różniać jej wybrane elementy. Odnośniki tworzą podstawę istnienia WWW,

pozwalając użytkownikom na przeskakiwanie od jednej informacji do drugiej, my
natomiast możemy kontrolować, jak one działają — czy są otwierane w tym samym
oknie przeglądarki, czy w nowym. A kiedy na stronie będzie wiele odnośników,
warto wiedzieć, w jaki sposób można je zgromadzić i przedstawić w formie świet-
nego paska nawigacyjnego. Biblioteka jQuery umożliwia poprawienie zarówno
wyglądu tych wszystkich elementów, jak i możliwości interakcji z nimi. W tym
rozdziale dowiesz się, jak skorzystać z jQuery, by używane obrazki, odnośniki, okna
i paski nawigacyjne działały lepiej niż kiedykolwiek wcześniej.

Zamiana rysunków
Prawdopodobnie najczęściej używanym efektem opartym na języku JavaScript jest
podmienianie rysunków (ang. rollover effect). Efekt polega na zastąpieniu jednego
obrazka innym po umieszczeniu nad grafiką wskaźnika myszy. Ta prosta technika
od czasu pojawienia się JavaScriptu jest używana do tworzenia interaktywnych
pasków nawigacyjnych, których przyciski zmieniają wygląd po umieszczeniu na
nich wskaźnika myszy.

Jednak od kilku lat coraz większa liczba projektantów używa do uzyskania tego efektu
stylów CSS. Jeśli też do nich należysz, warto, byś wiedział, jak zastępować rysunki
za pomocą języka JavaScript, aby tworzyć pokazy slajdów, galerie fotografii i inne in-
teraktywne efekty graficzne na stronach WWW.

P

7
ROZDZIAŁ

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Zamiana rysunków

240

Zmienianie atrybutu src rysunków
Każdy rysunek widoczny na stronie WWW ma atrybut src (to skrót od ang. source,
czyli źródło), który zawiera ścieżkę do pliku graficznego, czyli wskazuje obrazek zapi-
sany na serwerze. Jeśli zmienisz tę właściwość i wskażesz inny plik, przeglądarka
wyświetli nowy rysunek. Załóżmy, że na stronie znajduje się obrazek o identyfika-
torze photo. Przy użyciu biblioteki jQuery można dynamicznie zmienić wartość
atrybutu src obrazka.

Załóżmy więc, że na stronie mamy obrazek o identyfikatorze photo. Kod HTML
tworzący taki obrazek mógłby mieć następującą postać:

Aby podmienić obrazek wyświetlany w tym elemencie, wystarczy skorzystać z funk-
cji attr() (opisanej na stronie 166) i przy jej użyciu zmienić wartość atrybutu src
tak, by wskazywał plik nowego obrazka:

$('#photo').attr('src','images/newImage.jpg');

Uwaga: Przy zmianie właściwości src rysunku w kodzie JavaScript ścieżkę do pliku graficznego

należy podać względem strony, a nie pliku z kodem JavaScript. Bywa to skomplikowane przy uży-

waniu zewnętrznych plików JavaScript (patrz strona 49) zapisanych w innym katalogu. Po napotkaniu

wcześniejszej instrukcji przeglądarka spróbuje pobrać plik newImage.jpg z katalogu images utwo-

rzonego w tym samym folderze, co dana strona. Ta metoda działa dobrze nawet wtedy, gdy kod znaj-

duje się w pliku zewnętrznym umieszczonym w innym miejscu witryny. Dlatego zwykle w takich plikach

łatwiej używać ścieżek podawanych względem katalogu głównego (omówienie różnych rodzajów od-

syłaczy znajdziesz w ramce na stronie 45).

Modyfikacja atrybutu src nie ma wpływu na pozostałe atrybuty znacznika .
Jeśli na przykład w kodzie HTML ustawiono atrybut alt, w nowym rysunku będzie
miał on taką samą wartość jak w pierwotnym obrazku. Ponadto jeśli w kodzie okre-
ślono atrybuty width i height, po zmianie właściwości src nowy rysunek będzie
zajmował ten sam obszar, co poprzedni obrazek. Jeśli grafiki mają różne wymiary,
nowy rysunek zostanie zniekształcony.

Przy zastępowaniu obrazków w pasku nawigacyjnym oba rysunki mają zwykle ten
sam rozmiar i atrybut alt, dlatego użycie właściwości z pierwotnej wersji obrazka jest
dopuszczalne. Jednak efektu zniekształcenia obrazka można bardzo łatwo uniknąć
— wystarczy pominąć określanie właściwości width i height w kodzie HTML.
Wtedy przy zamianie rysunków przeglądarka użyje wymiarów nowego pliku.

Inne rozwiązanie polega na pobraniu nowego rysunku, sprawdzeniu jego wymiarów
i zmianie atrybutów src, width, height i alt znacznika :

1 var newPhoto = new Image();
2 newPhoto.src = 'images/newImage.jpg';
3 var photo = $('#photo');
4 photo.attr('src',newPhoto.src);
5 photo.attr('width',newPhoto.width);
6 photo.attr('height',newPhoto.height);

Uwaga: Numery wierszy nie są częścią kodu, dlatego nie należy ich przepisywać. Liczby te uła-

twiają czytanie opisu kodu.

R O Z D Z I AŁ 7 . P O P U L A R N E Z A S T O S O W A N I A J Q U E R Y

Zamiana rysunków

241

Istotą tej techniki jest wiersz 1., który tworzy nowy obiekt rysunku (typu Image).
Dla przeglądarki kod new Image() oznacza: „Przeglądarko, skrypt zaraz doda do
strony nowy rysunek, więc się przygotuj”. Następny wiersz nakazuje przeglądarce
pobranie nowego obrazka. Wiersz 3. pobiera referencję do rysunku widocznego na
stronie, a w wierszach od 4. do 6. skrypt zastępuje pierwotny obrazek nowym oraz
dopasowuje właściwości width i height do wymiarów nowej grafiki.

Wskazówka: Funkcja attr() biblioteki jQuery pozwala zmienić jednocześnie kilka atrybutów. Wystarczy

przekazać do niej literał obiektowy (patrz strona 165), zawierający nazwy atrybutów i ich nowe

wartości. Wcześniejszy kod oparty na bibliotece jQuery można zapisać także w bardziej zwięzłej formie:

 var newPhoto = new Image();
 newPhoto.src = 'images/newImage.jpg';
 $('#photo').attr({
 src: newPhoto.src,
 width: newPhoto.width,
 height: newPhoto.height
 });

Zazwyczaj ta technika podmieniania obrazków jest wykorzystywana wraz z obsługą
zdarzeń. Można na przykład zmieniać wyświetlany obrazek, kiedy użytkownik wskaże
go myszą. Takie rozwiązanie jest powszechnie stosowane podczas tworzenia pasków
nawigacyjnych. Obrazki można też podmieniać w odpowiedzi na dowolne zdarzenia,
nowy obrazek może się pojawiać za każdym razem, gdy zostanie kliknięta strzałka
prezentowana na stronie, tak jak się dzieje w pokazie slajdów.

Podmiana obrazków przy użyciu jQuery
Istnieje także inny sposób podmieniania obrazków, który nie wymaga modyfikowa-
nia atrybutu src, ani zawracania sobie głowy modyfikowaniem ich poszczególnych
atrybutów. Zgodnie z informacjami podanymi na stronie 157, jQuery doskonale
nadaje się do wprowadzania szybkich zmian w kodzie HTML strony. Można jej
używać do dodawania, usuwania i zmiany kodu HTML strony. Chyba najprostszym
sposobem zamiany jednego obrazka na inny jest zastąpienie całego dotychczasowego
znacznika nowym znacznikiem , co można bardzo łatwo zrobić, uży-
wając metody jQuery o nazwie replaceWith().

Załóżmy na przykład, że na stronie umieszczony jest następujący obrazek:

Taki znacznik można zamienić na inny przy użyciu następującego fragmentu kodu:
$('#swap').replaceWith('<img src="happy.png" alt="Wesoła buźka"
height="100" width="150" id="swap">');

Metoda replaceWith() zastępuje aktualnie wybrany element dowolnym kodem
HTML podanym w jej wywołaniu. Za jej pomocą można podać inne wartości atrybu-
tów src, alt, width oraz height w jednym łańcuchu, przekazywanym w wywołaniu
metody; na przykład <img src= happy.png alt= Wesoła buźka height= 100
width= 150 id= swap >. Jednak zazwyczaj łatwiejszym rozwiązaniem jest mo-
dyfikowanie każdej z tych wartości niezależnie, co pokazano w poprzednim punkcie
rozdziału.

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Zamiana rysunków

242

Uwaga: Metoda replaceWith() zwraca kod HTML, który został zastąpiony nowym. Innymi słowy,

można zachować zastępowany kod HTML. Jeśli na przykład chcemy zmienić obrazek, lecz zachować je-

go początkową wersję do późniejszego użytku, możemy to zrobić w następujący sposób:

var oldImage = $('#swap').replaceWith('<img src="happy.png" alt="Wesoła
buźka" height="100" width="150" id="swap">');

Teraz zmienna oldImage zawiera kod HTML, który został zastąpiony. Jeśli będziemy bazować na po-

wyższym przykładzie, zmienna ta będzie zawierać następujący fragment kodu:

Zmiennej oldImage będzie można użyć ponownie później — na przykład, by ponownie wyświetlić po-

czątkowy obrazek.

Wstępne wczytywanie rysunków
Zastępowanie rysunków za pomocą omówionych wcześniej technik ma jedną wadę.
Kiedy skrypt zmieni w atrybucie src ścieżkę do pliku graficznego, przeglądarka musi
pobrać nowy obrazek. Jeśli program zacznie pobierać plik dopiero po najechaniu
wskaźnikiem myszy na rysunek, przed pojawieniem się nowego obrazka wystąpi
niepożądane opóźnienie. Jeżeli zdarzy się to w pasku nawigacyjnym, efekt zastępowa-
nia będzie niezwykle spowolniony, a czas reakcji — za długi.

Aby uniknąć opóźnienia, można wstępnie pobrać wszystkie rysunki wyświetlane
w odpowiedzi na zdarzenia. Kiedy na przykład użytkownik umieści wskaźnik my-
szy nad przyciskiem w pasku nawigacyjnym, efekt zastępowania powinien działać
błyskawicznie. Wstępne pobieranie (ang. preload) oznacza nakazanie przeglądarce
wczytania obrazka, zanim skrypt będzie chciał go wyświetlić. Pobrany plik jest za-
pisywany w pamięci podręcznej przeglądarki, dlatego w odpowiednim momencie
będzie można wczytać rysunek z dysku twardego komputera użytkownika, zamiast
ponownie pobierać go z serwera.

Wstępne wczytywanie wymaga utworzenia nowego obiektu rysunku i ustawienia
jego właściwości src. Wiesz już, jak to zrobić:

var newPhoto = new Image();
newPhoto.src = 'images/newImage.jpg';

Aby ta technika zadziałała, trzeba wywołać powyższy kod przed zastąpieniem rysunku
widocznego na stronie. Jedna z metod wstępnego pobrania grafiki polega na utwo-
rzeniu na początku skryptu tablicy (patrz strona 77) zawierającej ścieżki do wszyst-
kich wczytywanych w ten sposób plików. Następnie należy przejść po elementach tej
listy i utworzyć na podstawie każdego z nich nowy obiekt rysunku:

1 var preloadImages = ['images/roll.png',
2 'images/flower.png',
3 'images/cat.jpg'];
4 for (var i = 0; i < preloadImages.length; i++) {
5 new Image().src = preloadImages[i];
6 }

Wiersze od 1. do 3. to pojedyncza instrukcja języka JavaScript, która tworzy tablicę
o nazwie preloadImages, zawierającą trzy wartości — ścieżki do wstępnie wczyty-
wanych rysunków. Na stronie 78 dowiedziałeś się, że kod tablicy jest bardziej czy-
telny, jeśli każdy element znajduje się w odrębnym wierszu. Wiersze od 4. do 6.

R O Z D Z I AŁ 7 . P O P U L A R N E Z A S T O S O W A N I A J Q U E R Y

Zamiana rysunków

243

zawierają prostą pętlę for (patrz strona 112), której ciało jest wykonywane jeden raz
dla każdego elementu tablicy preloadImages. Instrukcja umieszczona w wierszu 5.
tworzy nowy obiekt obrazka i zapisuje w jego właściwości src ścieżkę dostępu do ob-
razka podaną z tablicy preloadImages — i to jest cała magia, która sprawia, że prze-
glądarka wczyta podane obrazki.

Ten sam efekt można uzyskać, stosując bibliotekę jQuery, przy czym w tym
przypadku będzie można uniknąć użycia wywołania new Image():

1 var preloadImages = ['images/roll.png',
2 'images/flower.png',
3 'images/cat.jpg'];
4 for (var i = 0; i < preloadImages.length;i++) {
5 $('').attr('src',preloadImages[i]);
6 }

W wierszu 5. korzystamy z jQuery do utworzenia nowego elementu . Za-
stosowana tu technika jest czymś nowym i może być trudna do zrozumienia. Prze-
kazując w wywołaniu jQuery znacznik (włącznie z nawiasami kątowymi),
tworzymy nowy element HTML. Zazwyczaj w wywołaniu jQuery znaczniki kątowe
są pomijane, na przykład $('img'), co każe jQuery odszukać wszystkie znaczniki
 istniejące na stronie. A zatem, jak widać, jQuery potrafi nie tylko odnaj-
dywać i pobierać elementy strony, lecz także tworzyć nowe.

Dalsza cześć wywołania — .attr('src',preloadImages[i]) — stanowi wywo-
łanie funkcji attr() (przedstawionej na stronie 166). Powoduje ono zapisanie we
właściwości src nowego elementu ścieżki dostępu do pliku obrazka, co zmusza
przeglądarkę do jego wczytania.

Obie z przedstawionych tu technik wstępnego wczytywania obrazków, zarówno
ta, która nie wymaga biblioteki jQuery, jak i druga, która z niej korzysta, działają
doskonale, zatem możesz użyć tej z nich, która w Twoim przypadku jest bardziej
sensowna.

Efekt rollover z użyciem obrazków
Efekt rollover z użyciem obrazków to efekt wizualny polegający po prostu na za-
stąpieniu jednego obrazka drugim (co opisano na stronie 239), uruchamiany po
umieszczeniu wskaźnika myszy nad grafiką. Aby uzyskać ten efekt, należy przypisać
kod zastępujący obrazki do zdarzenia mouseover. Załóżmy, że na stronie znajduje
się rysunek o identyfikatorze photo. Kiedy użytkownik umieści wskaźnik myszy nad
tym obrazkiem, skrypt ma wyświetlić nowy plik. Przy użyciu biblioteki jQuery można
osiągnąć ten efekt w następujący sposób:

1 <script src="js/jquery.min.js"></script>
2 <script>
3 $(document).ready(function() {
4 var newPhoto = new Image();
5 newPhoto.src = 'images/newImage.jpg';
6 $('#photo').mouseover(function() {
7 $(this).attr('src', newPhoto.src);
8 }); // Koniec funkcji mouseover.
9 }); // Koniec funkcji ready.
10 </script>

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Zamiana rysunków

244

Wiersz 3. sprawia, że funkcja anonimowa zostanie wykonana dopiero po wczytaniu
całej strony, dzięki czemu umieszczony wewnątrz niej kod będzie mógł odwołać się do
bieżącej wersji obrazka. Wiersze 4. i 5. powodują wczytanie obrazka mającego zastą-
pić ten, który był wyświetlony. Pozostałe wiersze przypisują do rysunku zdarzenie
mousover z funkcją, która zmienia atrybut src obrazka na ścieżkę do nowej fotografii.

W omawianym efekcie przesunięcie wskaźnika myszy poza rysunek powoduje
zwykle przywrócenie pierwotnego obrazka. Dlatego trzeba dołączyć zdarzenie
mouseout, aby ponownie wyświetlić pierwszy rysunek. Na stronie 192 dowiedziałeś
się, że jQuery udostępnia zdarzenie hover(), które łączy zdarzenia mouseover
i mouseout:

1 <script src="js/jquery.min.js"></script>
2 <script>
3 $(document).ready(function() {
4 var newPhoto=new Image();
5 newPhoto.src='images/newImage.jpg';
6 var oldSrc=$('#photo').attr('src');
7 $('#photo').hover(
8 function() {
9 $(this).attr('src', newPhoto.src);
10 },
11 function() {
12 $(this).attr('src', oldSrc);
13 }); // Koniec funkcji hover.
14 }); // Koniec funkcji ready.
15 </script>

Funkcja hover() przyjmuje dwa argumenty. Pierwszym z nich jest funkcja anoni-
mowa, która informuje przeglądarkę o tym, co ma zrobić, kiedy użytkownik umieści
wskaźnik myszy nad rysunkiem. Drugi argument to funkcja uruchamiana po
przeniesieniu wskaźnika myszy w inne miejsce strony. Nowy kod tworzy zmienną
oldSrc, która przechowuje pierwotną wartość atrybutu src, czyli ścieżkę do pliku
widocznego po wczytaniu strony.

Efekt ten można uruchamiać nie tylko za pomocą obrazków. Funkcję hover() moż-
na dołączyć do dowolnego znacznika — odnośnika, elementu formularza, a nawet
akapitu. Oznacza to, że każdy znacznik może powodować zmianę rysunku w do-
wolnej części strony. Na przykład umieszczenie wskaźnika myszy nad znacznikiem
<h1> może powodować zastąpienie rysunku nowym obrazkiem. Załóżmy, że doce-
lowy plik jest taki sam jak we wcześniejszym przykładzie. W poprzednim skrypcie
należy wprowadzić zmiany wyróżnione pogrubieniem:

1 <script src="js/jquery.min.js"></script>
2 <script>
3 $(document).ready(function() {
4 var newPhoto=new Image();
5 newPhoto.src='images/newImage.jpg';
6 var oldSrc=$('#photo').attr('src');
7 $('h1').hover(
8 function() {
9 $('#photo').attr('src', newPhoto.src);
10 },
11 function() {
12 $('#photo').attr('src', oldSrc);
13 }); // Koniec funkcji hover.
14 }); // Koniec funkcji ready.
15 </script>

R O Z D Z I AŁ 7 . P O P U L A R N E Z A S T O S O W A N I A J Q U E R Y

Przykład — dodawanie
efektu rollover

245

Przykład — dodawanie efektu rollover
z użyciem rysunków

W tym przykładzie dodasz efekt rollover do zbioru obrazków (patrz rysunek 7.1).
Skrypt ma wstępnie wczytywać pliki potrzebne w efekcie, aby zlikwidować opóźnie-
nie między umieszczeniem wskaźnika myszy nad rysunkiem a wyświetleniem no-
wego obrazka. Ponadto poznasz nową, bardziej wydajną technikę wstępnego po-
bierania rysunków i obsługi efektu rollover.

Rysunek 7.1. Efekt rollover pozwala zwiększyć atrakcyjność wizualną paska nawigacyjnego, odnośnika, a nawet
samych zdjęć

Omówienie zadania
Plik rollover.html z katalogu R07 zawiera zbiór sześciu zdjęć (patrz rysunek 7.2).
Każde z nich jest częścią odnośnika, który prowadzi do większej wersji fotografii,
a wszystkie zdjęcia znajdują się wewnątrz znacznika <div> o identyfikatorze gallery.
Skrypt ma wykonywać dwie operacje.

 Wstępnie wczytywać używane w efekcie pliki, powiązane ze zdjęciami umiesz-
czonymi w znaczniku <div>.

 Dołączać funkcję hover() do każdego rysunku ze znacznika <div>. Funkcja
hover() ma zamieniać rysunki po umieszczeniu nad obrazkiem wskaźnika
myszy, a następnie przywracać pierwotną wersję zdjęcia po przeniesieniu wskaź-
nika w inne miejsce strony.

Na podstawie opisu można zauważyć, że obie operacje są powiązane z rysunkami
w elemencie <div>, dlatego jedną z możliwości jest pobranie obrazków z tego znacz-
nika, a następnie przejście po nich w pętli, wstępne wczytanie odpowiadających im
nowych rysunków i dołączenie funkcji hover().

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Przykład — dodawanie
efektu rollover

246

Rysunek 7.2. Podstawowa struktura
kodu HTML użytego w tym przykła-
dzie składa się ze znacznika <div>,
który zawiera zbiór odnośników z ry-
sunkami. Aby ułatwić wyświetlanie
nowych zdjęć, ich nazwy utworzono
na podstawie nazw pierwotnie
widocznych obrazków

Uwaga: Więcej informacji o pobieraniu przykładowych plików znajdziesz na stronie 46.

Tworzenie kodu
 1. Otwórz w edytorze tekstu plik rollover.html z katalogu R07.

Do strony dołączony jest już plik jQuery i funkcja $(document).ready() (patrz
strona 190). Pierwszy krok polega na pobraniu wszystkich rysunków ze znacz-
nika <div> i dodaniu pętli za pomocą funkcji each() biblioteki jQuery (patrz
strona 167).

 2. Kliknij pusty wiersz w funkcji $(document).ready() i wpisz kod $('#gallery
img').each(function() {.

Selektor #gallery img pobiera wszystkie znaczniki ze znacznika o iden-
tyfikatorze gallery. Funkcja each() biblioteki jQuery umożliwia łatwe przejście
w pętli po kolekcji elementów i wykonanie na nich serii operacji. Funkcja ta
przyjmuje jako argument funkcję anonimową (patrz strona 168). W tym mo-
mencie warto zamknąć dodaną funkcję anonimową. Dobrym rozwiązaniem
jest dodanie zamykającego nawiasu kończącego treść funkcji anonimowej (a także
każdej innej), zanim przystąpimy do pisania umieszczonego wewnątrz niej
kodu. Dlatego właśnie tę czynność wykonamy w kolejnym kroku.

 3. Wciśnij dwukrotnie klawisz Enter i wpisz kod }); // Koniec funkcji
each., aby zamknąć funkcję anonimową, wywołanie funkcji each() i in-
strukcję języka JavaScript. Kod powinien wyglądać następująco:

1 <script src="../_js/jquery.min.js"></script>
2 <script>
3 $(document).ready(function() {
4 $('#gallery img').each(function() {
5
6 }); // Koniec funkcji each.
7 }); // Koniec funkcji ready.

Na tym etapie skrypt przechodzi w pętli po wszystkich rysunkach z galerii, jed-
nak nie wykonuje na nich żadnych operacji. Pierwsze zadanie polega na pobraniu
właściwości src rysunków i zapisaniu ich w zmiennej, której skrypt użyje
w dalszej części kodu.

R O Z D Z I AŁ 7 . P O P U L A R N E Z A S T O S O W A N I A J Q U E R Y

Przykład — dodawanie
efektu rollover

247

Uwaga: Komentarze języka JavaScript — // Koniec funkcji each. i // Koniec funkcji ready.

— nie są niezbędne, jednak ułatwiają ustalenie, której części skryptu dotyczy dany wiersz.

 4. Kliknij pusty wiersz (wiersz 5. w kodzie w kroku 3.) i wpisz:
var imgFile = $(this).attr('src');

Na stronie 169 dowiedziałeś się, że konstrukcja $(this) wskazuje element ak-
tualnie przetwarzany w pętli. Oznacza to, że odpowiada ona po kolei każdemu
elementowi . Funkcja attr() biblioteki jQuery (patrz strona 167) po-
biera określony atrybut HTML (w tym skrypcie jest to atrybut src rysunku) i za-
pisuje go w zmiennej imgFile. Właściwość src pierwszego obrazka ma wartość
_images/small/blue.jpg i jest ścieżką do pliku graficznego widocznego na
stronie.

Tej samej właściwości src należy użyć do wstępnego pobrania rysunków.

 5. Wciśnij klawisz Enter, aby dodać pusty wiersz, a następnie wpisz trzy po-
niższe instrukcje:

var preloadImage = new Image();
var imgExt = /(\.\w{3,4}$)/;
preloadImage.src = imgFile.replace(imgExt,'_h$1');

W celu wstępnego pobrania rysunku trzeba najpierw utworzyć obiekt Image.
W tym przypadku skrypt tworzy zmienną preloadImage i zapisuje w niej taki
obiekt. Następnie kod wstępnie wczytuje rysunek przez przypisanie wartości
do właściwości src obiektu Image.

Jeden ze sposobów na wstępne wczytanie rysunków (opisany na stronie 242)
polega na opracowaniu tablicy obrazków, przejściu po nich w pętli, utworzeniu
dla każdego z nich obiektu Image i przypisaniu wartości do właściwości src ta-
kiego obiektu. Jednak takie rozwiązanie jest pracochłonne, gdyż może wymagać
znajomości dokładnej ścieżki dostępu do każdego z używanych obrazków i poda-
nia jej w tablicy.

W tym skrypcie użyjesz bardziej pomysłowego (i mniej pracochłonnego) roz-
wiązania. Aby je zastosować, trzeba zapisać nowy rysunek w tej samej lokalizacji,
co pierwotny, i nazwać obie wersje obrazka w podobny sposób. W tym przykła-
dzie każdy rysunek na stronie jest zastępowany obrazkiem, który w nazwie
ma przyrostek „_h”. Na przykład rysunek blue.jpg jest zamieniany na obrazek
blue_h.jpg. Oba pliki znajdują się w tym samym katalogu, dlatego prowadzi
do nich ta sama ścieżka.

A oto pomysłowe rozwiązanie: zamiast ręcznie wprowadzać wartość właściwości
src, aby wstępnie wczytać rysunek (na przykład preloadImage.src='_images/
small/blue_h.jpg'), można zapisać ją za pomocą kodu JavaScript. Skrypt
ustala potrzebną wartość na podstawie właściwości src pierwotnego rysun-
ku. Innymi słowy, jeśli znamy ścieżkę dostępu do obrazka wyświetlonego na
stronie, to wystarczy do niej, bezpośrednio przed rozszerzeniem, dodać znak
podkreślenia i literkę h. A zatem _images/small/blue.jpg zostanie przekształcone
na _images/small/blue_h.jpg, a _images/small/oranges.jpg na _images/ small/
oranges_h.jpg.

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Przykład — dodawanie
efektu rollover

248

I właśnie tę operację wykonują dwa kolejne wiersze kodu. Pierwszy z nich — var
imgExt = /(\.\w{3,4}$)/; — tworzy wyrażenie regularne. Wyrażenia regu-
larne (poznasz je na stronie 571) są wzorcami znaków, których można poszuki-
wać w innych łańcuchach; przykładem takiego wzorca mogą być trzy cyfry
umieszczone jedna za drugą. Wyrażenia regularne bywają trudne i złożone,
jednak to, które zostało użyte w tym przykładzie, odpowiada znakowi kropki po-
przedzającej trzy dowolne litery umieszczone na samym końcu łańcucha. Przy-
kładowo wzorzec ten będzie odpowiadał łańcuchowi .jpeg w łańcuchu /images/
small/blue.jpeg oraz łańcuchowi .png w /images/orange.png.

W następnym wierszu — preloadImage.src = imgFile.replace(imgExt,
'_h$1'); — użyto metody replace() (patrz strona 585) do zastąpienia znale-
zionego tekstu innym fragmentem. Skrypt zmienia na przykład człon ”.jpg”
w ścieżce na „_h.jpg”, czyli zastępuje nazwę images/small/blue.jpg ścieżką images/
small/blue_h.jpg. To rozwiązanie jest dość skomplikowane, ponieważ wymaga
użycia podwzorca wyrażenia regularnego (pełny opis tej techniki znajdziesz
w ramce na stronie 586), dlatego na razie nie musisz się przejmować, jeśli w pełni
nie rozumiesz, jak ono działa.

Po wstępnym wczytaniu nowych obrazków można przypisać do rysunków zda-
rzenie hover().

 6. Wciśnij klawisz Enter, a następnie dodaj kod z wierszy od 9. do 11.:
1 <script src="../_js/jquery.min.js"></script>
2 <script>
3 $(document).ready(function() {
4 $('#gallery img').each(function() {
5 var imgFile = $(this).attr('src');
6 var preloadImage = new Image();
7 var imgExt = /(\.\w{3,4}$)/;
8 preloadImage.src = imgFile.replace(imgExt,'_h$1');
9 $(this).hover(
10
11); // Koniec funkcji hover.
12 }); // Koniec funkcji each.
13 }); // Koniec funkcji ready.

Funkcja hover() biblioteki jQuery umożliwia szybkie dodanie do elementu zda-
rzeń mouseover i mouseout. Należy przekazać do niej dwie funkcje. Pierwsza
jest uruchamiana w momencie umieszczenia wskaźnika myszy nad elemen-
tem — tu zmienia rysunek na jego nową wersję. Drugą skrypt wywołuje, kiedy
wskaźnik myszy znajdzie się w innym miejscu strony. Tu funkcja ta ponownie
wyświetla pierwotny obrazek.

 7. W pustym wierszu (wiersz 10. w kodzie w kroku 6.) dodaj poniższy fragment:
function() {
 $(this).attr('src', preloadImage.src);
},

Jest to pierwsza funkcja. Jej zadanie polega na zmianie właściwości src pier-
wotnego rysunku na właściwość src nowego obrazka. Przecinek na końcu tego
fragmentu jest niezbędny, ponieważ funkcja jest pierwszym argumentem wywo-
łania hover(), a poszczególne argumenty trzeba oddzielać przecinkami.

R O Z D Z I AŁ 7 . P O P U L A R N E Z A S T O S O W A N I A J Q U E R Y

Przykład — galeria
fotografii z efektami

249

 8. Teraz dodaj drugą funkcję (wiersze od 13. do 15.). Gotowy skrypt powinien
wyglądać następująco:

1 <script src="../_js/jquery.min.js"></script>
2 <script>
3 $(document).ready(function() {
4 $('#gallery img').each(function() {
5 var imgFile = $(this).attr('src');
6 var preloadImage = new Image();
7 var imgExt = /(\.\w{3,4}$)/;
8 preloadImage.src = imgFile.replace(imgExt,'_h$1');
9 $(this).hover(
10 function() {
11 $(this).attr('src', preloadImage.src);
12 },
13 function() {
14 $(this).attr('src', imgFile);
15 }
16); // Koniec funkcji hover.
17 }); // Koniec funkcji each.
18 }); // Koniec funkcji ready.

To druga funkcja. Jej zadaniem jest przywrócenie atrybutu src z pierwotnego
rysunku. W wierszu 5. skrypt zapisuje ścieżkę do tego obrazka w zmiennej
imgFile. Nowa funkcja w wierszu 14. używa tej zmiennej do przywrócenia
pierwotnej wartości atrybutu src. Zapisz stronę, wyświetl ją w przeglądarce
i umieść wskaźnik myszy nad czarno-białymi zdjęciami, aby zobaczyć ich kolo-
rowe wersje.

Uwaga: Taki sam efekt podmiany obrazków można osiągnąć przy użyciu wyłącznie arkuszy stylów CSS.

Informacje, jak to zrobić, można znaleźć w artykule http://kyleschaeffer.com/development/pure-

css-image-hover/. Mimo to, warto rozumieć, w jaki sposób można zmienić jeden obrazek na drugi za

pomocą kodu JavaScript. Możliwości stylów CSS ograniczają się do kilku stanów, takich jak :hover lub

:active, dlatego też wykorzystanie kodu JavaScript zapewnia możliwość rozpoczynania efektu w re-

akcji na inne zdarzenia, takie jak dwukrotne kliknięcie bądź naciśnięcie jakiegoś klawisza. Oprócz tego

może się zdarzyć, że efekt będzie musiał być uruchamiany w odpowiedzi na zdarzenie skierowane do

innego elementu strony niż podmieniany obrazek. Przykładowo na stronie może być umieszczony

przycisk „Podmień obrazki”, którego kliknięcie ma spowodować zmianę wszystkich obrazków wi-

docznych na niej obrazków.

Przykład — galeria fotografii
z efektami wizualnymi

W tym przykładzie przekształcisz wcześniejszy program w jednostronicową galerię
fotografii. Skrypt ma wyświetlać na stronie większy rysunek w odpowiedzi na klik-
nięcie przez użytkownika miniatury (patrz rysunek 7.3). Ponadto użyjesz kilku efek-
tów z biblioteki jQuery, aby uatrakcyjnić przejścia między dużymi zdjęciami.

Omówienie zadania
Galerie działają w prosty sposób — kliknięcie miniatury powoduje wyświetlenie
większego zdjęcia. Jednak w tym przykładzie zobaczysz, jak za pomocą efektów
stopniowego wyświetlania i ukrywania rysunków uatrakcyjnić prezentację.

http://kyleschaeffer.com/development/pure-css-image-hover/
http://kyleschaeffer.com/development/pure-css-image-hover/
http://kyleschaeffer.com/development/pure-css-image-hover/

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Przykład — galeria
fotografii z efektami

250

Rysunek 7.3. Gotowa strona z galerią fotografii. Kliknięcie miniatury powoduje stopniowe ukrycie bieżącego
zdjęcia i wyświetlenie nowego. Plik complete_gallery.html z katalogu R07 to gotowa wersja tego przykładu

Użyjesz też innej ważnej techniki — „dyskretnego” kodu JavaScript. To podejście
umożliwia wyświetlanie większych wersji zdjęć także na komputerach z wyłączoną
obsługą języka JavaScript. Aby uzyskać ten efekt, każdą miniaturę należy umieścić
w odnośniku prowadzącym do pliku z dużą fotografią (patrz rysunek 7.4). Jeśli prze-
glądarka nie obsługuje języka JavaScript, kliknięcie odsyłacza spowoduje opuszcze-
nie strony i wczytanie większej wersji zdjęcia. Nie jest to zbyt atrakcyjny sposób
prezentacji, ponieważ użytkownik musi opuścić galerię, ale zdjęcia będą dostępne.
Jeśli przeglądarka obsługuje język JavaScript, kliknięcie odnośnika spowoduje stop-
niowe wyświetlenie dużej fotografii na stronie.

Rysunek 7.4. Podstawowa struk-
tura galerii fotografii. Wszystkie
miniatury są zawarte w odnośni-
kach, które wskazują na większe
wersje zdjęć. Kliknięcie odsyłacza
powoduje wczytywanie dużego
rysunku w znaczniku <div>
o identyfikatorze photo

R O Z D Z I AŁ 7 . P O P U L A R N E Z A S T O S O W A N I A J Q U E R Y

Przykład — galeria
fotografii z efektami

251

Efekt ma zachodzić w odpowiedzi na kliknięcie odnośnika, dlatego skrypt musi po
wystąpieniu zdarzenia click wykonać następujące operacje.

 Zablokować domyślne działanie odnośnika. Standardowo kliknięcie odno-
śnika powoduje przejście do nowej strony. W tym przykładzie użycie odsyłacza
obejmującego miniaturę doprowadzi do opuszczenia strony i wyświetlenia
większego zdjęcia. Ponieważ to kod JavaScript ma wyświetlać fotografie, należy
dodać instrukcje blokujące przejście do nowej strony.

 Pobrać wartość atrybutu href odnośnika. Odsyłacz prowadzi do większego
zdjęcia, dlatego wartość atrybutu href jest jednocześnie ścieżką do dużej
fotografii.

 Utworzyć na stronie nowy znacznik rysunku. Ten znacznik powinien za-
wierać ścieżkę pobraną z atrybutu href.

 Stopniowo ukrywać stare zdjęcie, a jednocześnie wyświetlać nowe. Skrypt
ma usuwać widoczną fotografię w czasie wyświetlania większej wersji klikniętej
miniatury.

Trzeba uwzględnić także kilka innych drobiazgów, ale te cztery kroki opisują pod-
stawowy proces.

Tworzenie kodu
W tym przykładzie użyjesz utworzonej wcześniej strony, jednak z nieco zmienio-
nym układem. Umieszczono na niej nowy zbiór miniatur, wyświetlonych w lewej
kolumnie, a na stronie znalazł się znacznik <div> o identyfikatorze photo (patrz
rysunek 7.4).

Uwaga: Informacje o pobieraniu przykładowych plików znajdziesz na stronie 46.

 1. Otwórz w edytorze kodu plik gallery.html z katalogu R07.
Ten plik zawiera kod z poprzedniego przykładu oraz nowy znacznik <div> prze-
znaczony na większą wersję zdjęcia z miniatury. Ponieważ proces wyświetlania
fotografii jest uruchamiany przez kliknięcie jednego z odnośników obejmują-
cych miniatury, pierwszy krok polega na pobraniu odsyłaczy i dodaniu do każde-
go z nich zdarzenia click.

 2. Znajdź w kodzie JavaScript komentarz z tekstem „Poniżej wstaw nowy kod
JavaScript.” i dodaj pod nim następujący kod:

$('#gallery a').click(function(evt) {

}); // Koniec funkcji click.

Selektor #gallery a pobiera wszystkie odnośniki znajdujące się w znaczniku
o identyfikatorze gallery. Polecenie .click to funkcja biblioteki jQuery, do
której należy przekazać metodę obsługującą zdarzenie (jeśli chcesz przypomnieć
sobie informacje o zdarzeniach, zajrzyj na stronę 182). Skrypt przekazuje do zda-
rzenia click funkcję anonimową. Na stronie 179 dowiedziałeś się, że do
funkcji uruchamianych w odpowiedzi na wystąpienie zdarzenia automatycznie
przekazywany jest obiekt zdarzenia. Tu do przechowywania tego obiektu

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Przykład — galeria
fotografii z efektami

252

służy zmienna evt. Użyjesz jej w następnym kroku, aby zablokować przejście
do następnej strony po kliknięciu odnośnika.

 3. Między dwoma wierszami kodu dodanymi w kroku 2. wpisz instrukcję
evt.preventDefault();.

Standardowo kliknięcie odnośnika powoduje wczytanie określonego w nim do-
kumentu (strony, pliku graficznego, dokumentu PDF i tak dalej). Tu odsyłacz
ma umożliwiać wyświetlenie większej wersji zdjęcia przez przeglądarki bez ob-
sługi języka JavaScript. Aby zapobiec przejściu do nowej strony w przeglądar-
kach używających JavaScriptu, należy uruchomić funkcję preventDefault()
obiektu zdarzenia (patrz strona 195).

Następnie trzeba pobrać wartość atrybutu href odnośnika.

 4. Wciśnij klawisz Enter, aby utworzyć nowy, pusty wiersz. Wpisz w nim in-
strukcję wyróżnioną na poniższym przykładzie pogrubioną czcionką:

$('#gallery a').click(function(evt) {
 evt.preventDefault();
 var imgPath = $(this).attr('href');
}); // Koniec funkcji click.

Konstrukcja $(this) wskazuje tu na kliknięty element, czyli odnośnik. Jego
atrybut href zawiera adres strony lub zasobu, do którego prowadzi dany odsyłacz.
Tu w odnośniku znajduje się ścieżka do większego zdjęcia. Jest to ważna in-
formacja, ponieważ można jej użyć do dodania znacznika rysunku wyświetlają-
cego ten plik. Jednak zanim to zrobisz, musisz pobrać referencję do dużego zdję-
cia aktualnie widocznego na stronie. Trzeba przecież ustalić, który element
skrypt ma stopniowo usuwać ze strony.

Wskazówka: Zauważ, że każdy wiersz kodu w zdarzeniu click() z punktu 4. ma wcięcie. Nie

jest to wymagane, ale poprawia czytelność kodu, co opisano w ramce na stronie 67. Wielu pro-

gramistów dodaje wcięcia o szerokości dwóch odstępów lub jednej tabulacji.

 5. Wciśnij klawisz Enter i wpisz:
var oldImage = $('#photo img');

Zmienna oldImage przechowuje element pobrany przez bibliotekę jQuery. Jest to
znacznik , zawarty w znaczniku <div> o identyfikatorze photo (patrz rysu-
nek 7.4). Teraz należy utworzyć znacznik, w którym znajdzie się nowe zdjęcie.

 6. Ponownie wciśnij klawisz Enter, a następnie dodaj do skryptu następujący
kod:

var newImage = $('');

Jest to dość złożony wiersz. JQuery umożliwia pobieranie elementów umieszczo-
nych w kodzie HTML strony, na przykład wyrażenie $('img') zwraca wszystkie
rysunki ze strony. Ponadto za pomocą obiektów jQuery można dodawać do stro-
ny nowe elementy. Na przykład wyrażenie $('<p>Witaj</p>') tworzy nowy
znacznik akapitu, zawierający słowo „Witaj”. Dodany wiersz tworzy nowy
znacznik i zapisuje go w zmiennej newImage.

Ponieważ obiekty jQuery przyjmują jako argument łańcuch znaków (na przy-
kład '<p>Witaj</p>'), nowy wiersz łączy kilka łańcuchów w jeden. Pierw-

R O Z D Z I AŁ 7 . P O P U L A R N E Z A S T O S O W A N I A J Q U E R Y

Przykład — galeria
fotografii z efektami

253

szy fragment tekstu (w apostrofach) to <img src= . Druga część znajduje się
w zmiennej imgPath (utworzyłeś ją w kroku 4.) i zawiera ścieżkę do pliku gra-
ficznego (na przykład ../_images/large/slide1.jpg). Trzeci łańcuch (także
w apostrofach) to >. Połączone fragmenty tworzą znacznik HTML typu . Kiedy skrypt przekaże ten argument
do obiektu jQuery — $('') —
przeglądarka utworzy nowy element strony. Na razie nie znajduje się on na
stronie, ale przeglądarka może go dodać w dowolnym momencie.

 7. Dodaj kod z wierszy od 6. do 8. Gotowy fragment powinien wyglądać na-
stępująco:

1 $('#gallery a').click(function(evt) {
2 evt.preventDefault();
3 var imgPath = $(this).attr('href');
4 var oldImage = $('#photo img');
5 var newImage = $('');
6 newImage.hide();
7 $('#photo').prepend(newImage);
8 newImage.fadeIn(1000);
9 }); // Koniec funkcji click.

W wierszu 6. skrypt ukrywa nowy rysunek (zapisany w zmiennej newImage)
przy użyciu funkcji hide() (patrz strona 212). Ten krok jest niezbędny, ponie-
waż jeśli po prostu dodasz znacznik rysunku utworzony w wierszu 5., rysunek
zostanie wyświetlony natychmiast, bez atrakcyjnego efektu. Dlatego najpierw
należy ukryć rysunek, a następnie dodać go do strony w znaczniku <div> o iden-
tyfikatorze photo (wiersz 7.). Funkcja prepend() (patrz strona 159) dodaje kod
HTML na początku znacznika. Na tym etapie znacznik <div> zawiera dwa
zdjęcia. Na rysunku 7.5 pokazano, że są one umieszczone jedno nad drugim.
Fotografia górna jest niewidoczna, ale funkcja fadeIn() w wierszu 8. stopniowo
wyświetla ją w ciągu 1000 milisekund (1 sekundy).

Rysunek 7.5. Jeśli dwa zdjęcia mają znajdować się w tym samym miejscu, to aby stopniowo wyświetlić jedno
i ukryć inne, trzeba użyć pomysłowego kodu CSS. Pozycjonowanie bezwzględne umożliwia umieszczenie elementu
nad stroną, a nawet nad innym obiektem. Tu oba rysunki znajdują się w tym samym znaczniku <div>, co sprawia,
że jedno zdjęcie jest widoczne nad drugim. Arkusz stylów gallery.css z katalogu R07 dodawany w sekcji nagłówko-
wej strony zawiera wszystkie style potrzebne do uzyskania tego efektu (koniecznie przyjrzyj się stylowi #photo
img). Oprócz tego, znacznik zawierający obrazki musi zostać umiejscowiony w sposób względny (atrybut CSS
position o wartości relative), aby poszczególne zdjęcia były rozmieszczane względem niego

Teraz trzeba stopniowo ukryć pierwotny rysunek.

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Przykład — galeria
fotografii z efektami

254

 8. Wciśnij klawisz Enter, a następnie dodaj trzy poniższe wiersze kodu:
oldImage.fadeOut(1000,function(){
 $(this).remove();
}); // koniec funkcji fadeOut.

W kroku 5. utworzyłeś zmienną oldImage i zapisałeś w niej referencję do pier-
wotnego rysunku. Skrypt ma go stopniowo ukryć, dlatego należy wywołać funk-
cję fadeOut(). Przyjmuje ona dwa argumenty. Pierwszy określa czas trwania
efektu (1000 milisekund, czyli 1 sekundę), a drugi to funkcja zwrotna (patrz
strona 223 w rozdziale 6.). Usuwa ona znacznik danego rysunku, a skrypt
wywołuje ją po stopniowym ukrywaniu zdjęcia.

Uwaga: Funkcję remove() opisano na stronie 162. Usuwa ona znacznik z modelu DOM, co powo-

duje skrócenie kodu HTML w pamięci przeglądarki i zwolnienie zasobów komputera. Jeśli pominiesz

tę operację, przy każdym kliknięciu miniatury skrypt doda nowy znacznik (krok 7.) i tylko

ukryje poprzedni znacznik — nie usunie go. Dlatego na stronie znajdzie się mnóstwo niepotrzebnych,

ukrytych znaczników , co wydłuży czas reakcji przeglądarki.

Teraz trzeba wykonać ostatnią operację — wczytać pierwszy rysunek. Na razie
znacznik <div> przeznaczony na zdjęcia jest pusty. Możesz dodać ręcznie do-
wolny znacznik , aby po wczytaniu strony widoczna była większa wersja
na przykład pierwszego miniaturowego zdjęcia. Jednak nie musisz tego robić
— w końcu od takich zadań jest JavaScript!

 9. Dodaj wiersz na końcu funkcji click() (wiersz 13.). Gotowy kod powinien
wyglądać następująco:

1 $('#gallery a').click(function(evt) {
2 evt.preventDefault();
3 var imgPath = $(this).attr('href');
4 var oldImage = $('#photo img');
5 var newImage = $('');
6 newImage.hide();
7 $('#photo').prepend(newImage);
8 newImage.fadeIn(1000);
9 oldImage.fadeOut(1000,function(){
10 $(this).remove();
11 }); // Koniec funkcji fadeOut.
12 }); // Koniec funkcji click.
13 $('#gallery a:first').click();

Ostatnia instrukcja ma dwie części. Pierwsza z nich to selektor #gallery
a:first, który pobiera tylko pierwszy odnośnik ze znacznika <div> o identyfi-
katorze gallery. Na końcu znajduje się funkcja click(). Do tej pory używałeś
funkcji click() biblioteki jQuery do określania funkcji uruchamianej w mo-
mencie wystąpienia zdarzenia. Jeśli jednak nie przekażesz do funkcji click()
żadnego zdarzenia, jQuery po prostu zgłosi je, co spowoduje wywołanie wcze-
śniej zdefiniowanych metod obsługi zdarzeń. Dlatego ten wiersz zgłasza zda-
rzenie click dla pierwszego odnośnika, co prowadzi do uruchomienia funkcji
z wierszy od 1. do 11. Powoduje to wyświetlenie większej wersji pierwszego
miniaturowego zdjęcia po wczytaniu strony.
Zapisz stronę i wyświetl ją w przeglądarce. Nie tylko miniatury będą zmie-
niać kolor po umieszczeniu nad nimi wskaźnika myszy, ale też kliknięcie
małych obrazków spowoduje stopniowe wyświetlenie ich dużych wersji.
Jeśli kod nie wykonuje tych operacji, jego działającą wersję znajdziesz w pliku
complete_gallery.html.

R O Z D Z I AŁ 7 . P O P U L A R N E Z A S T O S O W A N I A J Q U E R Y

Kontrola działania
odnośników

255

Kontrola działania odnośników
Odnośniki to istota sieci WWW. Bez błyskawicznego dostępu do informacji przez
odsyłacze łączące strony i witryny rozwój sieci WWW byłby niemożliwy — w ogóle
nie powstałaby sieć. Ponieważ odnośniki to jeden z najczęściej używanych i naj-
ważniejszych elementów języka HTML, naturalne jest, że istnieje wiele technik
usprawniania ich działania opartych na języku JavaScript. W tym rozdziale po-
znasz podstawowe sposoby używania tego języka do obsługi odsyłaczy i metody
otwierania odnośników w nowych oknach.

Z pewnością wiesz już wiele o odnośnikach. W końcu są one istotą sieci WWW,
a skromny znacznik <a> jest jednym z pierwszych elementów języka HTML, jakie
poznaje każdy projektant stron internetowych. Za pomocą kodu JavaScript można
zmienić prosty odnośnik w bramę do interaktywnego świata, jednak trzeba najpierw
nauczyć się kontrolować odsyłacze za pomocą tego języka. Gdy zapoznasz się z pod-
stawami, w dalszej części rozdziału zobaczysz kilka praktycznych technik zarzą-
dzania odnośnikami przy użyciu kodu JavaScript.

Pobieranie odnośników w kodzie JavaScript
Aby można było manipulować odnośnikiem, trzeba go najpierw pobrać. Możesz
wskazać wszystkie odsyłacze ze strony, tylko jeden z nich lub grupę powiązanych
odnośników, które na przykład znajdują się w tej samej części strony lub prowadzą
do innych witryn.

Biblioteka jQuery umożliwia pobieranie elementów dokumentu na wiele sposobów.
Przykładowo wyrażenie $('a') tworzy kolekcję wszystkich odnośników ze strony.
Ponadto jQuery umożliwia doprecyzowanie wyrażenia i szybkie pobranie wszyst-
kich odsyłaczy z określonego obszaru strony. Jeśli chcesz zapisać na przykład wszystkie
odnośniki z listy wypunktowanej o identyfikatorze mainNav, możesz użyć kodu
$('#mainNav a'). Ponadto selektory atrybutów (patrz strona 152) umożliwiają
pobranie odnośników, których atrybut href (ścieżka do pliku, do którego prowadzi
dany odsyłacz) ma wartość pasującą do wzorca. Można w ten sposób pobrać odno-
śniki prowadzące do innych witryn lub plików PDF (przykład zastosowania tej
techniki znajdziesz na stronie 153).

Po pobraniu odnośników za pomocą jQuery można nimi manipulować przy użyciu
funkcji tej biblioteki. Możesz na przykład wywołać funkcję each() (patrz strona
167), aby w pętli dodać do każdego odsyłacza klasę, używając do tego celu funkcji
addClass() (patrz strona 162), a nawet zdarzenie (patrz strona 182). W dalszej czę-
ści rozdziału zobaczysz wiele operacji, które można wykonywać na odnośnikach.

Określanie lokalizacji docelowej
Po pobraniu odnośników trzeba czasem sprawdzić, dokąd prowadzą. W galerii foto-
grafii utworzonej na stronie 249 każdy odsyłacz wskazywał na większy rysunek.
Kod JavaScript pobierał ścieżkę do odpowiedniego pliku graficznego i wyświetlał go,

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Kontrola działania
odnośników

256

a dokładniej — pobierał wartość atrybutu href odnośnika i używał go do utworzenia na
stronie nowego znacznika . Można też sprawdzić wartość atrybutu href i — jeśli
odnośnik prowadzi do innej strony — wyświetlić ją „nad” bieżącą, zamiast przecho-
dzić pod nowy adres.

Funkcja attr() biblioteki jQuery (patrz strona 166) zapewnia łatwy dostęp do atry-
butu href. Załóżmy, że odnośnik prowadzący do strony głównej witryny ma okre-
ślony identyfikator. Ścieżkę zapisaną w tym odsyłaczu można pobrać w nastę-
pujący sposób:

var homePath = $('#homeLink').attr('href');

Informacje te są przydatne w wielu sytuacjach. Czasem programista chce umieścić
obok odnośnika pełny adres URL, jeśli odsyłacz prowadzi poza witrynę. Może to
być odnośnik z tekstem „Dowiedz się więcej o chrząszczach”, prowadzący pod
adres http://www.barkbeetles.org . Warto zmienić ten tekst na „Dowiedz się więcej
o chrząszczach (www.barkbeetles.org)”, aby użytkownicy po wydrukowaniu strony
wiedzieli, dokąd prowadzi dany odsyłacz.

Można łatwo osiągnąć pożądany efekt za pomocą poniższego kodu JavaScript:
1 $('a[href^=http://]').each(function() {
2 var href = $(this).attr('href');
3 href = href.replace('http://','');
4 $(this).after(' (' + href + ')');
5 });

Uwaga: Numery wierszy nie są częścią kodu, dlatego nie przepisuj ich. Podano je tylko w celu uła-

twienia opisu kodu wiersz po wierszu.

Wiersz 1. pobiera wszystkie odnośniki do zewnętrznych stron, a następnie uru-
chamia funkcję each() (patrz strona 167), która wykonuje podaną dalej funkcję dla
wszystkich znalezionych odsyłaczy (czyli pobiera i przetwarza każdy z nich w „pętli”).
Ta następna funkcja znajduje się w wierszach od 2. do 4. Wiersz 2. pobiera wartość
atrybutu href odnośnika (na przykład http://www.barkbeetles.org). Wiersz 3. jest
opcjonalny. Jego zadaniem jest uproszczenie adresu URL przez usunięcie członu
„http://” (zmienna href zawiera po tej operacji adres typu www.barkbeetles.org;
więcej informacji na temat metody replace() języka JavaScript można znaleźć na
stronie 585). Wiersz 4. dodaje do tekstu odnośnika zawartość zmiennej href w na-
wiasach — (www.barkbeetles.org). Wiersz 5. kończy funkcję.

To proste rozwiązanie można nieco rozwinąć na przykład po to, by u dołu strony
utworzyć bibliografię zawierającą listę wszystkich odnośników umieszczonych w tek-
ście prezentowanego artykułu. W takim przypadku zamiast dodawania adresów po
każdym odnośniku można adresy te umieścić u dołu strony, w osobnym elemen-
cie div. Wypróbuj ten kod!

Blokowanie domyślnego działania odnośników
Kiedy dodajesz zdarzenie click do odnośnika, zwykle nie chcesz, aby jego kliknię-
cie powodowało opuszczenie bieżącej strony i przejście do lokalizacji docelowej.

http://www.barkbeetles.org
http://www.barkbeetles.org)%E2%80%9D
http://www.barkbeetles.org
http://www.barkbeetles.org
http://www.barkbeetles.org

R O Z D Z I AŁ 7 . P O P U L A R N E Z A S T O S O W A N I A J Q U E R Y

Kontrola działania
odnośników

257

W galerii zdjęć ze strony 249 w odpowiedzi na kliknięcie odsyłacza na stronie z mi-
niaturami strona wczytywała większy rysunek. Domyślnie takie kliknięcie powo-
duje opuszczenie strony i wyświetlenie dużego zdjęcia w pustym oknie. Jednak w gale-
rii użytkownik powinien pozostać na tej samej stronie, a skrypt ma wczytać większy
obrazek.

Domyślne działanie odnośników można zablokować na kilka sposobów, na przykład
przez zwrócenie wartości false lub wywołanie funkcji preventDefault() biblioteki
jQuery (patrz strona 195). Załóżmy, że dany odnośnik prowadzi do strony logowania.
Aby zwiększyć interaktywność witryny, można po kliknięciu tego odsyłacza użyć
kodu JavaScript do wyświetlenia formularza logowania. Jeśli przeglądarka obsługuje
język JavaScript, po kliknięciu odnośnika na stronie pojawi się formularz. Jeżeli
użytkownik wyłączył obsługę tego języka, odsyłacz zabierze go do strony logowania.

Aby uzyskać ten efekt, trzeba wykonać kilka operacji.

 1. Pobrać odnośnik do strony logowania.

Na początku tego podrozdziału znajdziesz możliwe rozwiązania tego pro-
blemu.

 2. Dołączyć zdarzenie click.

Aby wykonać to zadanie, użyj funkcji click() biblioteki jQuery. Funkcja ta
przyjmuje inną funkcję jako argument. W tej drugiej funkcji należy umieścić
operacje wykonywane po kliknięciu odnośnika. Tu będzie ona zawierać tylko
dwie instrukcje.

 3. Wyświetlić formularz logowania.

Formularz logowania bezpośrednio po wczytaniu strony powinien być ukryty.
Można go zawrzeć w znaczniku <div> i umieścić za pomocą pozycjonowania
bezwzględnego bezpośrednio pod odnośnikiem. Aby wyświetlić formularz, użyj
funkcji show() lub jednego z innych efektów biblioteki jQuery (patrz strona 212).

 4. Zablokować domyślne działanie odnośnika!

Ten krok jest najważniejszy. Jeśli nie zablokujesz odnośnika, przeglądarka opuści
bieżącą stronę i przejdzie do strony logowania.

Poniższy fragment zatrzymuje działanie odnośnika przez zwrócenie wartości false.
Użyty odsyłacz ma identyfikator showForm, a znacznik <div> w formularzu logo-
wania — identyfikator loginForm:

1 $('#showForm').click(function(){
2 $('#loginForm').fadeIn('slow');
3 return false;
4 });

Wiersz 1. odpowiada etapom 1. i 2. opisanym na powyższej liście. Wiersz 2. wyświe-
tla ukryty formularz. Wiersz 3. to informacja dla przeglądarki: „Zatrzymaj się! Nie
przechodź pod adres odnośnika”. Wiersz return false; trzeba umieścić na końcu
funkcji, ponieważ interpreter wyjdzie z niej, kiedy napotka instrukcję return.

Można też użyć funkcji preventDefault() biblioteki jQuery:
1 $('#showForm').click(function(evt){
2 $('#loginForm').fadeIn('slow');
3 evt.preventDefault();
4 });

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Otwieranie odnośników
zewnętrznych

258

Skrypt ten działa podobnie jak poprzedni fragment. Podstawowa różnica polega na
tym, że funkcja przypisana do zdarzenia click przyjmuje argument evt, który re-
prezentuje zdarzenie (obiekt zdarzenia opisano na stronie 194). Zdarzenia mają spe-
cyficzne funkcje i właściwości. Funkcja preventDefault() blokuje domyślne działanie
powiązane z danym zdarzeniem (w przypadku kliknięcia odnośnika takim działa-
niem jest wczytanie nowej strony).

Otwieranie zewnętrznych odnośników
w nowym oknie

Właściciele witryn, które istnieją dzięki dużej liczbie użytkowników, chcą zatrzy-
mać odwiedzających na własnych stronach. Magazyny internetowe są utrzymywane
z dochodów z reklam, dlatego nie powinny odsyłać użytkowników poza witrynę, jeśli
można tego uniknąć. Sklepy internetowe nie chcą tracić kupujących w wyniku klik-
nięcia odnośnika prowadzącego poza witrynę. Projektant stron WWW umieszcza-
jący na stronie odnośniki do ukończonych projektów nie chce, aby potencjalny klient
opuszczał jego witrynę w celu przyjrzenia się jednej z gotowych stron.

Dlatego w wielu witrynach strony zewnętrzne są otwierane w nowym oknie. Kiedy
użytkownik zakończy przeglądanie tej strony i zamknie okno, pierwotna witryna
wciąż będzie dostępna. Język HTML od dawna umożliwia uzyskanie tego efektu za
pomocą atrybutu target odnośnika. Jeśli przypiszesz do tego atrybutu wartość
_blank, przeglądarka wykryje, że ma otworzyć odnośnik w nowym oknie (lub na
nowej karcie).

Uwaga: Eksperci z dziedziny użyteczności strony WWW nie są zgodni, czy otwieranie nowych

okien to dobre, czy złe rozwiązanie. Zobacz na przykład artykuł http://www.nngroup.com/articles/

the-top-ten-web-design-mistakes-of-1999/.

Samodzielne, ręczne dodawanie atrybutu target= _blank do wszystkich odnośni-
ków wskazujących strony spoza naszej witryny może być czasochłonne, a co gorsza,
łatwo o takiej modyfikacji zapomnieć. Na szczęście za pomocą języka JavaScript
i biblioteki jQuery można w szybki oraz łatwy sposób sprawić, aby przeglądarka otwie-
rała odnośniki do stron zewnętrznych (lub dowolnych innych lokalizacji) w nowym
oknie lub na nowej karcie. Ogólny proces jest całkiem prosty.

1. Pobierz odnośniki, które chcesz otwierać w nowym oknie.

W tym rozdziale użyjesz do tego selektora biblioteki jQuery (patrz strona 148).

2. Dodaj do odnośnika atrybut target o wartości _blank.

Możesz się zastanawiać: „Przecież to nieprawidłowy kod HTML! Nie mogę tego
zrobić”. Po pierwsze, jest on niepoprawny tylko w wersjach Strict języków HTML
4.01 i XHTML 1.0, dlatego można go stosować w dokumentach innych typów,
takich jak HTML5. Po drugie, strona przejdzie walidację, ponieważ walida-
tory kodu HTML (na przykład http://validator.w3.org) sprawdzają tylko kod
umieszczony w pliku ze stroną, a nie fragmenty dodawane za pomocą języka

http://www.nngroup.com/articles/the-top-ten-web-design-mistakes-of-1999/
http://validator.w3.org
http://www.nngroup.com/articles/the-top-ten-web-design-mistakes-of-1999/

R O Z D Z I AŁ 7 . P O P U L A R N E Z A S T O S O W A N I A J Q U E R Y

Otwieranie odnośników
zewnętrznych

259

JavaScript. Po trzecie, każda przeglądarka obsługuje atrybut target, dlatego
możesz mieć pewność, że strona otworzy się w nowym oknie niezależnie od
użytej wersji języka.

Za pomocą biblioteki jQuery można zrealizować dwa powyższe cele w jednym wier-
szu kodu:

$('a[href^="http://"]').attr('target','_blank');

Selektor jQuery — $('a[href^= http://]') — to selektor atrybutów (patrz stro-
na 152) pobierający znaczniki <a>, w których atrybut href zaczyna się od członu
„http://” (na przykład http://www.yahoo.com). Następnie skrypt wywołuje funkcję
attr() biblioteki jQuery (patrz strona 166) w celu przypisania wartości _blank do
atrybutu target. I to już wszystko!

Jeśli przypuszczasz, że na stronie pojawią się także adresy do bezpiecznych stron
WWW, rozpoczynające się od https://, powinieneś użyć następującego wywołania:

$('a[href^="http://"], a[href^="https://"]').attr('target','_blank');

Korzysta ono z selektora grupowego i pozwala na wybieranie adresów URL roz-
poczynających się od http:// lub https://.

I w końcu, jeśli używasz ścieżek bezwzględnych także do wskazywania plików
we własnej witrynie, musisz wykonać jeszcze jedną operację. W witrynie o adresie
www.nazwa_ witryny.com, w której odnośniki do innych stron i plików z tej witryny
mają postać http://www.nazwa_witryna.com/strona.html, także te strony będą
wyświetlane w nowym oknie. Jeśli chcesz ustrzec nieszczęsnych użytkowników
przed otwieraniem każdej strony w nowym oknie, musisz użyć następującego kodu:

var myURL = location.protocol + '//' + location.hostname;
$('a[href^="http://"], a[href^="https://"]')
.not('[href^="'+myURL+'"]').attr('target','_blank');

Uwaga: Symbol  na początku wiersza informuje, że jest on kontynuacją poprzedniego. Ponieważ
naprawdę długie wiersze kodu JavaScript nie mieszczą się na stronach książki, podzielono je na

dwie części.

Ten fragment najpierw zapisuje adres URL witryny w zmiennej myURL. Ten adres
można uzyskać dzięki obiektowi okna przeglądarki. Za pomocą przeglądarki można
wykryć protokół użyty do otwarcia strony — http lub (w przypadku stron zabezpie-
czonych) https. Wartość ta jest zapisana we właściwości protocol obiektu location.
Z kolei nazwę witryny, na przykład www.sawmac.com, można pobrać z właściwości
hostname. Dlatego fragment location.protocol + '//' + location.hostname
generuje łańcuch znaków typu http://www.sawmac.com. Oczywiście nazwa wi-
tryny zależy od tego, skąd pochodzi dana strona z kodem JavaScript. Jeśli umieścisz
powyższe instrukcje na stronie z witryny http://www.nazwa_witryny.com, właści-
wość location.hostname będzie miała wartość www.nazwa_witryny.com.

Drugi wiersz kodu rozpoczyna się od selektora jQuery, który pobiera wszystkie od-
nośniki rozpoczynające się od członu „http://”. Funkcja not() usuwa odnośniki, które
rozpoczynają się od adresu URL danej witryny, na przykład odnośniki wskazujące
na stronę http://www.sawmac.com. Funkcja not() jest przydatna przy usuwaniu
niektórych elementów z kolekcji pobranych za pomocą jQuery. Więcej informacji
na jej temat zawiera strona http://api.jquery.com/not.

http://www.yahoo.com
http://api.jquery.com/not

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Tworzenie nowych okien

260

Aby użyć omawianego kodu na stronie, wystarczy dołączyć plik biblioteki jQuery,
dodać funkcję $(document).ready() (patrz strona 190) i wstawić opisany wcześniej
fragment:

<script src="js/jquery.min.js"></script>
<script>
$(document).ready(function() {
 var myURL = location.protocol + '//' + location.hostname;
 $('a[href^="http://"], a[href^="https://"]').not('[href^="'+myURL+'"]').
 attr('target','_blank');
});
</script>

Inne rozwiązanie wymaga utworzenia zewnętrznego pliku JavaScript (patrz strona
49). Należy umieścić w nim funkcję, która wyświetla zewnętrzne odnośniki w no-
wym oknie. Ten plik trzeba dołączyć do strony, a następnie wywołać na niej dodaną
funkcję.

Możesz na przykład przygotować plik open_external.js i umieścić w nim poniż-
szy kod:

function openExt() {
 var myURL = location.protocol + '//' + location.hostname;
 $('a[href^="http://"] , a[href^="https://"]')
 .not('[href^="'+myURL+'"]').attr('target','_blank');
}

Następnie do każdej strony, na której chcesz zastosować tę funkcję, dodaj po-
niższy kod:

<script src="js/jquery.min.js"></script>
<script src="js/open_external.js"></script>
<script>
$(document).ready(function() {
 openExt();
 // Pozostały kod JavaScript strony.
});
</script>

Zaletą pliku zewnętrznego jest to, że jeśli używasz funkcji na setkach stron, w przy-
szłości będziesz mógł łatwo uatrakcyjnić skrypt. Możesz na przykład tak zmodyfi-
kować funkcję openExt(), aby otwierała odnośniki zewnętrzne w ramce na aktu-
alnej stronie. Dlatego zewnętrzny plik .js ułatwia zachowanie spójnego działania
skryptów w całej witrynie.

Tworzenie nowych okien
Przeglądarka umożliwia otwarcie nowego okna i ustawienie wielu jego właściwości,
na przykład szerokości, wysokości, pozycji na ekranie. Możesz nawet określić, czy
okno ma mieć paski przewijania, menu i pasek adresu. Do wyświetlania okien służy
metoda open(), której podstawowa składnia wygląda następująco:

open(URL, nazwa, właściwości)

Metoda ta przyjmuje trzy argumenty. Pierwszy to adres URL strony otwieranej
w nowym oknie. Jest to ta sama wartość, która pojawia się w atrybucie href od-
nośników (na przykład http://www.google.com, /pages/map.html lub ../../
portfolio.html). Drugi argument to nazwa okna, którą możesz ustalić dowolnie,

R O Z D Z I AŁ 7 . P O P U L A R N E Z A S T O S O W A N I A J Q U E R Y

Tworzenie nowych okien

261

przestrzegając przy tym zasad nazywania zmiennych (patrz strona 63). Jako trze-
ci argument należy przekazać łańcuch znaków z ustawieniami nowego okna (na
przykład wysokością i szerokością).

Ponadto przy otwieraniu nowego okna zwykle warto zapisać referencję do niego
w zmiennej. Aby otworzyć stronę główną Google w oknie o wymiarach 200×200
pikseli, użyj następującego kodu:

var newWin = open('http://www.google.com/',
'theWin','height=200,width=200');

Ten kod otwiera nowe okno i zapisuje referencję do niego w zmiennej newWin.
W podpunkcie „Używanie referencji do okien” dowiesz się (patrz strona 263), jak
użyć takiej referencji do kontrolowania nowego okna.

Uwaga: Nazwa nowego okna (tu jest to theWin) nie ma większego znaczenia. Jednak jeśli spróbu-

jesz otworzyć następne okno przy użyciu tej nazwy, przeglądarka nie utworzy go, lecz wczyta stronę

zażądaną w metodzie open() we wcześniej zapisanym oknie o danej nazwie.

Właściwości okien
Okno przeglądarki zawiera wiele elementów: paski przewijania, uchwyty do zmiany
rozmiaru, paski narzędzi i tak dalej (patrz rysunek 7.6). Ponadto okna mają szero-
kość, wysokość i pozycję na ekranie. Większość tych właściwości można ustawić

Rysunek 7.6. Różne właściwości okna przeglądarki, na przykład paski przewijania, paski narzędzi i uchwyty do
zmiany rozmiaru, są określane wspólną nazwą — „chromowanie”. W każdej przeglądarce obsługiwane są one
nieco inaczej, a programiści aplikacji sieciowych mają małą kontrolę nad ich działaniem i wyglądem. Nie ma
jednak żadnego powodu do rozpaczy — przy tworzeniu nowego okna za pomocą języka JavaScript można
wyłączyć niektóre mechanizmy

http://www.google.com/

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Tworzenie nowych okien

262

przy tworzeniu nowego okna. W tym celu należy przygotować łańcuch znaków z listą
właściwości rozdzielonych przecinkami i przekazać go jako trzeci argument metody
open(). Aby ustawić szerokość i wysokość nowego okna oraz dodać pasek adresu,
trzeba użyć następującego kodu:

var winProps = 'width=400,height=300,location=yes';
var newWin = open('about.html','aWin',winProps);

Właściwości określające rozmiar i pozycję są podawane w pikselach, natomiast po-
zostałe ustawienia przyjmują wartość yes (włącza daną właściwość) lub no (wyłącza
wybraną opcję). Jeśli nie podasz wartości właściwości typu yes-no, takiej jak toolbar
lub location, przeglądarka wyłączy ją. Na przykład brak wartości location spo-
woduje ukrycie pola adresu, które standardowo pojawia się w górnej części okna.
Jedynie właściwości height, width, left, top oraz toolbar działają spójnie we
wszystkich przeglądarkach. Zgodnie z informacjami podanymi na poniższej liście,
istnieją przeglądarki, które całkowicie ignorują niektóre z właściwości, dlatego, wy-
świetlając okienka przy użyciu JavaScriptu, koniecznie należy przetestować ich
działanie we wszystkich możliwych przeglądarkach.
 Właściwość height określa wysokość okna w pikselach. Nie można użyć war-

tości procentowych ani żadnych innych jednostek. Jeśli nie ustawisz tej właści-
wości, przeglądarka użyje wysokości obecnie wyświetlanego okna.

 Właściwość width określa szerokość okna. Podobnie jak w ustawieniu height,
obsługiwane są tylko wartości w pikselach, a brak tej właściwości powoduje uży-
cie szerokości obecnie wyświetlanego okna.

 Właściwość left określa odległość w pikselach od lewej krawędzi monitora.
 Właściwość top określa odległość w pikselach od górnej krawędzi monitora.
 Właściwość scrollbars informuje, czy przy prawej i dolnej krawędzi mają po-

jawić się paski przewijania, jeśli strona jest większa od okna. Aby całkowicie
ukryć paski przewijania, ustaw tę właściwość na no. Nie można określić, który
pasek przewijania ma być widoczny — to ustawienie typu „wszystko albo nic”;
poza tym niektóre przeglądarki, takie jak Chrome oraz Safari, w ogóle nie po-
zwalają ukrywać pasków przewijania.

 Właściwość status kontroluje wygląd paska stanu widocznego w dolnej części
okna. Przeglądarki Firefox i Internet Explorer standardowo nie umożliwiają
ukrycia go, dlatego pasek stanu jest w nich zawsze widoczny.

 Właściwość toolbar określa, czy widoczny jest pasek narzędzi z przyciskami
nawigacyjnymi, kartami i innymi kontrolkami dostępnymi w danej przeglądar-
ce. W Safari paski narzędzi i adresu stanowią całość. Włączenie jednego z nich
powoduje wyświetlenie przycisków paska narzędzi i pola adresu.

 Właściwość location określa, czy dostępne jest pole adresu. Znajduje się w nim
adres URL strony, a użytkownik może wpisać nową ścieżkę, aby przejść do innej
lokalizacji. Przeglądarki Opera, Internet Explorer i Firefox nie umożliwiają cał-
kowitego ukrycia adresu. Jeśli nie włączysz właściwości location, adres URL
pojawi się w pasku tytułu. To ograniczenie ma zapobiec szkodliwemu wykorzy-
staniu języka JavaScript do takich operacji jak otwieranie nowego okna i prze-
noszenie użytkownika do innej witryny, która wygląda tak samo jak pierwotna.
Jeśli włączysz tę opcję w przeglądarce Safari, oprócz pola adresu pojawi się także
pasek narzędzi.

R O Z D Z I AŁ 7 . P O P U L A R N E Z A S T O S O W A N I A J Q U E R Y

Tworzenie nowych okien

263

 Właściwość menubar ma zastosowanie w przeglądarkach, które udostępniają
menu w górnej części okna (na przykład standardowe menu Plik i Edycja znane
z większości programów). To ustawienie działa tylko w systemie Windows.
W komputerach Mac menu znajduje się w górnej części ekranu, a nie w po-
szczególnych oknach. Właściwość ta nie ma zastosowania także w Internet Explo-
rerze 7 oraz kolejnych wersjach, które domyślnie nie wyświetlają paska menu.

Uwaga: Przykłady zadziwiających skryptów wykorzystujących metodę window.open() można

znaleźć na stronach: http://experiments.instrum3nt.com/markmahoney/ball/ oraz http://www.

thewildernessdowntown.com.

Używanie referencji do okien

Po otwarciu nowego okna można je kontrolować za pomocą powiązanej z nim refe-
rencji. Załóżmy, że otworzyłeś okno za pomocą poniższego kodu:

var newWin = open('products.html','theWin','width=300,height=300');

Ten wiersz zapisuje w zmiennej newWin referencję do nowego okna. Następnie
można wywołać dla tej zmiennej wszystkie metody okna przeglądarki, aby je kon-
trolować. Jeśli zechcesz zamknąć okno, użyj metody close():

newWin.close();

Przeglądarki obsługują wiele metod obiektu okna. Poniżej opisano kilka funkcji naj-
częściej używanych do kontrolowania samego okna.

 Metoda close() zamyka podane okno. Samo polecenie close() zamyka bie-
żące okno, jednak można użyć także referencji, na przykład newWin.close().
Metodę tę może wywoływać dowolne zdarzenie, na przykład kliknięcie myszą
przycisku z etykietą „Zamknij okno”.

Uwaga: Jeśli używasz jednego z opisanych poleceń bez podania obiektu, przeglądarka uruchomi je dla

okna, w którym działa skrypt. Wywołanie close(); w programie zamyka okno ze stroną, na której

wywołano skrypt. Jednak jeśli otworzyłeś nowe okno i zapisałeś referencję do niego (na przykład w zmiennej

utworzonej przy jego otwieraniu, takiej jak newWin), możesz zamknąć okno z poziomu strony, na której

je utworzono, używając tej referencji — newWin.close().

 Metoda blur() powoduje przeniesienie aktywności poza dane okno, czyli ukrycie
go za innymi otwartymi oknami. Jest to sposób na schowanie wyświetlonego
okna, a reklamodawcy wykorzystują go do tworzenia reklam „pop under”. Kiedy
użytkownik zamknie wszystkie okna, będzie na niego czekać irytująca reklama.

 Metoda focus() (przeciwieństwo funkcji blur()) powoduje wyświetlenie okna
przed pozostałymi.

 Metoda moveBy() pozwala przenieść okno o podaną liczbę pikseli w prawo i w dół.
Przyjmuje ona dwa argumenty. Pierwszy określa w pikselach przesunięcie
w prawo, a drugi — przesunięcie w dół. Na przykład wywołanie newWin.moveBy
(200,300); przenosi okno zapisane w zmiennej newWin o 200 pikseli w prawo
i 300 pikseli w dół ekranu. W wywołaniu metody można także przekazywać
wartości ujemne, a zatem, aby przesunąć okno o 100 pikseli w górę oraz 300
pikseli w lewo, należałoby użyć następującego wywołania:

newWin.moveBy(-100,-300);

http://experiments.instrum3nt.com/markmahoney/ball/
http://www.thewildernessdowntown.com
http://www.thewildernessdowntown.com

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Tworzenie nowych okien

264

 Metoda moveTo() przenosi okno w miejsce ekranu określone przez docelowe
współrzędne jego lewego górnego rogu. To polecenie odpowiada ustawieniu
właściwości left i top (patrz strona 262) przy otwieraniu nowego okna. Aby
na przykład umieścić okno w lewym górnym rogu monitora, użyj wywołania
moveTo(0,0).

Uwaga: Działające przykłady skryptów wykorzystujących wiele tych metod można znaleźć na stronie

All Is Not Lost: http://www.allisnotlo.st/.

 Metoda resizeBy() zmienia szerokość i wysokość okna. Przyjmuje dwa argu-
menty. Pierwszy określa w pikselach zmianę szerokości, a drugi — wysokości
okna. Na przykład polecenie resizeBy(100,200); sprawia, że okno będzie o 100
pikseli szersze i 200 pikseli wyższe. Liczby ujemne pozwalają zmniejszyć okno.

 Metoda resizeTo() zmienia wymiary okna zgodnie z podaną szerokością i wy-
sokością. Na przykład wywołanie resizeTo(200,400); powoduje, że okno bę-
dzie miało 200 pikseli szerokości i 400 pikseli wysokości.

 Metoda scrollBy() przewija dokument w oknie o określoną liczbę pikseli w pra-
wo i w dół. Na przykład polecenie scrollBy(100,200); przesuwa dokument
o 200 pikseli w dół i 100 pikseli w prawo. Jeśli przewinięcie jest niemożliwe
(dokument w całości mieści się w oknie lub został przewinięty do końca), wy-
wołanie funkcji nie przynosi żadnych skutków.

 Metoda scrollTo() przewija dokument w oknie do określonej pozycji. Na przy-
kład instrukcja scrollTo(100,200); powoduje wyświetlenie dokumentu prze-
suniętego o 200 pikseli w dół i 100 pikseli w prawo. Jeśli przewinięcie jest
niemożliwe (dokument w całości mieści się w oknie lub został przewinięty do
końca), wywołanie funkcji nie przynosi żadnych skutków.

Wskazówka: Wtyczka ScrollTo biblioteki jQuery umożliwia wygodne kontrolowanie procesu prze-

wijania dokumentu za pomocą kodu JavaScript. Więcej informacji o tej wtyczce znajdziesz na stronie

https://github.com/flesler/jquery scrollTo.

Zdarzenia, które mogą otwierać nowe okna

W krótkiej historii sieci WWW okna wyskakujące zyskały złą sławę. Niestety, w wielu
witrynach nadużywa się metody open() do wyświetlania niepożądanych nowych
okien zaskoczonym użytkownikom. Obecnie większość przeglądarek umożliwia za-
blokowanie okien wyskakujących, dlatego jeśli nawet dodasz kod JavaScript, który
otwiera takie okno bezpośrednio po wczytaniu strony lub zamknięciu okna, przeglą-
darka nie pozwoli na jego wyświetlenie. Odwiedzający albo zobaczy informację
o zablokowaniu okna, albo w ogóle się nie dowie o próbie jego wyświetlenia.

Większość zdarzeń, na przykład mouseover, mouseout i keypress, w wielu przeglą-
darkach nie może prowadzić do otwarcia nowego okna. Jedyny niezawodny sposób
otwarcia okna za pomocą kodu JavaScript polega na wykonaniu tej operacji po klik-
nięciu odnośnika lub przesłaniu formularza. Dlatego trzeba dołączyć zdarzenie
click do dowolnego elementu HTML (nie musi to być odnośnik) i otworzyć nowe
okno. Załóżmy, że chcesz, aby niektóre odsyłacze otwierały stronę w nowym, kwa-

http://www.allisnotlo.st/
https://github.com/flesler/jquery.scrollTo

R O Z D Z I AŁ 7 . P O P U L A R N E Z A S T O S O W A N I A J Q U E R Y

Przedstawienie wtyczek
jQuery

265

dratowym oknie o boku 300 pikseli. Okno to ma mieć paski przewijania i umożliwiać
zmianę rozmiaru. Pozostałe elementy „chromowania”, takie jak pasek narzędzi, mają
być niedostępne. Do każdego specjalnego odnośnika należy dodać klasę, na przykład
popup, a następnie umieścić na stronie poniższy kod oparty na bibliotece jQuery:

$('.popup').click(function() {
 var winProps='height=300,width=300,resizable=yes,scrollbars=yes';
 var newWin=open($(this).attr('href'),'aWin',winProps);
}

Przedstawienie wtyczek jQuery
Kiedy dysponujesz znajomością języka JavaScript i biblioteki jQuery, wiesz
wszystko, czego Ci potrzeba, by w kilku wierszach kodu dodawać do stron uży-
teczne możliwości interakcji z użytkownikiem. Być może poszukujesz jednak
jeszcze ciekawszych i bardziej złożonych dodatków do tworzenia interfejsu użyt-
kownika stron. A co byś powiedział na slider? To bardzo popularny element
stron, pozwalający na wyświetlanie sekwencji zdjęć jedno po drugim i prezentu-
jący je na dużym obszarze strony (patrz rysunek 7.7). Takie slidery mogą prezen-
tować zdjęcia, klipy wideo i zwyczajne znaczniki <div> z treścią HTML. Użytkow-
nicy mogą zmieniać prezentowane slajdy, klikając przyciski; mogą też kliknąć sam
slajd, by przejść na inną stronę witryny.

Rysunek 7.7. Wow Slider (dostępny na stronie http://wowslider.com/) jest wtyczką jQuery o bogatych możli-
wościach, pozwalającą na bardzo łatwe tworzenie animowanych slajdów. Udostępnia wiele opcji prezentacji
slajdów oraz umożliwia tworzenie interesujących i pięknych efektów przejść pomiędzy poszczególnymi slajdami

http://wowslider.com/

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Przedstawienie wtyczek
jQuery

266

Tworzenie sliderów (nazywanych także czasami „karuzelami”) może być trudne
i złożone. Na szczęście jedną z ogromnych zalet biblioteki jQuery jest obszerny
ekosystem wtyczek. Wtyczka jQuery to plik JavaScript, działający w połączeniu
z biblioteką. Takie wtyczki wykonują przeróżne interesujące rzeczy, na przykład
mogą tworzyć na stronie slidery, pomagać w weryfikacji danych wpisywanych przez
użytkowników w formularzach i tak dalej. Biblioteka jQuery UI, którą poznasz
w trzeciej części tej książki, jest bardzo dużą wtyczką jQuery pozwalającą na two-
rzenie kontrolek przydatnych podczas pisania dużych aplikacji internetowych.
Jednak przeważająca większość wtyczek jQuery to niewielkie pliki JavaScript,
które w bardzo dobry sposób realizują stosunkowo proste zadania.

Wow Slider przedstawiony na rysunku 7.7 jest wtyczką komercyjną (co oznacza,
że należy go kupić, aby mógł znaleźć się na witrynie firmowej). Jednak bardzo
wiele wtyczek jest dostępnych bezpłatnie i w formie kodu otwartego, co oznacza,
że nie tylko można ich używać bezpłatnie, lecz co ważniejsze, można otworzyć
źródłowy plik JavaScript i zobaczyć, jak jest napisany. Analiza kodu pisanego
przez innych programistów jest wspaniałym sposobem poznawania metod two-
rzenia wtyczek, zapewniającym także możliwość poprawiania ich poprzez wpro-
wadzanie odpowiednich zmian w kodzie.

W tej książce poznasz kilka przydatnych wtyczek jQuery, jednak na internecie można
ich znaleźć dosłownie tysiące. Doskonałym miejscem do rozpoczęcia spotkania
z wtyczkami jQuery jest ich katalog, dostępny na stronie http://plugins.jquery.com/.
Kolejne wtyczki można znaleźć, przeglądając zasoby takich serwisów jak Sitepoint.
com lub WebDesignerDepot.com bądź po prostu szukając ich w sieci. Przykła-
dowo wpisanie w wyszukiwarce frazy google maps jquery plugin spowoduje wy-
świetlenie wielu, najprawdopodobniej całkiem przydatnych wtyczek do umiesz-
czania na stronach map firmy Google.

Czego szukać we wtyczce jQuery?
Zanim skopiujesz pierwszą wtyczkę jQuery, jaką znajdziesz, i spróbujesz jej użyć,
powinieneś się zastanowić, czy rzeczywiście jej potrzebujesz. Na pewno znajdziesz
bardzo dużo wtyczek, które robią wiele interesujących i fajnych rzeczy, i łatwo
można ulec pokusie, by z nich skorzystać, bo wyglądają fantastycznie i dają odjaz-
dowe możliwości. Problem polega na tym, że bez trudu można dodać do witryny
bardzo wiele wtyczek, a to zmusi użytkowników do ich pobierania. To z kolei
doprowadzi do wydłużenia czasu pobierania strony, a co więcej, potencjalnie
może także przyczynić się do spowolnienia działania przeglądarek użytkowników,
które, wyświetlając stronę, będą musiały trudzić się i wykonywać wiele programów
JavaScript.

Co więcej, dodając do witryny wtyczkę, stajemy się zależni od jej twórcy. Jeśli
w udostępnionej wersji wtyczki znajduje się niewykryty błąd, to Ty bądź twórca
wtyczki będziecie musieli go poprawić. Zawsze można też zrezygnować ze sto-
sowania takiej wtyczki.

Dlatego warto ograniczyć się do stosowania tylko tych wtyczek, które są na-
prawdę potrzebne, a także poszukiwać istniejących od dawna i popularnych. Jeśli
wtyczka została dodana do katalogu dziś rano i ma numer wersji 0.0.0.1, lepiej

http://plugins.jquery.com/
http://Sitepoint.com
http://Sitepoint.com
http://WebDesignerDepot.com

R O Z D Z I AŁ 7 . P O P U L A R N E Z A S T O S O W A N I A J Q U E R Y

Przedstawienie wtyczek
jQuery

267

dwa razy się zastanów, zanim jej użyjesz. Stopień „dojrzałości” wtyczki można
poznać po numerze wersji — numer 0.0.1 będzie sugerował, że wtyczka powstała
bardzo niedawno, natomiast numer 4.1.10, że była już wielokrotnie usprawniana
i rozbudowywana.

Warto także zwracać uwagę na datę wydania wtyczki. Witryna jQuery udostęp-
nia informacje na temat każdej wtyczki dostępnej w jej katalogu. Przykładowo
wtyczka Chosen (której listę wersji przedstawiono na rysunku 7.8) została opu-
blikowana na witrynie jQuery 5 marca 2013 roku. Serwisy, takie jak GitHub
(http://github.com), udostępniające bardzo wiele projektów o otwartym kodzie
źródłowym, prezentują także datę utworzenia każdego z nich. Koniecznie należy
także sprawdzić, kiedy wtyczka była ostatnio aktualizowana. Jeśli historia wtyczki
pokazuje, że była wielokrotnie aktualizowana, poprawiana i rozwijana, będzie to
sygnał, że istnieje już jakiś czas i najprawdopodobniej w przypadku wystąpienia
problemów zostanie poprawiona przez twórców. Jeśli jednak wtyczka była ostatni
raz aktualizowana cztery lata temu, lepiej trzymać się od niej z daleka — najpraw-
dopodobniej nie będzie działać z najnowszą wersją biblioteki jQuery i nie ma żad-
nych wątpliwości, że nie przetestowano jej w najnowszych wersjach przeglądarek.

Rysunek 7.8. Witryna
jQuery zawiera własną
listę dostępnych bez-
płatnie wtyczek. Można
ją znaleźć na stronie
http://plugins.jquery.com/.
Każda wtyczka ma swoją
własną stronę, na której
prezentowana jest histo-
ria jej rozwoju (data do-
dania oraz numery
i daty publikacji jej kolej-
nych wersji). Można
także zobaczyć, le osób
śledzi rozwój danej
wtyczki (są oni określani
jako „obserwujący” —
„watchers”). Im więcej
osób śledzi daną wtycz-
kę, tym bardziej jest po-
pularna. Przykładowo
aż 15883 osoby obser-
wują wtyczkę Chosen!

http://github.com
http://plugins.jquery.com/

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Przedstawienie wtyczek
jQuery

268

Wtyczek można także szukać w wyszukiwarkach internetowych, takich jak Google
lub Bing, a następnie przeczytać opinie i dyskusje na forach dyskusyjnych ich twór-
ców. Jeśli znajdziesz wiele wpisów typu „Nie jestem w stanie uruchomić wtyczki
XYZ w WordPressie” lub „Pomocy! Wtyczka XYZ kompletnie popsuła funkcjo-
nalność mojej strony”, to także i Ty możesz napotkać problemy.

Podstawy stosowania wtyczek jQuery
Choć poszczególne wtyczki jQuery różnią się pod względem złożoności i jakości,
jednak sposób ich przygotowywania do użycia jest zazwyczaj podobny. Pobranie
wtyczki sprowadza się do skopiowania na komputer jej pliku — zwykłego pliku
.js. Oprócz niego zazwyczaj dostarczany jest także plik CSS, określający wizualną
postać kodu HTML, który wtyczka dodaje do strony. Przykładowo niezwykle
użyteczny kalendarz dostępny w bibliotece jQuery UI (patrz strona 375), dodający
do pól formularzy HTML wyskakujący kalendarz, który niezwykle ułatwia wybie-
ranie dat, jest formatowany przy użyciu dołączonego, zewnętrznego arkusza stylów.
Do wtyczek często dodawane są także pliki graficzne, zawierające dodatkowe
wizualne elementy stosowane w kodzie HTML.

Oto podstawowy proces korzystania z wtyczek.

 1. Pobierz pliki wtyczki.

Możesz je znaleźć na witrynie wtyczki, a coraz częściej także w serwisie GitHub.
Wraz z samą wtyczką często pobierane są pliki używane podczas jej tworze-
nia, takie jak strona demonstracyjna, specjalne testy oraz pliki dodatkowe. Na
razie będziesz potrzebował wyłącznie plików .js, .css oraz ewentualnie także
plików graficznych.

 2. Przenieś pliki do katalogu witryny.

Operację możesz wykonać na kilka sposobów. Możesz przenieść plik .js wtycz-
ki do tego samego katalogu, w którym przechowujesz wszystkie pozostałe
pliki JavaScript, a plik .css do katalogu z pozostałymi arkuszami stylów. Jed-
nak zazwyczaj najlepszym rozwiązaniem jest umieszczenie pliku .css oraz
wszystkich plików graficznych wtyczki w jednym katalogu, gdyż zapewne arkusz
stylów wtyczki będzie się do nich odwoływał.

Inne rozwiązanie, które znacząco ułatwia zarządzanie wtyczkami (i ich ewen-
tualne usuwanie), polega na umieszczeniu wszystkich komponentów danej
wtyczki w jednym katalogu, o nazwie odpowiadającej nazwie wtyczki, a na-
stępnie umieszczeniu go w katalogu zawierającym inne pliki JavaScript lub
w odrębnym katalogu przeznaczonym na wtyczki (o nazwie na przykład plugins).
Załóżmy przykładowo, że chciałbyś używać wtyczki o nazwie Super Plugin,
która składa się z plików jquery.super-plugin.min.js, super-plugin.css oraz
katalogu o nazwie images zawierającego kilka dodatkowych plików. W takim
przypadku mógłbyś utworzyć katalog o nazwie super_plugin i umieścić w nim
wszystkie pliki wtyczki. Następnie ten katalog super_plugin mógłbyś umie-
ścić na witrynie (na przykład w katalogu o nazwie scripts lub plugins — prze-
znaczonym wyłącznie do przechowywania wtyczek).

R O Z D Z I AŁ 7 . P O P U L A R N E Z A S T O S O W A N I A J Q U E R Y

Przedstawienie wtyczek
jQuery

269

 3. Dołącz arkusz CSS wtyczki do strony WWW.

Ten kod umieścisz w sekcji <head> strony, bezpośrednio poniżej odwołań do
innych używanych arkuszy stylów:

<link href="css/site.css" rel="stylesheet">
<link href="plugins/super_plugin/super-plugin.css" rel="stylesheet">

 4. Dołącz plik JavaScript wtyczki do strony WWW.

Wtyczki jQuery wymagają samej biblioteki jQuery, a zatem to właśnie ją naj-
pierw należy dołączyć do strony; dopiero potem możesz dodać plik JavaScript
wtyczki:

<script src="js/jquery.min.js"></script>
<script src="plugins/super_plugin/jquery.super-
plugin.min.js"></script>

 5. Zmodyfikuj kod HTML strony.

Owszem, to polecenie jest dosyć niejasne. Jednak każda wtyczka jest inna
i odmienne są zasady jej używania. W większości przypadków, aby uruchomić
wtyczkę, musisz otworzyć plik HTML strony i dodać do niego odpowiedni kod.
Zadanie to może być trywialne i sprowadzać się do dodania kilku klas do już ist-
niejących elementów strony. Takie klasy będą działać jak „uchwyty” dla wtyczki,
wskazujące jej, które elementy strony powinna pobrać i zmodyfikować.

W innych przypadkach konieczne będzie dodanie do strony kodu HTML o ści-
śle określonej strukturze. Przykładem takiej wtyczki jest widżet akordeonu
(patrz strona 363) wchodzący w skład biblioteki jQuery UI. Wymaga on za-
stosowania kodu składającego się z „kontenera” oraz serii par zawierających
nagłówek oraz znacznik <div>; oto przykład takiego kodu:

<div id="accordion">
 <h3>Pierwszy nagłówek</h3>
 <div>Pierwszy panel treści</div>
 <h3>Drugi nagłówek</h3>
 <div>Drugi panel treści</div>
</div>

Wtyczka w jakiś sposób zmieni sposób prezentacji kodu HTML: wyświetli
go w formie „harmonijki”, której sekcje użytkownik strony może rozwijać
lub zwijać, w formie grupy ruchomych slajdów (takich jak tworzone przez
wtyczkę Wow Slider przedstawioną na rysunku 7.6) bądź też pokaże go jako
etykietki ekranowe.

 6. Wywołaj funkcję wtyczki.
Także w tym przypadku wszystko zależy od konkretnej wtyczki. Jednak wiele
z nich stosuje tę samą konwencję: najpierw należy użyć jQuery do wybrania
elementu, a następnie wywołać funkcję wtyczki. Do wybrania elementu zazwy-
czaj używa się jego identyfikatora lub klasy dodanej do kodu HTML. W przy-
padku komponentu akordeonu jQuery UI operacja ta sprowadza się do pobrania
znacznika zawierającego pozostałe elementy kontenera i wywołania funkcji
accordion():

$('#accordion').accordion();

Owszem, całkiem często wszystko sprowadza się do jednego wiersza kodu.
Większość wtyczek zapewnia także możliwość modyfikowania sposobu działa-
nia poprzez przekazanie odpowiednich instrukcji, które zazwyczaj zapisywane

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Responsywne menu
nawigacyjne

270

są w formie literału obiektowego. Komponent kalendarza biblioteki jQuery
UI można modyfikować na wiele różnych sposobów i to wyłącznie za pomocą
przekazania do wtyczki odpowiednich informacji. Aby na przykład wyświetlić
w kalendarzu trzy miesiące, a poniżej nich przycisk do wyboru bieżącej daty,
wystarczy użyć literału obiektowego o następującej postaci:

$('#date').datepicker({
 numberOfMonths: 3,
 showButtonPanel: true
});

Każda wtyczka jest inna, jednak sposób korzystania z większości jest zgodny
z podanym powyżej ogólnym opisem. W następnym podrozdziale zdobędziesz nie-
co doświadczenia w stosowaniu pewnej wtyczki.

Responsywne menu nawigacyjne
Wraz z powiększaniem się witryny coraz trudniej zapewnić dostęp do wszystkich jej
sekcji bez przytłaczania użytkowników odnośnikami. Aby ułatwić nawigację, wielu
projektantów stron WWW używa systemów menu rozwijanych, które ukrywają odno-
śniki, jeśli te nie są potrzebne (patrz rysunek 7.9). Choć można je utworzyć za po-
mocą języka CSS, to jednak takie rozwiązania nie są idealne. Po pierwsze, menu tego
rodzaju są bardzo wrażliwe. Jeśli kursor choć na ułamek sekundy znajdzie się poza
listą opcji, menu zniknie. Po drugie, kod CSS takich rozwiązań jest bardzo złożony,
więc każdy, kto nie jest mistrzem CSS, będzie preferował rozwiązanie korzystające ze
skryptów JavaScript.

Na szczęście niewielka ilość kodu JavaScript pozwala utworzyć animowane menu,
które działa płynnie we wszystkich przeglądarkach. W tym podrozdziale została
przedstawiona wtyczka jQuery (jQuery SmartMenus), która upraszcza proces two-
rzenia rozwijanych menu. Dodatkowo menu tworzone przez tę wtyczkę jest re-
sponsywne — czyli automatycznie dostosowuje się do szerokości okna przeglądar-
ki, a w przypadku oglądania na telefonach (patrz rysunek 7.9 po prawej stronie) jest
zmieniane na listę.

Takie menu są oparte na kodzie HTML i CSS w dużo większym stopniu niż techni-
ki języka JavaScript opisane do tej pory. Kod HTML posłuży do utworzenia zagnież-
dżonej grupy odnośników, a CSS — do upodobnienia odsyłaczy do paska nawiga-
cyjnego oraz rozmieszczania i ukrywania menu podrzędnych. Następnie trzeba
dodać kod JavaScript obsługujący animowane wyświetlanie menu po umieszczeniu
wskaźnika myszy nad przyciskami paska nawigacji.

Kod HTML
Kod HTML menu nawigacyjnego to prosta lista wypunktowana, utworzona za
pomocą znacznika . Każdy znacznik najwyższego poziomu reprezen-
tuje jeden z głównych przycisków menu. Aby utworzyć menu podrzędne, należy
dodać znacznik do znacznika , do którego ma należeć dane menu.

R O Z D Z I AŁ 7 . P O P U L A R N E Z A S T O S O W A N I A J Q U E R Y

Responsywne menu
nawigacyjne

271

Rysunek 7.9. Poruszanie się po witrynie o wielu stronach i sekcjach bywa trudne. Pasek nawigacyjny z menu
rozwijanymi to elegancki sposób na uproszczenie prezentacji odnośników do różnych stron witryny (z lewej).
Wtyczka jQuery o nazwie SmartMenus (http://www.smartmenus.org) ułatwia dodawanie wielu opcji nawiga-
cyjnych i udostępnia kilka gotowych tematów graficznych: prosty (z lewej, u góry), niebieski (z lewej, po środ-
ku) czy też przejrzysty (z lewej u dołu). Podczas wyświetlania na telefonie menu jest przekształcane do postaci
listy odnośników

Kod HTML menu widocznego na rysunku 7.9 wygląda następująco:

<ul id="navigation" >
 Strona główna
 O nas

 Nasza historia
 Dojazd
 Godziny pracy

 Nasze produkty

 Gizmo

 Gizmo - wersja podstawowa
 Gizmo - wersja standard
 Gizmo - wersja Deluxe

 Gadżety

 Gadżety drewniane
 Gadżety szklane
 Gadżety zaawansowane

 Gadżety elektroniczne
 Gadżety mechaniczne

http://www.smartmenus.org

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Responsywne menu
nawigacyjne

272

 Maszyna czasu

Uwaga: By uprościć prezentowany przykład, zastąpiono w nim faktyczne adresy URL, podawane

w atrybutach href odnośników, znakami #, na przykład . W rzeczywistym menu na-

wigacyjnym odnośniki te wskazywałyby faktyczne strony WWW, na przykład <a href="produkty/

gadzety/podstawowe.html">.

Trzy najważniejsze przyciski nawigacyjne to Strona główna, O nas oraz Nasze pro-
dukty. Przycisk O nas udostępnia kolejne menu, reprezentowane przez zagnież-
dżoną listę zawierającą opcje Nasza historia, Dojazd oraz Godziny pracy. Także
przycisk Nasze produkty udostępnia menu zawierające opcje Gizmo, Gadżety oraz
Maszyna czasu. Zarówno w opcji Gizmo, jak i w opcji Gadżety dodane zostały ko-
lejne poziomy menu (reprezentowane przez następne dwie listy zagnieżdżone); co
więcej, także w opcji Gadżety zaawansowane, dostępnej w menu Gadżety, istnieją
kolejne opcje (reprezentowane przez jeszcze jedną listę zagnieżdżoną). Lista zagnież-
dżona to kolejna lista z większym wcięciem. Ten kod HTML ma postać:

 Strona główna

 O nas

 Nasza historia

 Dojazd

 Godziny pracy

 Nasze produkty

 Gizmo

 Gizmo — wersja podstawowa

 Gizmo — wersja standard

 Gizmo — wersja Deluxe

 Gadżety

 Gadżety drewniane

 Gadżety szklane

 Gadżety zaawansowane

 Gadżety elektroniczne

 Gadżety mechaniczne

 Maszyna czasu

Jak zwykle, lista zagnieżdżona znajduje się w znaczniku nadrzędnego elementu.
Przykładowo znacznik zawierający opcje Gizmo, Gadżety oraz Maszyna czasu
znajduje się w znaczniku elementu Nasze produkty (jeśli chcesz przypomnieć
sobie informacje o listach HTML, odwiedź stronę http://www.htmldog.com/guides/
html/beginner/lists/).

http://www.htmldog.com/guides/html/beginner/lists/
http://www.htmldog.com/guides/html/beginner/lists/

R O Z D Z I AŁ 7 . P O P U L A R N E Z A S T O S O W A N I A J Q U E R Y

Responsywne menu
nawigacyjne

273

Wskazówka: Odnośniki najwyższego poziomu (czyli Strona główna, O nas i Nasze produkty) zaw-

sze muszą prowadzić do stron z odnośnikami do stron podrzędnych danej sekcji (na przykład Nasza

historia i Dojazd dla przycisku O nas). Zapewnia to dostęp do odnośników niższego poziomu także

w przeglądarkach z wyłączoną obsługą języka JavaScript.

Kod CSS
Wtyczka jQuery SmartMenus napisana przez Vasila Dinkova (http://www.
smartmenus.org/) wykonuje przeważającą większość czynności związanych
z takim rozmieszczeniem elementów list, byśmy nie musieli zawracać sobie
głowy tworzeniem arkusza CSS, który wyświetlałby przyciski obok siebie oraz
generował rozwijane menu z opcjami podrzędnymi. Główny plik CSS ma nazwę
sm-core.css i odpowiada za określenie podstawowego położenia przycisków na-
wigacyjnych.

Można także utworzyć własny arkusz stylów, by dostosować wygląd przycisków,
bądź skorzystać z jednego z dostępnych, predefiniowanych tematów graficznych.
Każdy taki temat jest dostarczany w formie odrębnego pliku CSS: sm-simple.css,
sm-clean.css i sm-blue.css. Sposób użycia tych tematów oraz dostosowywania
wyglądu menu do własnych potrzeb poznasz, czytając przykład, który zaczyna się
na stronie 277.

Kod JavaScript
Sposób wykorzystania kodu JavaScript do wyświetlania menu jest prosty. Kiedy
użytkownik wskaże myszą element listy, a ten zawiera listę zagnieżdżoną (czyli me-
nu podrzędne), kod JavaScript wyświetli tę listę. Kiedy wskaźnik myszy zostanie
usunięty z obszaru elementu, umieszczona w tym elemencie lista jest ukrywana.

Jest jednak kilka drobiazgów, które komplikują rozwiązanie. Na przykład menu
rozwijane, które błyskawicznie znikają w momencie przeniesienia wskaźnika myszy
poza opcje, wymagają precyzji w korzystaniu z myszy. Łatwo przesunąć jej wskaźnik
w inne miejsce przy korzystaniu z takiego menu. Jeśli opcje nagle znikną, użyt-
kownik musi ponownie najechać wskaźnikiem na przycisk, aby otworzyć listę
odnośników. Jeśli menu rozwijane ma kilka poziomów, bardzo łatwo na jednym
z nich wyjechać wskaźnikiem poza ich obszar i utracić dostęp do opcji.

Aby rozwiązać ten problem, zwykle w skryptach do obsługi menu nawigacyjnego
używa się mechanizmu zegara, który opóźnia ukrywanie menu rozwijanych.
To rozwiązanie nie wymaga dużej precyzji w ruchach myszą i sprawia, że menu
rozwijane są mniej wrażliwe.

Przykład
Znasz już podstawy tworzenia menu nawigacyjnych. W tym praktycznym przykła-
dzie użyjesz kodów CSS i JavaScript do przekształcenia prostej listy HTML
z opcjami ze strony 272 na pasek nawigacyjny.

http://www.smartmenus.org/
http://www.smartmenus.org/

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Responsywne menu
nawigacyjne

274

Uwaga: Informacje o pobieraniu przykładowych plików znajdziesz na stronie 46.

 1. Otwórz w edytorze tekstu plik menu.html z katalogu R07.

Plik zawiera wypunktowaną listę odnośników, którą przekształcisz na pasek
nawigacyjny. Pierwszym krokiem do utworzenia naszego sprytnego menu
jest dołączenie do strony pliku CSS, który w tym przypadku będzie już gotowy.

 2. Kliknij pusty wiersz pod znacznikiem <link href="../_css/site.css"
rel="stylesheet"> i dodaj następujący kod:

<link href="smartmenus/sm-core-css.css" rel="stylesheet" >
<link href="smartmenus/sm-simple.css" rel="stylesheet" >

Pierwszy znacznik <link> dołącza do strony podstawowy arkusz stylów
— jest on wymagany, gdyż określa podstawowe sposoby formatowania me-
nu, stosowane niezależnie od wybranego tematu lub ustawień związanych
z czcionkami. Zawiera style dla „prostego” tematu graficznego przedstawio-
nego na rysunku 7.9.

Teraz musisz wprowadzić niewielkie zmiany w kodzie HTML.

 3. Odszukaj znacznik określający początek paska nawigacyjnego
(znajduje się on bezpośrednio poniżej znacznika <h1>) i dodaj do niego
atrybut class z dwiema wartościami, tak by wyglądał jak przedstawiony
poniżej:

<ul class="sm sm-simple">

Klasa o nazwie sm jest wymagana przez wszystkie menu tworzone przy uży-
ciu wtyczki SmartMenus. Wtyczka potrzebuje jej, by wykonać swoje magiczne
sztuczki i zastosować w menu podstawowe style. Druga klasa — sm-simple
— określa, który z dostępnych tematów graficznych ma być używany. Jeśli
w kroku 2. dołączyłeś jeden z dodatkowych arkuszy stylów — sm-clean.css lub
sm-blue.css — możesz tu podać odpowiednią nazwą klasy. Innymi słowy,
klasę sm-simple będziesz mógł zastąpić klasami sm-clear lub sm-blue.

Teraz nadszedł czas, by zająć się kodem JavaScript.

 4. Kliknij pusty wiersz poniżej kodu <script src="../_js/jquery.min.
js"></script> i wpisz:

<script src="smartmenus/jquery.smartmenus.min.js"></script>

Powyższy znacznik spowoduje wczytanie wtyczki SmartMenus. Pamiętaj, że
wtyczka ta wymaga biblioteki jQuery, dlatego musisz ją dołączyć do strony
poniżej znacznika <script> dołączającego samą bibliotekę. Zwróć też uwa-
gę, że plik JavaScript wtyczki oraz dwa pliki CSS są umieszczone w katalogu
smartmenus. Zgodnie z informacjami podanymi na stronie 268, przecho-
wywanie wszystkich plików związanych z konkretną wtyczką w odrębnym
katalogu, którego nazwa odpowiada nazwie wtyczki, jest bardzo dobrym
pomysłem. Dzięki temu będziesz mógł łatwo odnaleźć wszystkie pliki
wtyczki, kiedy będziesz chciał ją na przykład zaktualizować (gdy pojawi się jej
nowa wersja) lub usunąć (kiedy wtyczka Cię znudzi lub przestanie działać).

Teraz będziesz musiał zająć się napisaniem kodu. Przykładowy plik zawiera
już parę znaczników <script> wraz z umieszczonym wewnątrz nich wy-
wołaniem funkcji $(document).ready().

R O Z D Z I AŁ 7 . P O P U L A R N E Z A S T O S O W A N I A J Q U E R Y

Responsywne menu
nawigacyjne

275

 5. Kliknij pusty wiersz wewnątrz funkcji $(document).ready() i wpisz wiersz
kodu zaznaczony pogrubioną czcionką:

$(document).ready(function() {
 $('.sm').smartmenus();
}); // Koniec funkcji ready.

W celu uaktywnienia menu najpierw musisz użyć jQuery, aby pobrać znacznik
 zawierający główny pasek nawigacyjny — w tym przypadku znacznik ten
należy do klasy sm, zatem można go pobrać przy użyciu wywołania $('.sm').
Wywołanie .smartmenus() przygotowuje menu za pomocą wtyczki SmartMenus.
Tak, to naprawdę jest takie proste!

 6. Zapisz stronę i wyświetl ją w przeglądarce. Spróbuj umieszczać wskaźnik
myszy nad różnymi opcjami i zmieniać wielkość okna przeglądarki, tak
by było jak najwęższe.

Możesz zauważyć, że teraz wskazanie jednego przycisku w głównym menu
powoduje wyświetlenie menu rozwijanego w dół, a wskazanie jednej z opcji
dostępnych w tym menu powoduje wyświetlenie kolejnego poziomu menu
umieszczonego z boku. Świetna sprawa.

Jednak możesz zrobić jeszcze więcej. Przekazując do wtyczki literał obiektowy
(patrz strona 165), możesz modyfikować sposób jej działania. Aktualnie menu
podrzędne stopniowo stają się widoczne, kiedy wskażesz wybraną opcję myszą,
a kiedy usuniesz wskaźnik — stopniowo zanikają. Jednak dodając odpowiedni
kod, możesz sprawić, że menu podrzędne będą się wysuwały. Kod, który trzeba
w tym celu napisać, jest dosyć złożony, zatem dodasz go poniżej krok po kroku.

 7. Zmodyfikuj dodany wcześniej kod, dopisując do niego parę nawiasów
klamrowych (wyróżnionych poniżej pogrubioną czcionką):

$(document).ready(function() {
 $('.sm').smartmenus({ });
}); // Koniec funkcji ready.

Dodana para nawiasów klamrowych powoduje przekazanie do funkcji literału
obiektowego. Jak się dowiedziałeś na stronie 165, literały obiektowe są sposobem
przekazywania do funkcji par nazwa – wartość. Przykładowo poniżej przedsta-
wiony został prosty literał obiektowy zawierający imię autora tej książki:

{ name : 'Dave' }

W tym przykładzie name jest nazwą (nazywaną także czasami kluczem), nato-
miast 'Dave' jest wartością. Teraz nadszedł czas, by zrobić trochę miejsca na
wartości, które niebawem dodasz.

 8. Wewnątrz pary nawiasów klamrowych definiujących literał obiektowy
wpisz nowy wiersz, a następnie dodaj komentarz na końcu następnego
wiersza:

$(document).ready(function() {
 $('.sm').smartmenus({

 }); // Koniec funkcji smartmenus.
}); // Koniec funkcji ready.

Komentarz wskaże miejsce, w którym kończy się funkcja smartmenus(). W na-
stępnym kroku dodasz pierwszą parę nazwa – wartość.

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Responsywne menu
nawigacyjne

276

 9. Dodaj kod zapisany na poniższym przykładzie w wierszach od 3. do 5.:
1 $(document).ready(function() {
2 $('.sm').smartmenus({
3 showFunction: function($ul, complete) {
4 $ul.slideDown(250, complete);
5 }
6 }); // Koniec funkcji smartmenus.
7 }); // Koniec funkcji ready.

W tym przypadku nazwą (albo kluczem) jest showFunction. Wtyczka
SmartMenus udostępnia wiele takich ustawień o predefiniowanych wartościach,
a showFunction jest jedną z nich. Jeśli właściwość o takiej nazwie zostanie
przekazana do wtyczki, funkcja stanowiąca jej wartość zostanie zastosowana do
wyświetlania menu podrzędnych. W wyróżnionym fragmencie kodu dzieje
się całkiem sporo, powinieneś jednak zauważyć, że w wierszu 4. wywoływana
jest funkcja slideDown(). (Informacje na temat efektów animacji tworzonych
przez jQuery można znaleźć na stronie 216). To wywołanie możesz jednak
zastąpić dowolnym innym efektem animacji udostępnianym przez jQuery
i opisanym na stronie 211 — takim jak .hide() lub .fadeIn() — możesz
także opracować swoją własną animację, używając funkcji .animate() opisanej
na stronie 220.

Liczba podana w wywołaniu funkcji slideDown() określa czas trwania ani-
macji — w tym przypadku będzie to 250 milisekund. Możesz ją zmniejszyć,
by animacja była odtwarzana szybciej, lub zwiększyć — by trwała dłużej.

Teraz zadbasz o to, by menu podrzędne były wysuwane ze strony, gdy użyt-
kownik usunie wskaźnik myszy z elementu, którego wskazanie je wyświetliło.

 10. Zmodyfikuj kod, by wyglądał tak, jak na poniższym przykładzie (zmiany
zostały wyróżnione pogrubioną czcionką):

1 $(document).ready(function() {
2 $('.sm').smartmenus({
3 showFunction: function($ul, complete) {
4 $ul.slideDown(250, complete);
5 },
6 hideFunction: function($ul, complete) {
7 $ul.slideUp(250, complete);
8 }
9 }); // Koniec funkcji smartmenus.
10 }); // Koniec funkcji ready.

Nie zapomnij o znaku przecinka za zamykającym nawiasem klamrowym
w wierszu 5. Służy on do oddzielenia par literału obiektowego. W tym kroku
dodajesz do literału drugą opcję wtyczki SmartMenus: hideFunction.

Uwaga: Wtyczka SmartMenus udostępnia wiele ustawień kontrolujących sposób jej działania. Więcej

informacji na ich temat można znaleźć na stronie wtyczki: http://www smartmenus.org/docs/.

 11. Zapisz stronę i wyświetl ją w przeglądarce.

Teraz powinieneś już dysponować w pełni funkcjonalnym paskiem nawiga-
cyjnym. Sprawdź style zapisane w pliku CSS, by przekonać się, w jaki sposób
są formatowane przyciski; spróbuj zmieniać różne właściwości CSS, żeby do-
stosować wygląd menu. Pełną wersję tego przykładu możesz znaleźć w pliku
complete_menu.html w katalogu R07.

http://www.smartmenus.org/docs/

R O Z D Z I AŁ 7 . P O P U L A R N E Z A S T O S O W A N I A J Q U E R Y

Responsywne menu
nawigacyjne

277

Aby przekonać się, jak wyglądają inne tematy graficzne wtyczki SmartMenus,
zmień odwołanie do pliku sm-simple.css, a następnie użyj odpowiedniej klasy
w znaczniku zamiast klasy sm-simple. Aby na przykład użyć niebieskiego
tematu, zmień znacznik <link> na następujący:

<link href="smartmenus/sm-blue.css" rel="stylesheet">

Zmodyfikuj też odpowiednio znacznik :
<ul class="sm sm-blue">

Pełną wersję tego przykładu znajdziesz w kodach dołączonych do książki, w pliku
complete_menu.html umieszczonym w katalogu R07. Oprócz niego znajdziesz
tam także analogiczne przykłady używające dwóch pozostałych tematów graficz-
nych wtyczki SmartMenus, są to odpowiednio pliki: complete_menu_blue.html
oraz complete_menu_clean.html.

Dostosowywanie wyglądu wtyczki SmartMenus
Najprostszym sposobem modyfikowania wyglądu menu nawigacyjnych tworzo-
nych przy użyciu wtyczki SmartMenus jest wprowadzanie zmian w pliku CSS.
Arkusz stylów dostarczany wraz z wtyczką zawiera wiele bardzo przydatnych
komentarzy, które doskonale wyjaśniają przeznaczenie poszczególnych stylów.
Przykładowo w pliku sm-simple.css umieszczony jest selektor o postaci sm-simple,
.sm-simple ul. Ta reguła określa wygląd elementu zawierającego cały pasek
nawigacyjny (czyli zewnętrznego znacznika) oraz każdego z menu podrzęd-
nych (czyli zagnieżdżonych znaczników).

Można także tworzyć swoje własne style. Poniżej opisano, jak to zrobić.

 1. Zrób kopię arkusza stylów, który najbardziej Ci się podoba, nadając mu
przy tym inną nazwę.

Przykładowo skopiuj plik sm-simple.css i nadaj mu nazwę sm-mymenu.css.

 2. Zmień prefiks arkusza stylów (taki jak .sm-simple) na własny.

Zmień na przykład .sm-simple na .sm-mymenu (bądź też na dowolną inną
nazwę). Jeśli skorzystasz z edytora dysponującego mechanizmem wyszukiwania
i zamiany, operacja ta będzie szybka i prosta. Pamiętaj jednak, że ta zmiana jest
opcjonalna; równie dobrze możesz pozostawić starą nazwę (taką jak .sm-simple)
już używaną w pliku.

 3. Wprowadź zmiany w regułach stylów.

W stylach możesz wprowadzić całkowicie dowolne zmiany. Styl .sm-simple
określa postać każdego z przycisków, natomiast styl .sm-simple a span.
sub-arrow ustala wygląd strzałki, wyświetlanej przy opcji zawierającej menu
podrzędne.

 4. Dołącz swój nowy arkusz do strony.

Ta czynność wymaga zmiany adresu w odwołaniu do arkusza stylów:
<link rel="stylesheet" href="smartmenus/sm-mymenu.css">

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Responsywne menu
nawigacyjne

278

 5. Jeśli zmieniłeś prefiks w arkuszu stylów — na przykład, zmieniłeś .sm-simple
na .sm-mymenu — podaj tę nazwę w atrybucie class znacznika , na
przykład:

<ul class="sm sm-mymenu">

Wtyczka SmartMenus jest bardzo łatwa w użyciu i sprawia, że dodawanie do
stron responsywnych menu będzie Ci zajmować jedynie kilka chwil.

U W A G A N A W T Y C Z K I !

Inne wtyczki jQuery usprawniające nawigację
Wtyczka jQuery o nazwie SmartMenus jest prosta i efek-

tywna; istnieje też bardzo wiele innych wtyczek tej bi-

blioteki, które umożliwiają tworzenie znacznie bardziej

zaawansowanych mechanizmów nawigacyjnych.

 Wtyczka jPanel (http://jpanelmenu.com/) tworzy

menu przypominające boczne panele — takie które

wsuwa się z boku na stronę po kliknięciu przycisku.

Taki sposób nawigacji jest wykorzystywany w serwisie

Facebook, na stronach Google oraz w wielu aplika-

cjach przeznaczonych na smartfony.

 Wtyczka Multi-level Push Menu (http://multi-
level-push-menu.make.rs/) jest kolejnym systemem

nawigacyjnym prezentowanym z boku strony.

Zapewnia ona możliwość tworzenia wielu pozio-

mów nawigacji, reprezentowanych przez niewielkie

karty, które użytkownik może otwierać i zamykać. Jest

ona doskonałym sposobem organizowania i zapew-

niania dostępu do bardzo dużej kolekcji odnośników.

Jeśli żadna z tych wtyczek nie przypadnie Ci do gustu,

możesz sprawdzić listę 15 innych responsywnych

wtyczek nawigacyjnych dostępnych na stronie http://
speckyboy.com/2013/08/01/15-responsive-navigation-
jquery-plugins/.

http://jpanelmenu.com/
http://multi-level-push-menu.make.rs/
http://multi-level-push-menu.make.rs/
http://multi-level-push-menu.make.rs/
http://speckyboy.com/2013/08/01/15-responsive-navigation-jquery-plugins/
http://speckyboy.com/2013/08/01/15-responsive-navigation-jquery-plugins/
http://speckyboy.com/2013/08/01/15-responsive-navigation-jquery-plugins/
http://speckyboy.com/2013/08/01/15-responsive-navigation-jquery-plugins/

Wzbogacanie formularzy

d czasu powstania sieci WWW formularze umożliwiają pobieranie infor-
macji od użytkowników witryn. Tymi danymi mogą być adresy e-mail, pod
które należy przesyłać biuletyny, informacje związane z wysyłką kupionych

towarów lub opinie internautów na temat witryny. Formularze wymagają od użyt-
kowników myślenia — czytania etykiet, wpisywania danych, wybierania opcji i tak
dalej. Ponieważ funkcjonowanie niektórych witryn w pełni opiera się na formularzach
(Amazon nie utrzymałby się długo na rynku, gdyby użytkownicy nie mogli zamawiać
książek za pomocą tej techniki), projektanci stron WWW muszą wiedzieć, jak uła-
twić korzystanie z tego mechanizmu. Na szczęście możliwość zwiększania inte-
raktywności elementów za pomocą języka JavaScript pomaga tworzyć formularze
łatwe w użyciu i pobierające od internautów bardziej precyzyjne dane.

Wprowadzenie do formularzy

Język HTML udostępnia różne znaczniki do tworzenia formularzy podobnych do
tego z rysunku 8.1. Najważniejszy jest znacznik <form>, który wyznacza początek
(otwierający znacznik <form>) i koniec formularza (zamykający znacznik
</form>). W tym elemencie należy określić metodę używaną do wysyłania da-
nych (post lub get) i miejsce, gdzie strona ma przesyłać dane formularza.

Do tworzenia kontrolek formularza — przycisków, pól tekstowych i list rozwija-
nych — służą znaczniki <input>, <textarea> oraz <select>. Większość elemen-
tów formularza to znaczniki <input>. Służą one do tworzenia między innymi pól
tekstowych, pól na hasło, przycisków opcji, pól wyboru i przycisków wysyłania
formularza. Elementy te różnią się wartością atrybutu type. Aby na przykład utwo-
rzyć pole tekstowe, należy użyć znacznika <input> i przypisać do atrybutu type
wartość text:

<input name="user" type="text">

O

8
ROZDZIAŁ

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Wprowadzenie
do formularzy

280

Rysunek 8.1. Prosty formularz może zawierać wiele różnych kontrolek, w tym pola tekstowe, przyciski opcji, pola
wyboru, listy opcji i tak dalej. Informacje na temat wszystkich dostępnych pól formularzy HTML i artykułów o tym,
jak z nich korzystać, znajdziesz na stronie https://developer.moz lla.org/en-US/docs/Web/Guide/HTML/Forms

Oto kod HTML formularza widocznego na rysunku 8.1. Znacznik <form> i elementy
formularza wyróżniono pogrubieniem:

<form action="process.php" method="post" name="signup" id="signup">
 <div>
 <label for="username" class="label">Imię i nazwisko</label>
 <input name="username" type="text" id="username" size="36">
 </div>
 <div>Hobby
 <input type="checkbox" name="hobby" id="helisking"
 value="heliskiing">
 <label for="heliskiing">Heliskiing</label>
 <input type="checkbox" name="hobby" id="pickle" value="pickle">
 <label for="pickle">Jedzenie korniszonów</label>
 <input type="checkbox" name="hobby" id="walnut" value="walnut">
 <label for="walnut">Produkcja masła orzechowego</label>
 </div>
 <div>
 <label for="planet" class="label">Planeta urodzenia</label>
 <select name="planet" id="planet">
 <option>Ziemia</option>
 <option>Mars</option>
 <option>Alpha Centauri</option>
 <option>Nigdy o niej nie słyszałeś</option>
 </select>
 </div>
 <div class="labelBlock">Czy chciałbyś otrzymywać od nas irytujące listy
 elektroniczne?
 </div>
 <div class="indent">
 <input type="radio" name="spam" id="yes" value="yes"
 checked="checked">
 <label for="yes">Tak</label>
 <input type="radio" name="spam" id="definitely" value="definitely">

https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Forms

R O Z D Z I AŁ 8 . W Z B O G A C A N I E F O R M U L A R Z Y

Wprowadzenie
do formularzy

281

 <label for="definitely">Zdecydowanie</label>
 <input type="radio" name="spam" id="choice" value="choice">
 <label for="choice">A czy mam jakiś wybór?</label>
 </div>
 <div>
 <input type="submit" name="submit" id="submit" value="Wyślij">
 </div>
</form>

Uwaga: <label> to następny znacznik często używany w formularzach, który jednak nie tworzy

kontrolek (takich jak przyciski), ale umożliwia dodanie etykiety z opisem przeznaczenia danego elementu.

Pobieranie elementów formularzy
Wielokrotnie widziałeś już, że użycie elementów strony wymaga uprzedniego ich
pobrania. Aby ustalić, jaką wartość zawiera pole formularza, trzeba je najpierw zna-
leźć. Także jeśli zechcesz ukryć lub wyświetlić elementy formularza, musisz je zi-
dentyfikować przy użyciu kodu JavaScript.

Jak już zapewne wiesz, jQuery pozwala pobierać elementy strony przy użyciu nie-
mal wszystkich możliwych selektorów CSS. Najłatwiejszy sposób na pobranie jed-
nego elementu formularza polega na przypisaniu znacznikowi identyfikatora:

<input name="user" type="text" id="user">

W takim przypadku do pobrania elementu można użyć poniższego wywołania jQuery:
var userField = $('#user');

Po pobraniu pola należy wykonać na nim określone operacje. Załóżmy, że chcesz
ustalić wartość pola, aby sprawdzić, jaki tekst wpisał użytkownik. Jeśli identyfika-
tor pola to user, za pomocą jQuery można pobrać wartość elementu w następujący
sposób:

var fieldValue = $('#user').val();

Uwaga: Opis funkcji val() biblioteki jQuery znajdziesz na stronie 283.

Co jednak zrobić, aby pobrać z formularza wszystkie elementy określonego typu?
Przyjmijmy, że chcesz dodać obsługę zdarzenia click do każdego przycisku opcji
na stronie.

Jednak znacznik <input> służy do tworzenia przycisków opcji, pól tekstowych, pól
z hasłem, pól wyboru, przycisków do przesyłania danych, przycisków do czysz-
czenia formularzy oraz pól ukrytych. Dlatego też nie możemy wyszukać wszyst-
kich znaczników <input> — musimy mieć możliwość odszukania znaczników
<input> określonego typu.

Można w tym celu użyć selektora atrybutu CSS w poniższy sposób:
$('input[type="radio"]');

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Wprowadzenie
do formularzy

282

Na szczęście jQuery udostępnia jeszcze prostszy sposób pobierania różnych rodza-
jów pól formularzy (patrz tabela 8.1). Przy użyciu jednego z selektorów formularzy
udostępnianych przez tę bibliotekę można łatwo zidentyfikować wszystkie pola
konkretnego typu i manipulować nimi. Załóżmy, że kiedy użytkownik przesyła
formularz, strona ma sprawdzić, czy wszystkie pola tekstowe zawierają wartość.
Musimy zatem pobrać wszystkie pola tekstowe, a następnie upewnić się, że każde
z nich zawiera jakąś wartość. Gdy korzystamy z jQuery, pierwszą część zadania
możemy wykonać w następujący sposób:

$(':text')

Tabela 8.1. JQuery udostępnia wiele selektorów, które ułatwiają manipulowanie różnymi polami
formularzy

Selektor Przykład Opis działania

:input $(':input') Pobiera pola wejściowe, pola tekstowe, znaczniki <select>
i przyciski, czyli wszystkie elementy formularzy.

:text $(':text') Pobiera wszystkie pola tekstowe.

:password $(':password') Pobiera wszystkie pola z hasłem.

:radio $(':radio') Pobiera wszystkie przyciski opcji.

:checkbox $(':checkbox') Pobiera wszystkie pola wyboru.

:submit $(':submit') Pobiera wszystkie przyciski do przesyłania danych.

:image $(':image') Pobiera wszystkie przyciski z rysunkami.

:reset $(':reset') Pobiera wszystkie przyciski do czyszczenia formularza.

:button $(':button') Pobiera wszystkie pola typu button.

:file $(':file') Pobiera wszystkie pola do przesyłania plików.

:hidden $(':hidden') Pobiera wszystkie pola ukryte.

Następnie wystarczy przejść w pętli po pobranych elementach za pomocą funkcji
.each() (patrz strona 168), aby upewnić się, że każde pole ma określoną wartość.
(Dużo więcej informacji o walidacji pól formularzy znajdziesz na stronie 299).

Można połączyć selektory formularzy z innymi selektorami. Załóżmy, że na stronie
znajdują się dwa formularze, a chcesz pobrać pola tekstowe z tylko jednego z nich.
Jeśli ten formularz ma identyfikator signup, można znaleźć jego pola tekstowe tylko
w poniższy sposób:

$('#signup :text')

Ponadto jQuery udostępnia bardzo przydatne filtry, które wyszukują pola formu-
larza mające określony stan.

 Filtr :checked pobiera wszystkie włączone (zaznaczone) pola wyboru i przyci-
ski opcji. Jeśli chcesz znaleźć takie kontrolki, użyj następującego kodu:

$(':checked')

Co jeszcze lepsze, przy użyciu tego filtra możesz znaleźć zaznaczony przycisk
opcji z danej grupy. Przyjmijmy, że dysponujesz grupą przycisków opcji „Wy-
bierz metodę przesyłki”, zawierającą różne wartości (takie jak UPS, USPS czy

R O Z D Z I AŁ 8 . W Z B O G A C A N I E F O R M U L A R Z Y

Wprowadzenie
do formularzy

283

też FedEx) i chcesz poznać wartość przycisku zaznaczonego przez użytkownika.
Grupa powiązanych ze sobą przycisków opcji ma atrybut name o tej samej war-
tości, na przykład shipping. W celu pobrania wartości zaznaczonego przyci-
sku opcji możesz skorzystać z selektora atrybutów jQuery (patrz strona 152)
oraz filtra :checked.

var checkedValue = $('input[name= shipping]:checked').val();

Selektor $('input[name= shipping]') pobiera wszystkie elementy input
o nazwie shipping, jednak dodanie filtra :checked — $('input[name=
 shipping]:checked') — sprawia, że zostanie zwrócony tylko ten z nich,
który w danej chwili jest zaznaczony. Z kolei funkcja val() zwraca wartość
przypisaną do danego pola, na przykład USPS.

 Filtr :selected pobiera wszystkie zaznaczone elementy option z listy rozwi-
janej, co umożliwia znalezienie opcji wybranych przez użytkownika w znacz-
niku <select>. Załóżmy, że znacznik <select> o identyfikatorze state zawiera
listę 50 stanów USA. Aby znaleźć stan zaznaczony przez internautę, można użyć
następującego kodu:

var selectedState=$('#state :selected').val();

Zauważ, że — inaczej niż w filtrze :checked — między identyfikatorem a filtrem
znajduje się odstęp ('#state :selected'). Dzieje się tak, ponieważ ten filtr po-
biera znaczniki <option>, a nie <select>. Po polsku ostatnia instrukcja jQuery
oznacza: „Znajdź wszystkie zaznaczone opcje ze znacznika <select> o identy-
fikatorze state”. Odstęp sprawia, że wyrażenie działa jak selektor potomków
CSS — najpierw wyszukuje znacznik o określonym identyfikatorze, a następnie
pobiera z niego zaznaczone elementy.

Uwaga: Listy rozwijane <select> mogą umożliwiać zaznaczanie wielu opcji. Oznacza to, że filtr

:selected zwraca czasem więcej niż jeden element.

Pobieranie i ustawianie wartości elementów formularzy
Czasem skrypt musi sprawdzić wartość elementu formularza. Jest to potrzebne na
przykład do określenia, czy użytkownik wpisał adres e-mail w polu tekstowym, lub
do obliczenia ceny zakupionych produktów. W innych sytuacjach program ma usta-
wić wartość elementu formularza. Formularz zamówienia często służy do pobiera-
nia informacji związanych z płatnością i wysyłką. Przydatne jest wtedy pole wyboru
z etykietą „Takie same jak przy płatności”, które pozwala automatycznie dodać dane
na temat wysyłki na podstawie zawartości pól z informacjami o płatności.

JQuery udostępnia prostą funkcję do wykonywania obu wspomnianych zadań. Jest
to funkcja val(), która umożliwia zarówno ustawianie, jak i pobieranie wartości pól
formularzy. Jeśli wywołasz ją bez argumentów, wczyta zawartość danego pola. Jeżeli
podasz argument, funkcja użyje go do zmiany wartości pola. Załóżmy, że pole do
pobierania adresu e-mail ma identyfikator email. Poniższy kod pobiera wartość
tego pola:

var fieldValue = $('#email').val();

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Wprowadzenie
do formularzy

284

Aby zmienić wartość pola, wystarczy przekazać argument do funkcji val(). Przyj-
mijmy, że strona zawiera formularz do zamawiania towarów, a skrypt ma automa-
tycznie obliczać cenę zakupów na podstawie liczby produktów podanej przez użyt-
kownika (patrz rysunek 8.2). Należy pobrać wpisaną liczbę, pomnożyć ją przez cenę
produktu, a następnie ustawić wartość pola z ceną.

Rysunek 8.2. JQuery ułatwia
pobieranie i ustawianie wartości
pól formularzy

Kod do pobierania liczby produktów i ustawiania łącznej ceny w formularzu z ry-
sunku 8.2 wygląda następująco:

1 var unitCost=9.95;
2 var amount=$('#quantity').val(); // Pobieranie wartości
3 var total=amount * unitCost;
4 total=total.toFixed(2);
5 $('#total').val(total); // Ustawianie wartości.

Wiersz 1. kodu tworzy zmienną, która przechowuje cenę produktu, 2. wiersz
tworzy nową zmienną i pobiera liczbę wprowadzoną przez użytkownika w polu
o identyfikatorze quantity. Wiersz 3. oblicza łączną cenę zakupów, mnożąc liczbę
produktów przez cenę jednostkową, a wiersz 4. formatuje wynik przez dodanie
dwóch miejsc po kropce (opis działania metody toFixed() znajdziesz na stronie
590). Wiersz 5. przypisuje łączną cenę zakupów do pola o identyfikatorze total.
Na stronie 287 dowiesz się, jak uruchomić ten kod za pomocą zdarzeń.

Sprawdzanie stanu przycisków opcji i pól wyboru
Choć funkcja val() pomaga pobrać wartość dowolnego elementu formularza, w nie-
których polach skrypt powinien ją uwzględniać tylko wtedy, jeśli użytkownik zazna-
czył dany element. Przyciski opcji i pola wyboru wymagają, aby internauta wybrał
określoną wartość. Na stronie 282 zobaczyłeś, jak użyć filtra :checked do znalezie-
nia zaznaczonych przycisków opcji i pól wyboru, jednak po ich pobraniu potrzebny
jest sposób na określenie stanu danego elementu.

Atrybut checked języka HTML określa, czy dany element jest włączony. Jeśli chcesz,
aby pole było domyślnie zaznaczane, użyj tego atrybutu w następujący sposób:

<input type="checkbox" name="news" id="news" checked="checked" />

R O Z D Z I AŁ 8 . W Z B O G A C A N I E F O R M U L A R Z Y

Wprowadzenie
do formularzy

285

A tak ten sam kod wygląda w języku HTML5:
<input type="checkbox" name="news" id="news" checked />

Choć w pierwszym przykładzie — z checked= checked — wygląda na to, że checked
jest atrybutem HTML, jednak w rzeczywistości jest to właściwość DOM (patrz strona
145). Okazuje się, że jest to właściwość elementu pola wyboru, której wartość może
zmieniać się dynamicznie, gdy użytkownik zaznaczy dane pole lub usunie z niego
zaznaczenie. Takie dynamiczne właściwości ma także wiele innych pól formularzy;
na przykład pola tekstowe udostępniają właściwość o nazwie disabled, która określa,
czy w polu można coś wpisywać (disabled ma wartość false), czy nie (disabled
ma wartość true).

Wartości właściwości DOM można odczytywać przy użyciu metody prop() jQuery
w sposób przedstawiony na poniższym przykładzie:

if ($('#news').prop('checked')) {
 // Pole jest zaznaczone.
} else {
 // Pole nie jest zaznaczone.
}

Kod $('#news').prop('checked') zwróci wartość true, jeśli pole jest zaznaczone.
W przeciwnym razie zwróci wartość false. Dlatego powyższa prosta instrukcja wa-
runkowa umożliwia wykonanie jednego zbioru operacji, jeśli pole jest włączone,
i innego fragmentu kodu, jeżeli użytkownik nie zaznaczył tego pola. Aby przypo-
mnieć sobie informacje o instrukcjach warunkowych, zajrzyj na stronę 93.

Właściwość checked jest dostępna też w przyciskach opcji. Także w ich przypadku
stan atrybutu checked można sprawdzić, używając funkcji prop().

Zdarzenia związane z formularzami
W rozdziale 5. dowiedziałeś się, że zdarzenia umożliwiają tworzenie interaktywnych
stron, reagujących na działania użytkowników. Formularze i ich elementy obsługują
wiele różnych zdarzeń. Przy ich użyciu można sprawić, aby formularze inteligentnie
reagowały na działania internautów.

Zdarzenie submit

Kiedy użytkownik prześle formularz przez wciśnięcie przycisku przesyłania lub kla-
wisza Enter albo Return w czasie wpisywania danych w polu tekstowym, przeglądarka
zgłosi zdarzenie submit. Można je wykorzystać do uruchamiania skryptów w mo-
mencie wysyłania formularza. Pozwala to przeprowadzić walidację pól w celu spraw-
dzenia, czy zawierają prawidłowe dane. Kiedy użytkownik spróbuje przesłać formularz,
skrypt sprawdzi pola, a jeśli wykryje problem, zablokuje wysyłanie danych i poinfor-
muje internautę o błędach. Jeżeli wpisane informacje będą prawidłowe, formularz
zostanie przesłany w standardowy sposób.

Aby uruchomić funkcję w momencie zgłoszenia zdarzenia submit formularza, należy
najpierw pobrać ten formularz, a następnie użyć funkcji submit() biblioteki jQuery.
Załóżmy, że chcesz sprawdzić, czy pole z imieniem i nazwiskiem użytkownika, wi-
doczne na rysunku 8.1, zawiera w momencie przesyłania formularza dane. W tym

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Wprowadzenie
do formularzy

286

celu należy dodać do formularza zdarzenie submit i sprawdzić wartość wspomnianego
pola przed przesłaniem danych. Jeśli pole jest puste, trzeba poinformować o tym
użytkownika i wstrzymać przesyłanie formularza. W przeciwnym razie należy wy-
słać dane.

W kodzie HTML formularza przedstawionym na stronie 280 możesz zobaczyć, że
formularz ma identyfikator signup, a identyfikator pola name to username. Dlatego
można użyć biblioteki jQuery do przeprowadzenia walidacji w następujący sposób:

1 $(document).ready(function() {
2 $('#signup').submit(function() {
3 if ($('#username').val() == '') {
4 alert('Podaj nazwę użytkownika.');
5 return false;
6 }
7 }); // Koniec funkcji submit
8 }); // Koniec funkcji ready

Wiersz 1. tworzy funkcję $(document).ready(), niezbędną, jeśli skrypt ma zostać
uruchomiony dopiero po wczytaniu kodu HTML strony (patrz strona 190).
Wiersz 2. dołącza funkcję do zdarzenia submit formularza. Wiersze od 3. do 6. to
kod do obsługi walidacji. Wiersz 3. sprawdza, czy wartość pola to pusty łańcuch zna-
ków (''). Jeśli tak jest, oznacza to, że użytkownik nie wprowadził danych. Jeśli pole
nie zawiera tekstu, skrypt wyświetla okno dialogowe z informacją o popełnionym
błędzie.

Wiersz 5. jest bardzo istotny, ponieważ wstrzymuje przesyłanie formularza. Jeśli po-
miniesz ten krok, strona prześle formularz nawet wtedy, jeśli nie zawiera on nazwy
użytkownika. Wiersz 6. kończy instrukcję warunkową, a wiersz 7. zamyka funkcję
submit().

Uwaga: Możesz zatrzymać przesyłanie formularza także za pomocą funkcji preventDefault() obiektu

zdarzenia (patrz strona 195).

$('form').submit(function(evt) {
 // Zapobiegamy przesłaniu formularza
 evt.preventDefault();
});

Zdarzenie submit można powiązać tylko z formularzami. Trzeba pobrać formularz
i dołączyć do niego to zdarzenie. Aby wskazać formularz, można użyć identyfikatora
podanego w znaczniku <form> w kodzie HTML lub — jeśli strona zawiera tylko je-
den formularz — użyć prostego selektora elementu:

$('form').submit(function() {
 // Kod uruchamiany przy przesyłaniu formularza.
});

Zdarzenie focus

Kiedy użytkownik kliknie pole tekstowe lub przejdzie do niego za pomocą klawisza
Tab, dane pole zostanie aktywowane. Przeglądarka zgłosi wtedy powiązane z tym
procesem zdarzenie focus, aby poinformować, że kursor znajduje się w danym
polu. Można założyć, że na tym elemencie skoncentrowana jest uwaga internauty.

R O Z D Z I AŁ 8 . W Z B O G A C A N I E F O R M U L A R Z Y

Wprowadzenie
do formularzy

287

Zdarzenie to jest używane stosunkowo rzadko, jednak niektórzy projektanci
stron WWW stosują je do usuwania tekstu znajdującego się już w polu. Załóżmy,
że formularz zawiera następujący kod HTML:

<input name="username" type="text" id="username"
value="Podaj nazwę użytkownika.">

Ten kod tworzy w formularzu pole tekstowe ze zdaniem „Podaj nazwę użytkow-
nika.”. Technika ta pozwala wyświetlić informacje pomocne przy wypełnianiu pola.
Następnie zamiast zmuszać użytkownika wypełniającego formularz do samodziel-
nego wykasowania tekstu, można usunąć go w momencie aktywowania pola:

1 $('#username').focus(function() {
2 var field = $(this);
3 if (field.val()==field.attr('defaultValue')) {
4 field.val('');
5 }
6 });

Wiersz 1. pobiera pole (jego identyfikator to username) i przypisuje funkcję do zda-
rzenia focus. Wiersz 2. tworzy zmienną field i zapisuje w niej referencję do
elementu pobranego za pomocą jQuery. Jak opisano na stronie 169, konstruk-
cja $(this) wskazuje na element aktualnie przetwarzany w funkcji jQuery. Tu jest
to pole formularza.

Wiersz 4. usuwa zawartość pola przez przypisanie do niego pustego łańcucha zna-
ków (dwóch apostrofów). Jednak nie należy usuwać tekstu przy każdym aktywowa-
niu pola. Załóżmy, że użytkownik otworzył formularz i kliknął pole. Przy pierw-
szym takim zdarzeniu skrypt powinien usunąć tekst „Podaj nazwę użytkownika”.
Jednak jeśli internauta wprowadził już dane, przeszedł poza pole, a następnie wrócił
do niego, nie należy kasować wpisanej nazwy. Zapobiega temu instrukcja warun-
kowa z wiersza 3.

Pola tekstowe mają właściwość o nazwie defaultValue, która zawiera tekst wi-
doczny w polu po wczytaniu strony. Nawet jeśli skrypt usunie ten tekst, prze-
glądarka zapamięta domyślną wartość pola. Instrukcja warunkowa sprawdza,
czy bieżąca zawartość pola (field.val()) jest taka sama jak wartość początkowa
(field.prop('defaultValue')). Jeśli tak jest, interpreter usuwa tekst z pola.

Oto opis całego procesu. Kiedy przeglądarka wczyta kod HTML przykładowej strony,
pole tekstowe zawiera zdanie „Podaj nazwę użytkownika” (jest to wartość atrybutu
defaultValue pola). Kiedy użytkownik po raz pierwszy aktywuje pole, instrukcja
warunkowa sprawdza, czy jego bieżąca zawartość jest taka sama jak domyślna, czyli
czy tekst „Podaj nazwę użytkownika” jest taki sam jak „Podaj nazwę użytkownika”.
Warunek ten jest spełniony, dlatego skrypt usuwa zawartość pola.

Załóżmy jednak, że użytkownik wpisał nazwę helloKitty, przeszedł do innego
pola, a następnie zauważył, że wprowadził błędny tekst. Kiedy ponownie kliknie pole
tekstowe, aby poprawić pomyłkę, przeglądarka po raz wtóry zgłosi zdarzenie focus
i uruchomi powiązaną z nim funkcję. Tym razem program sprawdzi, czy tekst
„helloKitty” jest taki sam jak „Podaj nazwę użytkownika”. Jest to nieprawda, dlatego
skrypt nie usunie zawartości pola i umożliwi poprawienie błędu.

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Wprowadzenie
do formularzy

288

Uwaga: Formularze HTML5 udostępniają także atrybut placeholder, pozwalający na określenie

tymczasowego komunikatu, który będzie wyświetlany w polu tekstowym. Tekst ten zostanie usunięty,

kiedy użytkownik zacznie coś wpisywać w polu:

<input name="username" type="text" id="username" placeholder="Podaj
nazwę użytkownika">

Rozwiązanie to jest znacznie łatwiejsze niż stosowanie przedstawionej wcześniej sztuczki wykorzy-

stującej bibliotekę jQuery; jednak atrybut placeholder nie działa w przeglądarkach Internet

Explorer 9 i wcześniejszych.

Zdarzenie blur
Po opuszczeniu pola w wyniku kliknięcia poza nim lub wciśnięcia klawisza Tab
przeglądarka zgłasza zdarzenie blur. Jest ono powszechnie używane do obsługi
pól tekstowych i obszarów tekstowych w celu uruchamiania walidacji po wyjściu
poza te elementy. Załóżmy, że na stronie znajduje się długi formularz z licznymi
pytaniami, a wiele z nich wymaga podania wartości określonego typu (na przykład
adresu e-mail, liczby, kodu pocztowego i tak dalej). Jeśli użytkownik popełni kilka
pomyłek przy wypełnianiu tych pól, a następnie wciśnie przycisk przesyłania danych,
zobaczy długą listę błędów. Zamiast wyświetlać wszystkie te informacje jednocześnie,
można sprawdzać poszczególne pola w trakcie ich wypełniania. W ten sposób jeśli
internauta zrobi błąd, natychmiast się o tym dowie i będzie mógł go naprawić.

Poniższy kod HTML tworzy pole do pobierania liczby produktów zamawianych
przez klienta:

<input name="quantity" type="text" id="quantity">

Warto się upewnić, że pole zawiera tylko liczby (1, 2, 3 i tak dalej), a nie tekst, na
przykład „Jeden”, „Dwa” albo „Trzy”. Można to sprawdzić po opuszczeniu pola przez
użytkownika:

1 $('#quantity').blur(function() {
2 var fieldValue=$(this).val();
3 if (isNaN(fieldValue)) {
4 alert('Musisz wpisać liczbę');
5 }
6 });

Wiersz 1. przypisuje funkcję do zdarzenia blur. Wiersz 2. pobiera wartość pola
i zapisuje ją w zmiennej fieldValue. Wiersz 3. sprawdza przy użyciu metody
isNaN() (patrz strona 589), czy wartość jest liczbą. Jeśli tak nie jest, skrypt uru-
chamia wiersz 4., który wyświetla okno dialogowe.

Gdybyśmy dysponowali formularzem zawierającym wiele pól, w których należy
wpisać wartości liczbowe, to w każdym z nich moglibyśmy podać tę samą nazwę
klasy — na przykład class= numOnly — a następnie sprawdzać je, używając po-
niższego kodu:

1 $('.numOnly').blur(function() {
2 var fieldValue=$(this).val();
3 if (isNaN(fieldValue)) {
4 alert('Musisz wpisać liczbę');
5 }
6 });

Takie rozwiązanie pozwala sprawdzić zawartość wszystkich pól tekstowych
wymagających podania wartości liczbowej i to jedynie w pięciu wierszach kodu!

R O Z D Z I AŁ 8 . W Z B O G A C A N I E F O R M U L A R Z Y

Wprowadzenie
do formularzy

289

Zdarzenie click

Zdarzenie click jest uruchamiane w odpowiedzi na kliknięcie dowolnego elementu
formularza. Jest ono szczególnie przydatne przy obsłudze przycisków opcji i pól
wyboru, ponieważ można powiązać z nim funkcje, które modyfikują formularz na
podstawie przycisków wybranych przez użytkownika. Załóżmy, że formularz za-
mówienia zawiera odrębne obszary na informacje związane z płatnością i wysyłką.
Aby zaoszczędzić pracy klientom, którzy chcą użyć w obu obszarach tych samych
danych, można udostępnić pole wyboru z tekstem „Takie same jak przy płatności”.
Kiedy użytkownik je zaznaczy, skrypt powinien ukryć obszar na informacje o wy-
syłce, co upraszcza formularz i poprawia jego czytelność. Przykład zastosowania tej
techniki zobaczysz na stronie 298.

Podobnie jak przy innych zdarzeniach, do przypisywania funkcji do zdarzenia click
pola formularza można użyć funkcji biblioteki jQuery. Tu jest to funkcja click():

$(':radio').click(function() {
 // Funkcja uruchamiana dla klikniętych przycisków opcji.
});

Uwaga: Zdarzenie click także można powiązać z polami tekstowymi, jednak działa ono inaczej niż

zdarzenie focus. To ostatnie jest zgłaszane przy kliknięciu pola tekstowego lub przejściu do niego za

pomocą klawisza Tab, natomiast zdarzenie click zachodzi tylko przy kliknięciu.

Zdarzenie change

Zdarzenie change jest związane z listami rozwijanymi formularza (takimi jak lista
„Planeta urodzenia” na rysunku 8.3). Kiedy użytkownik zaznaczy opcję, przeglą-
darka zgłasza zdarzenie change. Można użyć go do uruchomienia walidacji. Wielu
projektantów stron WWW często umieszcza jako pierwszą opcję instrukcję, na
przykład „Wybierz państwo”. Aby się upewnić, że użytkownik przypadkowo nie
wybrał tej opcji, można sprawdzić zaznaczoną odpowiedź za każdym razem, kiedy
dana osoba ją zmieni.

Można też tak zaprogramować formularz, aby zmieniał się w zależności od zazna-
czonych opcji. Przykładowo wybór opcji na jednej liście rozwijanej może urucha-
miać funkcję, która zmienia odpowiedzi dostępne na drugiej liście. Na rysunku 8.3
przedstawiono formularz z dwiema listami rozwijanymi. Zaznaczenie opcji w gór-
nej zmienia listę kolorów dostępnych w dolnej.

Aby dodać zdarzenie change do listy rozwijanej, należy użyć funkcji change() biblio-
teki jQuery. Załóżmy, że lista o identyfikatorze country zawiera nazwy państw.
Po każdej zmianie opcji skrypt ma sprawdzać, czy użytkownik nie zaznaczył tekstu
instrukcji — „Wybierz państwo”. Można to zrobić w następujący sposób:

$('#country').change(function() {
 if ($(this).val()=='Wybierz państwo') {
 alert('Wybierz nazwę państwa z listy rozwijanej.');
 }
}

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Inteligentne formularze

290

Rysunek 8.3. Zdarzenie change list rozwija-
nych formularzy pozwala wykonać ciekawe
operacje po zaznaczeniu opcji przez użytkow-
nika. Tu wybranie odpowiedzi z pierwszej listy
dynamicznie zmienia opcje dostępne na dru-
giej liście. Kiedy zaznaczysz produkt na górnej
liście, na dolnej pojawią się kolory, w których
dostępny jest dany produkt

Inteligentne formularze
Korzystanie z formularzy wymaga od internautów sporo wysiłku. Trzeba wypełnić
pola tekstowe, zaznaczyć opcje, zaznaczyć pola wyboru i tak dalej. Jeśli chcesz, aby
użytkownicy wypełniali formularze, należy je jak najbardziej uprościć. Na szczęście
JavaScript pozwala znacznie ułatwić korzystanie z formularzy. Można między innymi
ukryć pola formularza, jeśli nie są potrzebne, wyłączyć pola, których nie można użyć
w danym kontekście, lub obliczyć łączną cenę na podstawie wybranych opcji. Java-
Script oferuje niezliczone możliwości w zakresie zwiększania użyteczności formularzy.

Aktywowanie pierwszego pola formularza
Zwykle aby zacząć wypełnianie formularza, należy kliknąć pierwsze pole tekstowe
i rozpocząć wpisywanie danych. Czy na stronie z formularzem logowania trzeba zmu-
szać użytkownika do przenoszenia kursora nad pole i klikania go? Czy nie lepiej od
razu umieścić kursor we właściwym elemencie, gotowym do natychmiastowego
pobrania danych uwierzytelniających? Przy użyciu języka JavaScript można to zrobić
w bardzo łatwy sposób.

R O Z D Z I AŁ 8 . W Z B O G A C A N I E F O R M U L A R Z Y

Inteligentne formularze

291

Umożliwia to słowo focus. Nie tylko oznacza ono zdarzenie, na które może reago-
wać kod JavaScript, ale też jest poleceniem wydawanym w celu umieszczenia kur-
sora w danym polu tekstowym. Wystarczy pobrać to pole, a następnie uruchomić
funkcję focus() biblioteki jQuery. Załóżmy, że po wyświetleniu strony kursor ma
się znajdować w polu name formularza widocznego na rysunku 8.1. W kodzie HTML
tego formularza (patrz strona 280) pole to ma identyfikator username. Dlatego
aby w kodzie JavaScript aktywować to pole, czyli umieścić w nim kursor, należy
użyć poniższej instrukcji:

$(document).ready(function() {
 $('#username').focus();
});

W tym fragmencie pole tekstowe ma identyfikator username. Można jednak przy-
gotować także uniwersalny skrypt, który zawsze aktywuje pierwsze pole tekstowe
formularza bez konieczności podawania identyfikatora:

$(document).ready(function() {
 $(':text:first').focus();
});

Jak wiesz ze strony 282, jQuery udostępnia wygodne polecenie pobierające
wszystkie pola tekstowe — $(':text'). Dodatkowo, dodając :first do dowolnego
selektora, można pobrać pierwszy odnaleziony element; a zatem wywołanie w posta-
ci $(':text:first') pobiera pierwsze pole tekstowe na stronie. Dodanie wywołania
.focus() powoduje umieszczenie w tym polu kursora, który będzie tam cierpliwie
czekał, aż użytkownik zacznie coś wpisywać.

Jeśli na stronie znajduje się kilka formularzy (na przykład „Wyszukaj na stronie”
i „Zarejestruj się, aby otrzymywać biuletyn”), możesz doprecyzować selektor przez
wskazanie formularza, którego pole skrypt ma aktywować. Załóżmy, że chcesz umie-
ścić kursor w pierwszym polu tekstowym formularza rejestracji, jednak pierwsze
takie pole na stronie znajduje się w formularzu wyszukiwania. Aby aktywować od-
powiednie pole, dodaj do właściwego formularza identyfikator (na przykład singup),
a następnie użyj następującego kodu:

$(document).ready(function() {
 $('#signup :text:first').focus();
});

Nowy selektor, $('#signup :text:first'), pobiera jedynie pierwsze pole tekstowe
formularza signup.

Wyłączanie i włączanie pól
Pola tekstowe są zwykle przeznaczone do wypełniania. W końcu jaki jest pożytek
z pola, którego nie można uzupełnić? Jednak czasem strona powinna uniemożliwiać
użytkownikom wypełnienie pola tekstowego albo zaznaczenie pola wyboru lub opcji
listy rozwijanej. Załóżmy, że dane pole można uzupełnić tylko wtedy, jeśli użytkow-
nik zaznaczył poprzedni element. Na przykład amerykański formularz podatkowy
1040 obejmuje pole z numerem ubezpieczenia współmałżonka. Mogą je wypełnić
tylko osoby żonate lub zamężne.

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Inteligentne formularze

292

Aby uniemożliwić korzystanie z pola formularza, którego nie należy uzupełniać,
trzeba je wyłączyć w kodzie JavaScript. Operacja ta powoduje, że nie można zazna-
czyć elementu (przyciski opcji i pola wyboru), wpisać w nim tekstu (pola tekstowe),
zaznaczyć go (lista rozwijana) ani kliknąć (przyciski przesyłania).

Aby wyłączyć pole formularza, wystarczy ustawić właściwość disabled na true, na
przykład w celu wyłączenia wszystkich pól input należy użyć następującego kodu:

$(':input').prop('disabled', true);

Zwykle pola wyłącza się w odpowiedzi na określone zdarzenie. Przykładowo w for-
mularzu 1040 można wyłączyć pole na numer ubezpieczenia współmałżonka, jeśli
podatnik poinformuje, że jest samotny. Załóżmy, że do podania tej informacji służy
przycisk o identyfikatorze single, a pole na numer ubezpieczenia ma identyfikator
spouseSSN. Do wyłączenia tego pola można użyć następującego kodu JavaScript:

$('#single').click(function() {
 $('#spouseSSN').prop('disabled', true);
});

Oczywiście warto też mieć możliwość ponownego włączenia pola. Aby to zrobić,
wystarczy przypisać do właściwości disabled wartość false. Poniższy kod włącza
wszystkie pola formularza:

$(':input').prop('disabled', false);

C Z Ę S T O Z A D A W A N E P Y T A N I A

Blokowanie wielokrotnego przesyłania danych
Czasem te same informacje z formularza są przesyłane
kilkakrotnie. Jak temu zapobiec?

Serwery WWW nie zawsze działają szybko, podobnie

jak sam internet. Często pojawia się opóźnienie między

wciśnięciem przycisku przesyłania danych a wyświetle-

niem strony z tekstem „Informacje zostały wysłane”.

Czasem to opóźnienie jest dość długie, a niecierpliwi

internauci klikają wtedy przycisk przesyłania po raz drugi

(a nawet trzeci i czwarty), podejrzewając, że nie zadziałał

przy pierwszej próbie.

To zjawisko może prowadzić do dwukrotnego przesłania

tych samych danych. W sklepach internetowych może

to także oznaczać kilkakrotne obciążenie karty kredytowej

użytkownika! Na szczęście za pomocą kodu JavaScript

można w łatwy sposób wyłączyć przycisk przesyłania

po rozpoczęciu procesu wysyłania danych. Aby klient nie

mógł ponownie kliknąć przycisku, należy użyć właściwo-

ści disabled tego elementu.

Załóżmy, że identyfikator formularza to formID, a przycisk

przesyłania ma identyfikator submit. Należy dodać do

formularza funkcję submit() i wyłączyć w niej przycisk:

$('#formID').submit(function() {
 $('#submit').prop('disabled',true);
});

Jeśli na stronie znajduje się tylko jeden formularz, nie

trzeba nawet używać identyfikatorów:

$('form').submit(function() {
 $('input[type=submit]').
 prop('disabled',true);
});

Ponadto za pomocą atrybutu value można zmienić

komunikat na przycisku przesyłania. Początkowo ten tekst

to zwykle „Wyślij”, jednak po rozpoczęciu przesyłania

można go zmienić na przykład na „Przesyłanie w toku”:

$('#formID').submit(function() {
 var subButton =
$(this).find(':submit');
 subButton.prop('disabled',true);
 subButton.val('Przesyłanie w toku');
});

Pamiętaj o umieszczeniu tego kodu w funkcji

$(document).ready(function() (patrz strona 190).

R O Z D Z I AŁ 8 . W Z B O G A C A N I E F O R M U L A R Z Y

Inteligentne formularze

293

Uwaga: Przy wyłączaniu pól formularza pamiętaj, aby używać wartości logicznych true i false

(patrz strona 63), a nie łańcuchów znaków 'true' i 'false'. Poniższe wywołanie jest błędne:

 $(':input').prop('disabled', 'false');

Prawidłowy jest następujący zapis:

 $(':input').prop('disabled', false);

Wróćmy do formularza podatkowego. Jeśli użytkownik wybierze opcję „żonaty” lub
„zamężna” (w kodzie może mieć ona identyfikator married), skrypt powinien włą-
czyć pole na numer ubezpieczenia współmałżonka:

$('#married').click(function() {
 $('#spouseSSN').prop('disabled', false);
});

Technika ta została wykorzystana w przykładzie przedstawionym na stronie 296.

Ukrywanie i wyświetlanie opcji formularza
Można także, oprócz wyłączania pól, w inny sposób zapobiec niepotrzebnemu wy-
pełnianiu formularza — ukrywając zbędne elementy. I tak w formularzu podat-
kowym warto ukryć pole z numerem ubezpieczenia współmałżonka, jeśli użyt-
kownik zaznaczył opcję „samotny”. Jeżeli podatnik wybrał opcję „zamężna” lub
„żonaty”, należy wyświetlić odpowiednie pole. Można to zrobić za pomocą poniż-
szego kodu:

$('#single').click(function() {
 $('#spouseSSN').hide();
});
$('#married').click(function() {
 $('#spouseSSN').show();
});

Wskazówka: Funkcje hide() i show() biblioteki jQuery, a także inne funkcje przeznaczone do wy-

świetlania i ukrywania elementów opisano na stronie 212.

Z perspektywy użyteczności ukrycie pola ma istotną zaletę w porównaniu z jego
wyłączeniem, ponieważ upraszcza układ formularza. W końcu wyłączone pola są
wciąż widoczne i mogą przyciągać (a dokładniej — rozpraszać) uwagę użytkownika.

Często warto ukryć lub wyświetlić więcej niż jedno pole formularza. Prawdopo-
dobnie zechcesz schować etykietę danego pola i cały powiązany z nim tekst. Jedno
z podejść polega na umieszczeniu wszystkich ukrywanych znaczników (pól, etykiet
i innych fragmentów kodu HTML) w znaczniku <div>, określeniu identyfikatora te-
go znaczniku i schowaniu go. W następnym przykładzie zobaczysz, jak zastosować
to rozwiązanie.

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Przykład — proste
wzbogacanie formularza

294

Przykład — proste wzbogacanie formularza
W tym przykładzie dodasz trzy usprawnienia z obszaru użyteczności do prostego
formularza zamówień, obejmującego pola na informacje związane z płatnością
i wysyłką. Po pierwsze, skrypt ma automatycznie umieszczać kursor w pierwszym
polu formularza po wczytaniu strony. Po drugie, program ma wyłączać i włączać pola
formularza na podstawie wyborów dokonanych przez użytkownika. Po trzecie, kod
ma ukrywać całe sekcje formularza, jeśli nie są potrzebne (patrz rysunek 8.4).

Rysunek 8.4. Za pomocą kodu JavaScript można zwiększyć użyteczność formularzy i dodać do nich interak-
tywne mechanizmy, na przykład ukrywanie niepotrzebnych elementów i wyłączanie pól, których użytkownik
nie powinien wypełniać

Uwaga: Informacje o pobieraniu przykładowych plików znajdziesz na stronie 46.

R O Z D Z I AŁ 8 . W Z B O G A C A N I E F O R M U L A R Z Y

Przykład — proste
wzbogacanie formularza

295

Aktywowanie pola
Pierwsze pole przykładowego formularza pobiera imię i nazwisko osoby składającej
zamówienie (patrz rysunek 8.4). Aby ułatwić wypełnianie formularza, można po
wczytaniu strony automatycznie umieścić kursor w tym polu.

 1. Otwórz w edytorze tekstu plik form.html z katalogu R08.

Do strony dołączono już plik biblioteki jQuery i funkcję $(document).ready()
(patrz strona 190). Strona zawiera też formularz z dwiema sekcjami. Jedna służy
do pobierania informacji o płatności, a w drugiej użytkownik może wpisać dane
potrzebne przy wysyłce. Przed przejściem do następnego punktu przyjrzyj się
tej stronie.

Pierwszy krok — a przy tym jedyny w tej części przykładu — polega na akty-
wowaniu odpowiedniego pola.

 2. Kliknij pusty wiersz pod funkcją $(document).ready() i wpisz $(':text:
first').focus();, aby kod wyglądał następująco:

$(document).ready(function() {
 $(':text:first').focus();
}); // Koniec funkcji ready

Powyższa instrukcja wybiera pierwsze pole tekstowe na stronie, a następnie
wywołuje dla niego funkcję focus() — w efekcie przeglądarka umieści w nim
kursor.

Zapisz plik i wyświetl go w przeglądarce.

Po wczytaniu strony w pierwszym polu znajdzie się migający kursor, co ozna-
cza, że pole to jest aktywne i można natychmiast rozpocząć wpisywanie w nim
danych.

Wyłączanie pól formularza
Poprzedni punkt był jedynie rozgrzewką. W tej części przykładu wyłączysz i włączysz
dwa pola formularza w odpowiedzi na zaznaczenie określonych opcji. Jeśli wyświe-
tlisz formularz w przeglądarce (lub spojrzysz na rysunek 8.4), zobaczysz, że na końcu
sekcji z informacjami o płatności znajdują się trzy przyciski opcji do wyboru spo-
sobu zapłaty: PayPal, Visa i MasterCard. Ponadto poniżej widoczne są dwa pola
— na numer karty i datę jej ważności. Te dwie informacje dotyczą tylko kart kre-
dytowych, a nie płatności za pomocą serwisu PayPal, dlatego jeśli użytkownik
wybierze przycisk PayPal, należy wyłączyć oba pola.

Kod HTML tej sekcji strony wygląda następująco (pola formularza wyróżniono
pogrubieniem):

1 <div>Sposób płatności
2 <input type="radio" name="payment" id="paypal" value="paypal">
3 <label for="paypal">PayPal</label>
4 <input type="radio" name="payment" id="visa" value="visa">
5 <label for="visa">Visa</label>
6 <input type="radio" name="payment" id="mastercard" value="mastercard">
7 <label for="mastercard">MasterCard</label>
8 </div>
9 <div id="creditCard" class="indent">

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Przykład — proste
wzbogacanie formularza

296

10 <div>
11 <label for="cardNumber" class="label">Numer karty</label>
12 <input type="text" name="cardNumber" id="cardNumber">
13 </div>
14 <div>
15 <label for="expiration" class="label">Data wygaśnięcia</label>
16 <input type="text" name="expiration" id="expiration">
17 </div>
18 </div>

 3. Wróć do pliku form.html w edytorze tekstu.

Następne fragmenty należy dodać do kodu przygotowanego w poprzedniej sekcji.
Najpierw przypisz funkcję do zdarzenia click związanego z przyciskiem opcji
PayPal.

 4. Dodaj do skryptu z początkowej części strony kod wyróżniony pogrubieniem:
$(document).ready(function() {
 $(':text:first').focus();
 $('#paypal').click(function() {

 }) // Koniec funkcji click
}); // Koniec funkcji ready

Przycisk opcji PayPal ma identyfikator paypal (wiersz 2. we wcześniejszym
kodzie HTML), dlatego aby pobrać ten element, wystarczy użyć wyrażenia
$('#paypal'). Pozostała część kodu przypisuje funkcję anonimową do zdarze-
nia click (jeśli ten fragment jest niezrozumiały, zajrzyj na stronę 182, do omó-
wienia procesu przypisywania funkcji do zdarzeń). Kliknięcie przycisku opcji
PayPal nie tylko spowoduje wybranie go (to domyślne działanie przeglądarki),
ale też uruchomienie funkcji, którą wkrótce utworzysz.

Następnie należy wyłączyć pola na numer karty kredytowej i datę jej wyga-
śnięcia, ponieważ nie są związane z opcją PayPal.

 5. Do funkcji anonimowej dodanej w poprzednim kroku dopisz nowy fragment
(wiersz 4. w poniższym kodzie):

1 $(document).ready(function() {
2 $(':text:first').focus();
3 $('#paypal').click(function() {
4 $('#creditCard input').prop('disabled', true);
5 }); // Koniec funkcji click
6 }); // Koniec funkcji ready

Choć skrypt ma wyłączać dwa pola formularza, można to zrobić za pomocą jed-
nego wiersza kodu. Oba te pola znajdują się w znaczniku <div> o identyfi-
katorze creditCard (wiersz 9. we wcześniejszym kodzie HTML). Dlatego selek-
tor jQuery $('#creditCard input') oznacza: „Pobierz wszystkie znaczniki
<input> z elementu o identyfikatorze creditCard”. To elastyczne podejście
gwarantuje pobranie wszystkich pól input, dlatego jeśli dodasz nowe pole, na
przykład CVV, kod automatycznie je uwzględni (kod CVV to trzycyfrowa liczba
na odwrocie karty kredytowej, którą trzeba czasem podać w formularzu, aby
zwiększyć bezpieczeństwo transakcji internetowych).

Aby wyłączyć pola, wystarczy ustawić atrybut disabled na true (patrz strona
291). Jednak instrukcja ta nie ma wpływu na etykiety („Numer karty” i „Data
ważności”). Choć skrypt wyłącza pola, tekst etykiet wciąż jest czarny i pogrubiony,
co jest mylące dla użytkowników, którzy mogą sądzić, że pola można wypełnić.

R O Z D Z I AŁ 8 . W Z B O G A C A N I E F O R M U L A R Z Y

Przykład — proste
wzbogacanie formularza

297

Aby podkreślić stan etykiet, należy zmienić kolor tekstu na jasnoszary. Przy
okazji można użyć szarego koloru jako tła pól, aby wyglądały na wyłączone.

 6. Dodaj do skryptu kod wyróżniony pogrubieniem:
1 $(document).ready(function() {
2 $(':text:first').focus();
3 $('#paypal').click(function() {
4 $('#creditCard input').prop('disabled', true)
5 .css('backgroundColor','#CCC');
6 $('#creditCard label').css('color','#BBB');
7 }); // koniec funkcji click
8 }); // Koniec funkcji ready

Uwaga: Symbol  na początku wiersza informuje, że jest on kontynuacją poprzedniego. Ponieważ

naprawdę długie wiersze kodu JavaScript nie mieszczą się na stronach książki, podzielono je na dwie

części. Niemniej jednak, zgodnie z informacjami podanymi na stronie 67, język JavaScript dosyć

wyrozumiale podchodzi do zagadnień znaków nowego wiersza i odstępów, a zatem jest całkowicie

dopuszczalne, by jedną instrukcję JavaScriptu zapisać w kilku wierszach kodu (czasami poprawia to

przejrzystość kodu), jak pokazano na poniższym przykładzie:

 $('#creditCard input').prop('disabled',true)
 .css('backgroundColor','#CCC');

Warto zwrócić uwagę, że niektórzy programiści w takim kodzie zapisywanym w kilku wierszach dodają

jeszcze odpowiednie wcięcia — w tym przypadku dodano je przed wywołaniem funkcji .css(), dzięki

czemu jest ona umieszczona dokładnie pod wywołaniem funkcji .prop().

Skrypt najpierw wywołuje funkcję css() biblioteki jQuery, aby zmienić kolor
tła pól tekstowych (zauważ, że instrukcja ta jest częścią wiersza 4., gdyż operuje
na tym samym elemencie, co funkcja prop()). Następnie program zmienia
przy użyciu tej samej funkcji kolor czcionki znaczników <label> w odpo-
wiednim znaczniku <div> (funkcję css() opisano na stronie 166).

Jeśli na tym etapie wyświetlisz stronę w przeglądarce, zobaczysz, że kliknięcie
przycisku PayPal wyłącza pola na numer karty kredytowej i datę jej ważności
oraz zmienia kolor etykiet. Jednak jeśli później wybierzesz przycisk Visa lub
MasterCard, pola wciąż będą niedostępne! Zaznaczenie jednego z tych przyci-
sków powinno powodować ponowne włączenie pól.

 7. Pod funkcją click() dodaj nowy, pusty wiersz (nowy kod wstawisz między
wierszami 7. a 8. z punktu 6.), a następnie wpisz poniższy fragment:

$('#visa, #mastercard').click(function() {
 $('#creditCard input').prop('disabled', false)
 .css('backgroundColor','');
 $('#creditCard label').css('color','');
}); // koniec funkcji click

Selektor $('#visa, #mastercard') pobiera oba przyciski opcji (patrz wiersze
4. i 6. kodu HTML ze strony 295). Zauważ, że w celu usunięcia koloru tła i tek-
stu ustawionego po kliknięciu przycisku PayPal wystarczy przekazać jako barwę
pusty łańcuch znaków — $('#creditCard label').css('color','');.
Spowoduje to użycie koloru zdefiniowanego w arkuszu stylów.

Kod przykładu jest już prawie gotowy. W ostatnim punkcie całkowicie ukryjesz
część strony na podstawie zaznaczonej opcji.

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Przykład — proste
wzbogacanie formularza

298

Ukrywanie pól formularza
W tym przykładzie, podobnie jak w wielu formularzach zamówień, na stronie znaj-
dują się odrębne pola na pobieranie informacji związanych z płatnością i wysyłką.
Często są to te same dane, dlatego nie ma powodu, aby bez potrzeby zmuszać użyt-
kowników do wypełniania obu grup pól. W wielu formularzach dostępne jest pole
wyboru z tekstem typu „Takie same jak przy płatności”, które określa, że oba zbiory
informacji są identyczne. Prawdopodobnie jeszcze lepszym (a na pewno ciekawszym)
rozwiązaniem jest całkowite ukrycie pól związanych z wysyłką, jeśli nie są potrzebne.
Ten efekt można uzyskać za pomocą języka JavaScript.

 1. Otwórz w edytorze tekstu plik form.html.

Teraz wzbogacisz kod napisany w dwóch poprzednich częściach przykładu.
Najpierw przypisz funkcję do zdarzenia click pola wyboru z etykietą „Takie
same jak przy płatności”. Kod HTML tego pola wygląda następująco:

<input type="checkbox" name="hideShip" id="hideShip">

 2. Dodaj poniższy fragment po kodzie utworzonym w kroku 4. na stronie
296, ale przed ostatnim wierszem skryptu — }); // Koniec funkcji re-
ady.

$('#hideShip').click(function(){

}); // koniec funkcji click

Ponieważ hideShip to identyfikator pola wyboru, powyższy kod pobiera ten
element i dodaje funkcję do związanego z nim zdarzenia click. Tu funkcja
w odpowiedzi na zaznaczenie pola wyboru ma ukrywać nie jeden znacznik, ale
całą grupę pól. Aby było to łatwiejsze, pola na informacje o wysyłce umieszczono
w znaczniku <div> o identyfikatorze shipping. Aby ukryć wszystkie te pola, wy-
starczy schować wspomniany znacznik <div>.

Jednak skrypt ma ukrywać pola na dane tylko po zaznaczeniu pola wyboru.
Jeśli użytkownik kliknie to pole wyboru po raz drugi, aby usunąć zaznaczenie,
należy ponownie wyświetlić znacznik <div> i zawarte w nim elementy. Dlatego
najpierw trzeba sprawdzić, czy pole wyboru jest już zaznaczone.

 3. Dodaj kod wyróżniony pogrubieniem:
$('#hideShip').click(function(){
 if ($(this).prop('checked')) {

 }
}); // koniec funkcji click

Prosta instrukcja warunkowa (patrz strona 93) ułatwia sprawdzenie stanu pola
wyboru i ukrycie lub wyświetlenie pól formularza. Konstrukcja $(this) wskazuje
kliknięty obiekt, którym jest tu pole wyboru. Właściwość checked tego ele-
mentu pozwala sprawdzić, czy użytkownik zaznaczył pole, czy nie. Jeśli pole jest
zaznaczone, atrybut ma wartość true. W przeciwnym razie atrybut ten ma
wartość false. Aby dokończyć kod, trzeba dodać fragment ukrywający i wy-
świetlający pola formularza.

 4. Dodaj do skryptu kod wyróżniony pogrubieniem (wiersze od 16. do 18.).
Gotowy program powinien wyglądać następująco:

R O Z D Z I AŁ 8 . W Z B O G A C A N I E F O R M U L A R Z Y

Walidacja formularzy

299

1 <script>
2 $(document).ready(function() {
3 $(':text:first').focus();
4 $('#paypal').click(function() {
5 $('#creditCard input').prop('disabled', true)
6 .css('backgroundColor','#CCC');
7 $('#creditCard label').css('color','#BBB');
8 }); // koniec funkcji click
9 $('#visa, #mastercard').click(function() {
10 $('#creditCard input').prop('disabled', false)
11 .css('backgroundColor','');
12 $('#creditCard label').css('color','');
13 }); // koniec funkcji click
14 $('#hideShip').click(function() {
15 if ($(this).prop('checked')) {
16 $('#shipping').slideUp('fast');
17 } else {
18 $('#shipping').slideDown('fast');
19 }
20 }); // koniec funkcji click
21 }); // Koniec funkcji ready
22 </script>

Wyrażenie $('#shipping') pobiera znacznik <div> z polami formularza, nato-
miast funkcje slideUp() i slideDown() (patrz strona 216) ukrywają i wyświe-
tlają ten element przez wysunięcie go ze strony lub wsunięcie na nią. Możesz
także wypróbować inne efekty udostępniane przez jQuery, takie jak fadeIn()
czy fadeOut(), bądź nawet utworzyć swoją własną animację, korzystając
z funkcji animate() opisanej na stronie 220.

Gotową wersję przykładu, complete_form.html, znajdziesz w katalogu
R08. Jeśli Twoja wersja nie działa, porównaj kod z gotowym rozwiązaniem
i przypomnij sobie etapy rozwiązywania problemów, które opisane zostały
na stronie 51.

Walidacja formularzy
Frustrujące jest przeglądanie informacji zwrotnych przesłanych za pomocą formu-
larza przez użytkownika, który nie podał nazwiska, adresu e-mail ani żadnych
innych kluczowych informacji. Dlatego w niektórych formularzach warto wymagać
podania niektórych danych.

Na przykład formularz do rejestracji osób, które chcą otrzymywać biuletyn, nie
będzie zbyt przydatny, jeśli użytkownik nie poda adresu e-mail. Także jeśli sklep ma
wysłać klientowi katalog lub produkt, warto się upewnić, że formularz zawiera dane
adresowe.

Ponadto przy pobieraniu danych za pomocą formularzy dobrze jest sprawdzić, czy
informacje mają odpowiedni format, na przykład wartość liczbową dla liczby prze-
syłanych produktów lub URL dla adresu. Upewnianie się, że użytkownik wprowa-
dził poprawne dane, to proces walidacji formularza. Przy użyciu języka JavaScript
można wykryć wszystkie usterki przed przesłaniem błędnych informacji przez
użytkownika.

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Walidacja formularzy

300

Walidacja wymaga sprawdzenia danych pól formularza pod kątem obecności wyma-
ganych informacji i formatu podanych wartości. Proces ten zachodzi zwykle po wy-
kryciu zdarzenia submit formularza, które jest zgłaszane w momencie kliknięcia
przycisku przesyłania lub wciśnięcia klawisza Enter, kiedy kursor znajduje się
w polu tekstowym. Jeśli dane są prawidłowe, informacje z formularza trafiają w stan-
dardowy sposób na serwer. Jednak po wykryciu problemów skrypt wstrzymuje
proces przesyłania i wyświetla błędy na stronie, zwykle obok niepoprawnie wypeł-
nionych pól (patrz rysunek 8.5).

Rysunek 8.5. Jeśli użytkownik w trakcie rejestrowania konta w serwisie Google nie wypełni prawidłowo formularza,
zobaczy liczne komunikaty o błędach (zakreślone)

Sprawdzanie, czy pole tekstowe zawiera dane, jest proste. Na stronie 283 dowie-
działeś się, że wystarczy uzyskać dostęp do właściwości value (na przykład za po-
mocą funkcji val() biblioteki jQuery). Jeśli jej wartość to pusty łańcuch znaków,
pole nie zawiera danych. Trudniej jednak sprawdzić inne elementy, na przykład pola
wyboru, przyciski opcji i listy rozwijane. Ponadto do sprawdzania, czy użytkownik
wpisał dane określonego rodzaju, na przykład adres e-mail, kod pocztowy, liczbę, datę
i tak dalej, potrzebny jest skomplikowany kod JavaScript. Na szczęście nie musisz
samodzielnie przygotowywać takiego mechanizmu. W sieci dostępnych jest wiele
skryptów do walidacji formularzy, a jednym z najlepszych jest wtyczka biblioteki
jQuery.

R O Z D Z I AŁ 8 . W Z B O G A C A N I E F O R M U L A R Z Y

Walidacja formularzy

301

Uwaga: HTML5 posiada wiele wbudowanych funkcji służących do walidacji formularzy, które po-

zwalają uniknąć konieczności stosowania kodu JavaScript. Niestety, choć wiele najnowszych prze-

glądarek obsługuje te możliwości, nie dotyczy to przeglądarek Internet Explorer 9 oraz wcześniejszych.

W czasie powstawania tej książki możliwości te nie były dostępne także w przeglądarce Safari dla

systemów iOS oraz Android, natomiast wersja Safari dla komputerów stacjonarnych miała z nimi

pewne problemy.

Wtyczka Validation
Validation (http://jqueryvalidation.org/) to rozbudowana, ale łatwa w użyciu
wtyczka biblioteki jQuery, utworzona przez Jörna Zaefferera. Narzędzie to spraw-
dza, czy wszystkie wymagane pola formularza są wypełnione i czy spełniają okre-
ślone warunki. Na przykład pole na liczbę produktów musi zawierać wartość licz-
bową, a w polu na e-mail musi znaleźć się adres. Jeśli użytkownik popełni błąd,
wtyczka wyświetli komunikat z jego opisem.

Oto proces korzystania z wtyczki Validation.

 1. Pobieranie i dołączanie pliku jquery.js do strony zawierającej sprawdzany
formularz.

Więcej informacji o pobieraniu biblioteki jQuery znajdziesz w podrozdziale „Jak
zdobyć jQuery?” (patrz strona 135). Wtyczka Validation korzysta z tej biblio-
teki, dlatego najpierw trzeba dołączyć plik jquery.js.

 2. Pobieranie i dołączanie wtyczki Validation.

Wtyczkę tę znajdziesz pod adresem http://jqueryvalidation.org/. Dostępny pa-
kiet obejmuje wiele dodatkowych elementów, w tym wersje demonstracyjne, te-
sty i tak dalej. Niezbędny jest jednak tylko plik jquery.validate.min.js. (Wtyczkę
— plik jquery.validate.min.js — znajdziesz też w katalogu jquery_validate
umieszczonym w katalogu R08; patrz przykład na stronie 311.) Jest to zwy-
czajny zewnętrzny plik JavaScript, aby więc go dołączyć, zastosuj się do in-
strukcji ze strony 49.

 3. Dołączanie reguł walidacji.

Reguły walidacji to instrukcje, które informują na przykład o tym, że dane pole
jest wymagane, a w innym ma znaleźć się adres e-mail. Na tym etapie należy
określić, które pola wymagają walidacji i czego ma ona dotyczyć. Zasady wali-
dacji można dodać na kilka sposobów. Prosta metoda polega na użyciu samego
kodu HTML (patrz strona 302), a bardziej elastyczny, ale też skomplikowany
sposób wymaga zastosowania kodu JavaScript (patrz strona 305).

 4. Dodawanie komunikatów o błędach.

Ten krok jest opcjonalny. Wtyczka Validation udostępnia wbudowany zestaw
komunikatów o błędach, na przykład „This field is required”, „Please enter a valid
date” i „Please enter a valid number”. Te podstawowe wiadomości są wystarcza-
jące, jednak czasem warto dostosować formularz, aby komunikaty udostęp-
niały bardziej szczegółowe instrukcje związane z poszczególnymi polami (na
przykład „Wpisz nazwę użytkownika” lub „Podaj datę urodzenia”).

http://jqueryvalidation.org/
http://jqueryvalidation.org/

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Walidacja formularzy

302

Są dwie metody dodawania komunikatów o błędach. Prosty sposób opisano na
stronie 304, a bardziej elastyczną metodę poznasz na stronie 309.

Uwaga: Na stronie 317 zobaczysz, jak kontrolować styl i rozmieszczenie komunikatów o błędach.

 5. Wywoływanie funkcji validate() dla formularza.

Wtyczka udostępnia funkcję validate(), która wykonuje wszystkie potrzebne
operacje. Aby ją wywołać, należy najpierw pobrać formularz za pomocą jQuery,
a następnie uruchomić dla niego tę funkcję. Załóżmy, że formularz ma identy-
fikator signup. Oto potrzebny kod HTML:

<form action="process.php" method="post" name="signup" id="signup">

Najprostszy kod uruchamiający walidację wygląda następująco:
$('#signup').validate();

Funkcja validate() przyjmuje wiele różnych informacji, które wpływają na
działanie wtyczki. Na przykład choć można określić reguły walidacji i komuni-
katy o błędach w kodzie HTML formularza (zobacz następny punkt rozdziału),
można też podać je w funkcji validate() (metodę tę poznasz na stronie 305).

Cały kod JavaScript potrzebny do przeprowadzenia podstawowej walidacji for-
mularza (z uwzględnieniem dwóch wcześniej opisanych kroków) może być bar-
dzo prosty:

<script src="js/jquery.min.js"></script>
<script src="js/jquery.validate.min.js"></script>
<script>
$(document).ready(function() {
 $('#signup').validate();
}); // koniec funkcji ready
</script>

Wskazówka: Pamiętaj, aby zawsze umieszczać skrypt w funkcji document.ready() biblioteki jQuery.

Gwarantuje to uruchomienie programu dopiero po wczytaniu kodu HTML strony (patrz strona 190).

Podstawowa walidacja
Aby użyć wtyczki Validation, wystarczy dołączyć jej plik JavaScript, dodać kilka atry-
butów class i title do elementów sprawdzanego formularza oraz wywołać dla nie-
go metodę validate(). Jej wywołanie to najprostszy, a w wielu formularzach także
wystarczający sposób na przeprowadzenie walidacji. Jednak jeśli chcesz kontrolować
miejsce wyświetlania komunikatów o błędach, zastosować do pola więcej niż jedną
regułę lub określić minimalną albo maksymalną liczbę znaków w polu tekstowym,
musisz zastosować metodę zaawansowaną, opisaną na stronie 305.

Aby włączyć walidację, wykonaj instrukcje podane w poprzednim punkcie (dołącz
pliki biblioteki jQuery oraz wtyczki Validation i tak dalej). Ponadto należy podać
w kodzie HTML pól formularza reguły i komunikaty o błędach.

R O Z D Z I AŁ 8 . W Z B O G A C A N I E F O R M U L A R Z Y

Walidacja formularzy

303

Dodawanie reguł walidacji

Najprostszy sposób na walidację pola za pomocą wtyczki Validation polega na przy-
pisaniu do elementu formularza nazw klas opisanych w tabeli 8.2. Wtyczka pobiera
wszystkie elementy formularza i sprawdza dla każdego z nich, czy nazwa klasy nie
odpowiada jednej z technik walidacji. Jeśli tak jest, wtyczka stosuje do danego pola
odpowiednią regułę.

Tabela 8.2. Wtyczka Validation udostępnia standardowe mechanizmy potrzebne przy walidacji

Reguła walidacji Opis

required Dane pole nie zostanie przesłane, jeśli użytkownik go nie wypełni,
nie zaznaczy lub nie wybierze.

date Informacje muszą mieć format MM/DD/RRRR, na przykład 10/30/2014
to poprawny zapis, natomiast 10-30-2014 — już nie.

url Tekst musi być pełnym, poprawnym adresem internetowym, na przykład
http://www.chia-vet.com. Częściowe adresy URL, na przykład
www.chia-vet.com lub chia-vet.com, są uznawane za nieprawidłowe.

email Dane muszą mieć format adresu e-mail: bob@chia-vet.com. Ta klasa nie
powoduje sprawdzania, czy adres jest prawdziwy, dlatego użytkownik może
wpisać tekst nikt@nigdzie.com, a dane przejdą walidację.

number Dane muszą być liczbą, na przykład 32, 102.50, a nawet -145.5555, jednak nie
można używać żadnych innych symboli. Zapis $45.00 i 100,000 jest nieprawidłowy.

digits Dane muszą być dodatnią liczbą ca kowitą. 1, 20 i 12333 to prawidłowe
wartości, natomiast 10.33 i -12 nie przejdą walidacji.

creditcard Użytkownik musi wpisać numer karty kredytowej we właściwym formacie.

Załóżmy, że do pobierania nazwy użytkownika służy pole tekstowe. Jego kod HTML
wygląda następująco:

<input name="name" type="text">

Aby poinformować wtyczkę, że to pole jest wymagane (formularza nie można prze-
słać, jeśli użytkownik nie wprowadzi danych w tym polu), należy dodać do znacznika
klasę required. W tym celu trzeba użyć atrybutu class:

<input name="name" type="text" class="required">

Dodanie klasy w ten sposób nie ma nic wspólnego ze stylami CSS, choć zwykle
klasy dodaje się do znaczników po to, by uzyskać możliwość formatowania ich
przy użyciu arkuszy stylów. Tu jednak nazwa klasy informuje wtyczkę o rodzaju
walidacji, którą należy przeprowadzić dla danego pola.

Uwaga: Walidacja z wykorzystaniem języka JavaScript jest doskonałym sposobem na zwrócenie uwagi

użytkownika, który przez przypadek pominął jakieś pole lub wpisał w nim nieprawidłowe informacje;

jednak z drugiej strony, nie stanowi dobrego sposobu ochrony przed celowo przesyłanymi niebez-

piecznymi danymi. Tego typu zabezpieczenia tworzone przy użyciu JavaScriptu można łatwo ominąć,

dlatego też, jeśli chcemy mieć absolutną pewność, że dane otrzymywane od użytkowników będą pra-

widłowe, konieczne jest zaimplementowanie mechanizmów walidacji także po stronie serwera.

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Walidacja formularzy

304

Wymuszanie podania danych w polu to prawdopodobnie najczęstsze zadanie wyko-
nywane przy walidacji. Często warto także sprawdzić, czy wpisane informacje mają
właściwy format. Jeśli użytkownik ma określić, ile produktów chce kupić, powinien
podać liczbę. Aby sprawdzić, czy wpisano dane i podano je we właściwym formacie,
należy użyć klasy required oraz jednej z pozostałych klas wymienionych w tabeli 8.2.

Formularz może zawierać pole na datę urodzenia. Załóżmy, że ta informacja jest nie
tylko wymagana, ale ponadto użytkownik musi ją podać w formie daty. Kod HTML
takiego pola powinien wyglądać następująco:

<input name="dob" type="text" class="required date">

Zauważ, że nazwy klas (required i date) są rozdzielone odstępem.

Jeśli pominiesz klasę required i użyjesz tylko jednego z pozostałych sposobów wali-
dacji (na przykład class= date), pole będzie opcjonalne, jednak jeżeli użytkownik
wprowadzi dane, musi to zrobić w odpowiednim formacie (tu jest to data).

Wskazówka: Jeśli informacje w polu mają mieć określony format, pamiętaj o dodaniu do formularza

instrukcji, aby użytkownik wiedział, w jaki sposób ma wpisać dane. Przy polu przeznaczonym na datę

może to być wiadomość typu: „Wpisz datę w formacie MM/DD/RRRR, na przykład 01/25/2015”.

Dodawanie komunikatów o błędach

Wtyczka Validation udostępnia uniwersalne komunikaty o błędach, pasujące do wy-
krywanych problemów. Jeśli wymagane pole jest puste, wtyczka wyświetli komunikat
„This field is required” (czyli „To pole jest wymagane”). Jeżeli użytkownik musi
wpisać datę, pojawi się wiadomość „Please enter a valid date” (czyli „Wpisz poprawną
datę”). Można jednak zastąpić podstawowe komunikaty własnymi.

Najprostsza metoda polega na dodaniu do pola atrybutu title i zapisaniu w nim
komunikatu. Załóżmy, że użyłeś klasy required, aby utworzyć wymagane pole:

<input name="name" type="text" class="required">

Aby podać własny komunikat, wystarczy dodać atrybut title:
<input name="name" type="text" class="required"
title="Podaj nazwę użytkownika.">

Projektanci stron WWW zwykle używają atrybutu title, aby zwiększyć dostępność
pól formularza przez podanie instrukcji wyświetlanych po najechaniu kursorem nad
pole lub przy odczytywaniu zawartości ekranu przez przeznaczone do tego narzędzia.
Jednak przy korzystaniu z wtyczki Validation w atrybucie title należy umieścić
wyświetlany komunikat o błędzie. Wtyczka wyszukuje ten atrybut we wszystkich
sprawdzanych polach. Jeśli go znajdzie, używa jego wartości jako tekstu komuni-
katu o błędzie.

Jeśli używasz więcej niż jednej metody walidacji, powinieneś podać tytuł dostoso-
wany do obu problemów. Jeśli na przykład pole jest wymagane i musi zawierać datę,
komunikat „To pole jest wymagane” nie ma sensu, ponieważ użytkownik mógł wpro-
wadzić datę w złym formacie. Oto przykład informacji dostosowanej do obu błędów
— pustego pola i niewłaściwego formatu:

<input name="dob" type="text" class="required date"
title="Podaj datę w formacie 01/28/2014.">

R O Z D Z I AŁ 8 . W Z B O G A C A N I E F O R M U L A R Z Y

Walidacja formularzy

305

Dodawanie reguł walidacji i komunikatów o błędach za pomocą nazw klas oraz
tytułów jest proste i działa doskonale. Jednak czasem programista ma większe po-
trzeby. Wtyczka Validation udostępnia w tym celu drugą, bardziej zaawansowaną
metodę dodawania walidacji do formularza. Możliwe, że chcesz, aby skrypt wyświe-
tlał różne komunikaty w zależności od rodzaju błędu — jeden, kiedy użytkownik
pozostawi pole puste, i drugi, kiedy informacje mają nieodpowiedni format. Nie
można uzyskać tego efektu za pomocą podstawowych metod walidacji omówionych
w tym punkcie. Na szczęście wtyczka Validation oferuje też inną, bardziej rozbu-
dowaną technikę, która umożliwia precyzyjne zarządzanie regułami walidacji.

Zaawansowanej metody trzeba użyć między innymi do zagwarantowania minimal-
nej liczby znaków wprowadzonych w polu. Na przykład przy tworzeniu hasła warto
się upewnić, że ma ono przynajmniej sześć znaków.

Zaawansowana walidacja
Wtyczka Validation udostępnia także drugi sposób dodawania walidacji do formu-
larza. Ta technika nie wymaga zmiany kodu HTML pól. Ponadto wtyczka obsługuje
wiele dodatkowych opcji do sterowania działaniem wtyczki. Aby je ustawić, należy
przekazać do funkcji validate() literał obiektowy (patrz strona 165) z odrębnymi
obiektami opisującymi każdą opcję. Aby na przykład określić regułę walidacji, należy
przekazać obiekt z jej kodem. Najpierw trzeba wpisać otwierający nawias klamro-
wy po pierwszym nawiasie funkcji walidacyjnej, a następnie zamykający nawias
klamrowy przed końcowym nawiasem tej funkcji:

$('idOfForm').validate({
 // Tu opcje.
}); // Koniec funkcji validate

Nawiasy klamrowe reprezentują literał obiektowy, w którym znajdą się ustawienia
opcji. Korzystanie z wtyczki Validation w ten sposób może być nieco skompliko-
wane, a najlepszy sposób na zrozumienie jej działania to przyjrzenie się prostemu
przykładowi. Ilustruje go rysunek 8.6.

Rysunek 8.6. Nawet w tak prostym formularzu można
użyć zaawansowanych opcji wtyczki Validation, aby uzyskać
dodatkową kontrolę nad walidacją

Wskazówka: W tym samym formularzu można połączyć technikę prostej walidacji (patrz strona

302) i podejście zaawansowane. Do pól, które mają tylko jedną regułę walidacji i jeden komunikat

o błędzie, można użyć prostej metody, ponieważ jest szybka. Do przeprowadzenia bardziej skompli-

kowanej walidacji należy użyć techniki zaawansowanej. W przykładzie ze strony 311 zastosowano

oba podejścia do walidacji jednego formularza.

Kod HTML formularza z rysunku 8.6 wygląda następująco:
<form action="process.php" method="post" id="signup">
 <div>
 <label for="name">Nazwa użytkownika</label>

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Walidacja formularzy

306

 <input name="name" type="text">
 </div>

 <div>
 <label for="email">Adres e-mail</label>
 <input name="email" type="text">
 </div>
 <div>
 <input type="submit" name="submit" value="Wyślij">
 </div>
</form>

Ten formularz zawiera dwa pola tekstowe (wyróżnione pogrubieniem) — jedno na
nazwę użytkownika i drugie na adres e-mail. W tym punkcie zobaczysz, jak za po-
mocą zaawansowanych reguł przeprowadzić walidację obu elementów, aby się upew-
nić, że oba pola są wypełnione, a adres e-mail ma ponadto właściwy format.

Uwaga: Pełną listę opcji wtyczki Validation znajdziesz na stronie http://jqueryvalidation.org/.

Zaawansowane reguły

Zaawansowany sposób określania reguł walidacji polega na przekazaniu obiektu
z nazwami pól formularza i stosowanymi do nich zasadami. Podstawowa struk-
tura tego obiektu wygląda następująco:

rules: {
 nazwa_pola: 'rodzaj_walidacji'
}

Nazwa obiektu to rules, a zawiera on pola i stosowane do nich sposoby walidacji.
Cały obiekt należy następnie przekazać do funkcji validate(). Aby wymusić wypeł-
nienie pola na nazwę użytkownika z rysunku 8.6, należy wywołać dla formularza
funkcję validate() i przekazać do niej odpowiedni obiekt rules:

$('#signup').validate({
 rules: {
 name: 'required'
 }
}); // Koniec funkcji validate

Nazwa pola to name, a reguła określa, że pole to jest wymagane. Aby zastosować
kilka zasad walidacji, należy utworzyć dla danego pola nowy obiekt. Jeśli chcesz
rozwinąć reguły walidacji formularza z rysunku 8.6, możesz dodać zasadę, zgodnie
z którą adres e-mail jest wymagany, a ponadto musi mieć właściwy format:

1 $('#signup').validate({
2 rules: {
3 name: 'required',
4 email: {
5 required:true,
6 email:true
7 }
8 }
9 }); // Koniec funkcji validate

Uwaga: Zgodnie z regułami tworzenia literałów obiektowych języka JavaScript każdą parę nazwa

– wartość, oprócz ostatniej, należy zakończyć przecinkiem. W wierszu 3. w powyższym kodzie po re-

gule name: 'required' trzeba dodać przecinek, ponieważ następuje po niej następna zasada (dla

pola email). Jeśli chcesz przypomnieć sobie działanie literałów obiektowych, zajrzyj na stronę 165.

http://jqueryvalidation.org/

R O Z D Z I AŁ 8 . W Z B O G A C A N I E F O R M U L A R Z Y

Walidacja formularzy

307

Wiersze od 4. do 7. (wyróżnione pogrubieniem) określają reguły dla pola email.
Nazwa pola to email (patrz kod HMTL na stronie 306), para required:true spra-
wia, że pole to jest wymagane, a para email:true gwarantuje, iż dane będą miały
format adresu e-mail.

Możesz użyć w ten sposób dowolnych technik walidacji opisanych w tabeli 8.2.
Załóżmy, że dodałeś do przykładowego formularza pole birthday. Aby zagwaran-
tować, że użytkownik wpisze w nie datę, można wydłużyć listę reguł:

$('#signup').validate({
 rules: {
 name: 'required',
 email: {
 required:true,
 email:true
 },
 birthday: 'date'
 }
}); // Koniec funkcji validate

Jeśli także pole birthday ma być wymagane (reguła required), należy wprowadzić
następujące zmiany:

$('#signup').validate({
 rules: {
 name: 'required',
 email: {
 required:true,
 email:true
 },
 birthday: {
 date:true,
 required:true
 }
 }
}); // Koniec funkcji validate

Jak już wspomniano, jedną z najwartościowszych technik zaawansowanej walidacji
jest określanie minimalnej i maksymalnej długości wprowadzanych danych. W for-
mularzu na skargi warto ograniczyć długość komentarza do 200 znaków, aby klienci
zwięźle wyrażali swe opinie, zamiast pisać długie elaboraty. Dostępne są też reguły
określające, że podana liczba ma mieć wartość z określonego przedziału. Jeśli na
przykład nie oczekujesz, by informacje w formularzu podawały mumie lub wampi-
ry, możesz odrzucać rok urodzenia wcześniejszy niż 1900.

 Opcja minlength. Pole musi zawierać przynajmniej określoną liczbę znaków.
Aby zagwarantować, że w polu znajdzie się co najmniej sześć znaków, użyj
następującej reguły:

minlength:6

 Opcja maxlength. Pole może zawierać co najwyżej określoną liczbę znaków.
Aby zagwarantować, że w polu znajdzie się nie więcej niż 100 znaków, użyj
następującej reguły:

maxlength:100

 Opcja rangelength łączy reguły minlength i maxlength. Przy jej użyciu można
określić minimalną i maksymalną liczbę znaków. Poniższa zasada określa,
że pole musi zawierać przynajmniej 6, ale nie więcej niż 100 znaków:

rangelength:[6,100]

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Walidacja formularzy

308

 Opcja min. Wymaga, aby pole zawierało liczbę równą lub większą od określonej.
Następna reguła oznacza, że w polu musi znaleźć się liczba 10 lub większa:

min:10

Jeśli użytkownik wpisze 8, pole nie przejdzie walidacji, ponieważ wartość ta jest
mniejsza od 10. Także jeżeli wprowadzone zostanie słowo (na przykład osiem),
walidacja zakończy się niepowodzeniem i skrypt wyświetli komunikat o błędzie.

 Opcja max. Działa podobnie jak min, ale określa największą wartość, jaką można
wpisać w polu. Aby się upewnić, że w polu znajdzie się liczba nie większa od
1000, użyj poniższej reguły:

max:1000

 Opcja range. Łączy opcje min i max, co pozwala określić najmniejszą i najwięk-
szą liczbę, którą można wprowadzić w danym polu. Aby zagwarantować, że
w polu znajdzie się liczba z przedziału od 10 do 1000, użyj następującej reguły:

range:[10,1000]

 Opcja equalTo. Wymaga, aby dane pole miało taką samą wartość jak inny ele-
ment. W formularzach rejestracji użytkownik często musi dwukrotnie wpisać
hasło. Zmniejsza to prawdopodobieństwo popełnienia literówki przy pierwszym
wprowadzaniu danych. Aby użyć tej opcji, trzeba podać łańcuch znaków z selek-
torem jQuery. Załóżmy, że pierwsze pole z hasłem ma identyfikator password.
Aby się upewnić, że zawartość pola weryfikacji hasła pasuje do tekstu z pierw-
szego pola, należy użyć następującej reguły:

equalTo: '#password'

Zaawansowane reguły walidacji można łączyć ze sobą przez dodawanie ich do
pojedynczych pól. Oto przykład. Załóżmy, że formularz zawiera dwa pola — jedno
przeznaczone na hasło i drugie do jego potwierdzania. Kod HTML tych dwóch pól
wygląda następująco:

<input name="password" type="password" id="password">
<input name="confirm_password" type="password" id="confirm_password">

Uwaga: Do wtyczki jQuery Validation można także dołączyć drugą — additional-methods.js —

która zawiera dodatkowe reguły walidacji, takie jak minimalna liczba słów, numery identyfikacyjne

samochodów w USA, holenderskie numery kont bankowych oraz wiele innych, tajemniczych (lecz

potencjalnie przydatnych) reguł. Nie istnieje żadna dokumentacja tych reguł, więc informacji na ich

temat trzeba szukać bezpośrednio w kodzie pliku additional-methods.js. Jeśli uda się znaleźć interesu-

jące, należy zapisać kopię pliku — na przykład moje-reguly.js — a następnie usunąć z niego wszystkie

te reguły, które nie są potrzebne. Dzięki temu znacząco przyspieszymy wczytywanie tego pliku.

Oba pola są wymagane, a hasło musi mieć przynajmniej 8, lecz nie więcej niż
16 znaków. Trzeba też sprawdzić, czy wartości obu pól są takie same. Jeśli identy-
fikator formularza to signup, można przeprowadzić walidację obu pól za pomocą
poniższego kodu:

$('#signup').validate({
 rules: {
 password: {
 required:true,
 rangelength:[8,16]
 },

R O Z D Z I AŁ 8 . W Z B O G A C A N I E F O R M U L A R Z Y

Walidacja formularzy

309

 confirm_password: {
 equalTo:'#password'
 }
 }
}); // Koniec funkcji validate

Zaawansowane komunikaty o błędach

Na stronie 304 dowiedziałeś się, że można łatwo dodać do pola komunikat o błę-
dzie przez podanie atrybutu title z tekstem takiej wiadomości. Jednak to podejście
nie umożliwia wyodrębnienia komunikatów o błędach powiązanych z konkretnymi
problemami. Załóżmy, że pole jest wymagane i musi zawierać liczbę. Warto wyświe-
tlać różne komunikaty dla każdego błędu: „To pole jest wymagane” i „Wpisz liczbę”.
Za pomocą atrybutu title nie można uzyskać tego efektu. Jedynym rozwiązaniem
jest przekazanie do funkcji validate() obiektu JavaScript zawierającego inny ko-
munikat o błędzie — ten, który chcemy wyświetlać.

Ten proces przypomina tworzenie zaawansowanych reguł opisane w poprzednim
punkcie. Podstawowa struktura obiektu messages wygląda następująco:

messages: {
 nazwa_pola: {
 typ_walidacji: 'Komunikat o błędzie'
 }
}

P O R A D N I A D L A Z A A W A N S O W A N Y C H

Walidacja z wykorzystaniem serwera
Choć walidacja za pomocą języka JavaScript doskonale

nadaje się do szybkiego sprawdzania wprowadzonych

danych, czasem do określenia poprawności pola nie-

zbędny jest serwer. Przyjmijmy, że formularz rejestra-

cyjny pozwala utworzyć nazwę użytkownika używaną na

forum. Dwie osoby nie mogą korzystać z tej samej nazwy,

dlatego przed przesłaniem formularza warto poinfor-

mować użytkownika o tym, czy dana nazwa nie jest już

zajęta. Wymaga to pobrania danych z serwera.

Wtyczka Validation obsługuje zaawansowaną metodę

walidacji zdalnej, która umożliwia komunikację z serwe-

rem. Technika ta pozwala przekazać nazwę pola i wpi-

saną w nim wartość na serwer, który wykonuje apli-

kacje napisane w odpowiednim języku, takim jak PHP,

Ruby, C#, Java lub JavaScript. Strona na serwerze może

pobrać informacje i na przykład sprawdzić, czy dana na-

zwa jest dostępna, a następnie przekazać do formularza

wartość true (walidacja zakończyła się powodzeniem) lub

false (nazwa nie przeszła walidacji).

Załóżmy, że pole username jest wymagane i nie może

zawierać nazwy używanej już w witrynie. Aby utworzyć

regułę dla tego pola (za pomocą techniki zaawansowanej,

którą opisano na stronie 306), należy dodać poniższy

fragment do obiektu rules:

username : {
 required: true,
 remote: 'check_username.php'
}

Opcja remote przyjmuje łańcuch znaków ze ścieżką do

strony na serwerze. Tu nazwa tej strony to check_
username.php. Kiedy wtyczka Validation przystąpi do

walidacji danego pola, prześle jego nazwę (username)

i wprowadzoną wartość do strony check_username.php,

która sprawdzi, czy podana nazwa użytkownika jest

dostępna. Jeśli tak, strona PHP zwróci wartość 'true'.

Jeżeli nazwa jest już zajęta, strona zwróci wartość

'false', a pole nie przejdzie walidacji.

Działanie tego mechanizmu jest możliwe dzięki Ajaksowi

(technologię tę poznasz w części IV). Aby zobaczyć dzia-

łający przykład zastosowania tej techniki, odwiedź stronę

http://jqueryvalidation.org/files/demo/captcha/.

http://jqueryvalidation.org/files/demo/captcha/

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Walidacja formularzy

310

W tym fragmencie należy zastąpić fragment nazwa_pola nazwą sprawdzanego pola,
a zamiast tekstu typ_walidacji trzeba podać jedną z metod walidacji. Aby połączyć
dodane wcześniej metody walidacji pól na hasło z komunikatami specyficznymi dla
błędów, dodaj kod wyróżniony pogrubieniem:

$('#signup').validate({
 rules: {
 password: {
 required:true,
 rangelength:[8,16]
 },
 confirm_password: {
 equalTo:'#password'
 }
 }, // Koniec obiektu rules.
 messages: {
 password: {
 required: "Wpisz hasło, którego chcesz używać.",
 rangelength: "Hasło musi mieć od 8 do 16 znaków."
 },
 confirm_password: {
 equalTo: "Hasła nie pasują do siebie."
 }
 } // Koniec obiektu messages.
}); // Koniec funkcji validate

Wskazówka: Jak widać, zastosowanie tej zaawansowanej metody może wymagać tworzenia wielu

literałów obiektowych, a znaczna liczba używanych przy tym nawiasów klamrowych — { } — może

pogarszać przejrzystość kodu i utrudniać jego zrozumienie. Dobrym rozwiązaniem, z którego

można skorzystać podczas stosowania zaawansowanych metod walidacji przy użyciu wtyczki Vali-

dation, jest uważne pisanie kodu, zrezygnowanie z pośpiechu i częste testowanie. Jeśli walidacja

nie działa prawidłowo, najprawdopodobniej do naszego kodu wkradła się jakaś literówka; w takim

przypadku trzeba ją poprawić przed rozpoczęciem pisania kolejnej reguły. Kiedy napiszemy już wszyst-

kie reguły, które będą prawidłowo działać, możemy przystąpić do dodawania literałów obiektowych

z komunikatami o błędach. Także i je warto pisać powoli, dodawać komunikaty jeden po drugim

i często przeprowadzać testy. Warto także przeglądać konsolę błędów przeglądarki (patrz strona 51)

i sprawdzać, czy na niej nie zostały wyświetlone informacje o błędach.

Określanie stylu komunikatów o błędach
Kiedy wtyczka Validation znajdzie nieprawidłowe pole, wykonuje dwie operacje.
Najpierw przypisuje do tego pola klasę, a następnie dołącza do niego znacznik
<label> z komunikatem o błędzie. Oto kod HTML pola na adres e-mail:

<input name="email" type="text" class="required">

Jeśli dodasz do strony wtyczkę Validation, a użytkownik spróbuje przesłać formu-
larz bez wypełnienia pola email, wtyczka zablokuje proces wysyłania i zmieni kod
HTML tego pola przez dodanie nowego znacznika. Zmodyfikowany kod HTML
będzie wyglądał następująco:

<input name="email" type="text" class="required error">
<label for="email" generated="true" class="error">
To pole jest wymagane.</label>

R O Z D Z I AŁ 8 . W Z B O G A C A N I E F O R M U L A R Z Y

Przykład zastosowania
walidacji

311

Oznacza to, że wtyczka doda do pola formularza klasę error, a także wstawi znacz-
nik <label> tej samej klasy, zawierający komunikat o błędzie.

Aby zmienić wygląd komunikatu o błędzie, wystarczy dodać do arkusza odpowiedni
styl. Aby na przykład czcionka tekstu wiadomości była pogrubiona i czerwona, należy
umieścić w arkuszu poniższy styl:

label.error {
 color: #F00;
 font-weight: bold;
}

Ponieważ wtyczka Validation dodaje klasę error także do nieprawidłowych pól
formularza, można utworzyć styl, który określa wygląd również tych elementów.
Następny styl dodaje czerwone obramowanie wokół pól z błędami:

input.error, select.error, textarea.error {
 border: 1px red solid;
}

Przykład zastosowania walidacji
W tym przykładzie dodasz do formularza opcje walidacji prostej i zaawansowanej
(patrz rysunek 8.7).

Rysunek 8.7.
Nie pozwalaj użyt-
kownikom na prze-
syłanie niepełnych
danych! Dzięki
wtyczce Validation
biblioteki jQuery
możesz mieć pew-
ność, że uzyskasz po-
trzebne informacje

Uwaga: Informacje o pobieraniu przykładowych plików znajdziesz na stronie 46.

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Przykład zastosowania
walidacji

312

Prosta walidacja
W tym przykładzie najpierw zastosujesz prostą metodę walidacji za pomocą wtyczki
Validation, opisaną na stronie 301. Następnie użyjesz bardziej złożonych technik
opartych na metodzie zaawansowanej, omówionej na stronie 305. Zobaczysz, że
można swobodnie łączyć oba podejścia w jednym formularzu.

 1. Otwórz w edytorze tekstu plik validation.html z katalogu R08.
Ten plik zawiera formularz z wieloma elementami — polami tekstowymi, po-
lami wyboru, przyciskami opcji i listami rozwijanymi. Dodasz do niego mecha-
nizm walidacji, najpierw jednak należy dołączyć do strony wtyczkę Validation.

 2. W pustym wierszu bezpośrednio pod znacznikiem <script>, który dołącza
do strony plik jquery.js, dodaj następujący kod:

<script src="jquery_validate/jquery.validate.min.js">
</script>

Wtyczka Validation znajduje się w podkatalogu jquery_validate w tym samym
katalogu, w którym zostały umieszczone przykłady do tego rozdziału.

Na stronie znajduje się już dodatkowy znacznik <script> z funkcją ready()
biblioteki jQuery. Teraz wystarczy wywołać dla formularza funkcję validate().

 3. W pustym wierszu pod kodem $(document).ready(function() wpisz po-
niższy fragment:

$('#signup').validate();

Słowo signup w selektorze to identyfikator formularza:
<form action="process.html" method="post" name="signup" id="signup">

Obiekt jQuery $('#signup') pobiera formularz, a funkcja validate() wiąże go
z wtyczką Validation. Jednak aby uruchomić walidację, należy określić jej reguły.
Pole name powinno być wymagane i mieć niestandardowy komunikat o błędzie.

 4. Znajdź kod HTML pola name — <input name="name" type="text" id=
"name"> — i dodaj do niego atrybuty class i title. Znacznik powinien
wyglądać następująco (zmiany wyróżniono pogrubieniem):

<input name="name" type="text" id="name"
class="required" title="Wpisz imię i nazwisko.">

Para class= required informuje wtyczkę Validate o tym, że pole to jest wyma-
gane, natomiast atrybut title określa komunikat o błędzie, który użytkownik
zobaczy, jeśli nie wypełni pola.

 5. Zapisz stronę, otwórz ją w przeglądarce i kliknij przycisk Wyślij.

Ponieważ pole name nie jest wypełnione, obok niego pojawi się komunikat
o błędzie (zakreślony na rysunku 8.8).

Rysunek 8.8. Na razie nie przejmuj
się wyglądem komunikatu o błędzie.
Na stronie 319 zobaczysz, jak go
sformatować

R O Z D Z I AŁ 8 . W Z B O G A C A N I E F O R M U L A R Z Y

Przykład zastosowania
walidacji

313

Gratulacje! Właśnie dodałeś do formularza walidację za pomocą prostej metody
opisanej na stronie 302. Następnie należy dodać regułę walidacji dla pola z datą
urodzenia.

Uwaga: Jeśli zamiast komunikatu o błędzie zobaczysz stronę z nagłówkiem „Formularz przetwo-

rzono”, skrypt nie uruchomił walidacji, a formularz został przesłany. Prześledź ponownie kroki od 1.

do 4. i upewnij się, że nie zrobiłeś literówki.

 6. Znajdź kod HTML pola z datą urodzenia — <input name="dob" type="text"
id="dob"> — i dodaj do niego atrybuty class oraz title. Znacznik powinien
wyglądać następująco (zmiany wyróżniono pogrubieniem):

<input name="dob" type="text" id="dob" class="date"
title="Podaj datę urodzenia w formacie 01/19/2000.">

Ponieważ nie dodałeś klasy required, pole to jest opcjonalne. Jednak jeśli
użytkownik je wypełni, para class= date poinformuje wtyczkę o tym, że dane
muszą mieć format daty. Atrybut title ponownie służy do określenia komu-
nikatu o błędzie, wyświetlanego, jeśli pole zawiera nieprawidłowy tekst. Zapisz
stronę i wypróbuj ją w przeglądarce. Wpisz w polu na datę urodzenia dowolny
tekst (na przykład kjsdf) i spróbuj przesłać formularz.

Uwaga: Jeśli naprawdę chcesz, aby internauta musiał wprowadzić datę urodzenia i użyć właściwe-

go formatu, dodaj słowo required do atrybutu class. Pamiętaj o tym, aby oddzielić klasy date

i required spacją:

 class="date required"

Tej samej techniki można użyć do walidacji list rozwijanych (znacznik
<select>).

 7. Znajdź kod HTML otwierającego znacznika select — <select name=
"planet" id="planet"> — i dodaj atrybuty class oraz title, aby znacznik
wyglądał tak, jak poniżej (zmiany wyróżniono pogrubieniem):

<select name="planet" id="planet" class=" required"
title="Wybierz planetę.">

Walidację można dodać do list rozwijanych w taki sam sposób, jak robi się to
w przypadku pól tekstowych. Wystarczy podać atrybuty class i title.

Teraz wypróbujesz zaawansowaną technikę walidacji.

Walidacja zaawansowana
Na stronie 305 dowiedziałeś się, że prosta walidacja nie umożliwia wykonania
niektórych operacji, na przykład przypisania różnych komunikatów o błędach do
poszczególnych problemów lub określenia liczby wprowadzanych znaków. Dlatego
czasem do utworzenia wiadomości i reguł walidacji trzeba użyć zaawansowanej
techniki wtyczki Validate.

Zacznij od dodania dwóch reguł walidacji i dwóch różnych komunikatów o błędach
do pola email.

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Przykład zastosowania
walidacji

314

 1. Znajdź w kodzie JavaScript w początkowej części pliku wywołanie
$('#signup').validate(); i zmodyfikuj je w następujący sposób:

$('#signup')validate({

}); // Koniec funkcji validate

Trzeba wpisać otwierający i zamykający nawias klamrowy między nawiasami
funkcji validate(), dodać pusty wiersz między nowymi nawiasami klamrowymi
i dołączyć komentarz języka JavaScript (wskazuje on koniec funkcji validate()).
Wkrótce dodasz do skryptu wiele nowych nawiasów klamrowych i zwykłych,
dlatego zapamiętanie, które z nich są powiązane z konkretnymi instrukcjami,
może być trudne. Ten komentarz ułatwia zrozumienie kodu, ale — podobnie
jak wszystkie komentarze — nie jest niezbędny.

Następnie należy przygotować strukturę reguł walidacji.

 2. W pustym wierszu dodanym w poprzednim kroku (między nawiasami klam-
rowymi) wpisz:

rules: {

} // Koniec obiektu rules.

Aby kod był bardziej czytelny, warto dodać dwa odstępy przed słowem rules
i znakiem }. Wcięcia pomagają zauważyć, że wyróżnione tak wiersze są częścią
funkcji validate().

Ten kod tworzy pusty obiekt, który możesz zapełnić nazwami pól i metod
walidacji. Ponadto komentarz języka JavaScript wskazuje koniec obiektu rules.
Następnie należy dodać reguły dla pola email.

 3. Zmodyfikuj wywołanie funkcji validate(), aby wyglądało następująco
(zmiany wyróżniono pogrubieniem):

$('#signup')validate({
 rules: {
 email: {
 required: true,
 email: true
 }
 } // Koniec obiektu rules.
}); // Koniec funkcji validate.

Nowy fragment to następny literał obiektowy języka JavaScript. Pierwsza część,
email, to nazwa pola z kodu HTML, które chcesz sprawdzać. Dwa następne
wiersze określają metody walidacji. Pole jest wymagane (czyli użytkownicy
muszą je wypełnić w celu przesłania formularza), a dane muszą mieć format
adresu e-mail. „Testuj wcześnie i często” — to zdanie powinno być mottem
każdego programisty. Zanim przejdziemy dalej, sprawdź, czy skrypt działa
prawidłowo.

 4. Zapisz plik, wyświetl stronę w przeglądarce i spróbuj przesłać formularz.

Powinieneś zobaczyć domyślny komunikat błędu generowany przez wtyczkę,
kiedy brakuje pola wymaganego — „This field is required” (To pole jest wyma-
gane). Kliknij pole i wpisz w nim kilka liter. Wyświetlony komunikat zmieni
się — teraz będzie miał następującą postać: „Please enter a valid email address”
(Proszę podać prawidłowy adres email; jest to standardowy komunikat gene-
rowany przez wtyczkę, gdy użytkownik wpisze tekst niebędący prawidłowym

R O Z D Z I AŁ 8 . W Z B O G A C A N I E F O R M U L A R Z Y

Przykład zastosowania
walidacji

315

adresem poczty elektronicznej do pola, które ma zawierać taki adres). Jeśli na
stronie nie zostaną pokazane żadne komunikaty o błędach, wyświetl kod strony
i porównaj go z podanym w poprzednim punkcie.

Teraz dodasz do pola niestandardowe komunikaty o błędach.

 5. Ponownie przejdź do edytora i wpisz przecinek po zamykającym nawiasie
obiektu rules (ale przed komentarzem // Koniec obiektu rules.), a na-
stępnie dodaj poniższy kod:

messages: {

} // Koniec obiektu messages.

Ten kod to następny literał obiektowy języka JavaScript — messages. Należy
w nim podać komunikaty o błędach dołączane do pól formularza. Końcowy
komentarz (// Koniec obiektu messages.) jest opcjonalny. Teraz trzeba do-
dać tekst komunikatów o błędach związanych z polem email.

 6. Zmodyfikuj wywołanie funkcji validate(), aby wyglądało następująco
(nowe fragmenty wyróżniono pogrubieniem):

1 $('#signup')validate({
2 rules: {
3 email: {
4 required: true,
5 email: true
6 }
7 }, // Koniec obiektu rules.
8 messages: {
9 email: {
10 required: "Podaj adres e-mail.",
11 email: "To nie jest prawidłowy adres e-mail."
12 }
13 } // Koniec obiektu messages.
14 }); // Koniec funkcji validate.

Zapisz stronę i ponownie wyświetl ją w przeglądarce. Spróbuj przesłać formu-
larz bez wypełniania pola z adresem e-mail. Powinien pojawić się komunikat
„Podaj adres e-mail.”. Teraz wpisz w tym polu dowolny tekst, na przykład „wi-
taj”, i spróbuj przesłać formularz. Tym razem powinieneś zobaczyć wiadomość
„To nie jest prawidłowy adres e-mail.”.

Jeśli zamiast komunikatów o błędach zobaczysz tekst „Formularz przetwo-
rzono”, w kodzie JavaScript musiał pojawić się błąd. Prawdopodobnie zabrakło
przecinka po obiekcie rules (wiersz 7.) lub na liście komunikatów dla pola email
w obiekcie messages (wiersz 10.).

Teraz należy dodać reguły walidacji dla dwóch pól na hasło.

 7. Zmodyfikuj obiekt rules, aby wyglądał następująco (zmiany wyróżniono
pogrubieniem):

1 rules: {
2 email: {
3 required: true,
4 email: true
5 },
6 password: {
7 required: true,
8 rangelength:[8,16]

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Przykład zastosowania
walidacji

316

9 },
10 confirm_password: {
11 equalTo:'#password'
12 }
13 }, // Koniec obiektu rules.

Nie zapomnij o dodaniu przecinka w wierszu 5. Jest niezbędny do oddzielenia
reguł dla pola email od zasad dla pola password.

Pierwszy zestaw reguł dotyczy pierwszego pola z hasłem. Jest ono wymagane
i musi mieć przynajmniej 8, ale nie więcej niż 16 znaków. Druga zasada określa,
że zawartość pola z potwierdzeniem hasła musi być taka sama jak pierwszego
pola (szczegółowy opis tej reguły znajdziesz na stronie 308).

Wskazówka: W tym przykładzie po każdym kroku warto zapisać i przetestować stronę. Jeśli walidacja

przestanie działać, będziesz wiedział, w którym miejscu popełniłeś błąd.

Do nowych reguł trzeba jeszcze przypisać komunikaty o błędach.

 8. Zmodyfikuj obiekt messages, aby wyglądał następująco (zmiany wyróżniono
pogrubieniem):

1 messages: {
2 email: {
3 required: "Podaj adres e-mail.",
4 email: "To nie jest prawidłowy adres e-mail."
5 },
6 password: {
7 required: 'Wpisz hasło.',
8 rangelength: 'Hasło musi mieć od 8 do 16 znaków.'
9 },
10 confirm_password: {
11 equalTo: 'Podane hasła nie pasują do siebie.'
12 }
13 } // Koniec obiektu messages.

Nie zapomnij o przecinku w wierszu 5.

Dodawanie reguł i komunikatów o błędach nie powinno już sprawiać Ci problemów.
Teraz należy uruchomić walidację pól wyboru i przycisków opcji.

Walidacja pól wyboru i przycisków opcji
Pola wyboru i przyciski opcji zwykle występują w grupach, a proces dodawania wali-
dacji do kilku powiązanych elementów związany jest ze skomplikowanym wyszu-
kiwaniem wszystkich znaczników z grupy. Na szczęście wtyczka Validation auto-
matycznie wykonuje wszystkie skomplikowane operacje i umożliwia szybkie dodanie
walidacji do wymienionych pól formularza.

 1. Znajdź kod HTML pierwszego pola wyboru — <input name="hobby" type=
"checkbox" id="heliskiing" value="heliskiing"> — i dodaj do niego
atrybuty class oraz title (zmiany wyróżniono pogrubieniem):

<input name="hobby" type="checkbox" id="heliskiing"
value="heliskiing" class="required"
title="Zaznacz przynajmniej jedno hobby.">

R O Z D Z I AŁ 8 . W Z B O G A C A N I E F O R M U L A R Z Y

Przykład zastosowania
walidacji

317

Zastosowano tu prostą metodę walidacji, omówioną na stronie 302. Możesz
też użyć techniki zaawansowanej, aby dołączyć reguły i komunikaty o błędach
w funkcji validate(), jednak jeśli potrzebna jest tylko jedna zasada i wiado-
mość, podstawowe rozwiązanie jest prostsze i mniej narażone na błędy.

Tu wszystkie trzy pola wyboru mają tę samą nazwę, dlatego wtyczka Validation
traktuje je jak grupę. Oznacza to, że reguła obowiązuje we wszystkich trzech
polach, choć atrybuty class i title dodałeś tylko do jednego z nich. Ustawienia
te sprawiają, że użytkownik musi wybrać przynajmniej jedno pole przed prze-
słaniem formularza.

Teraz należy zrobić to samo dla przycisków opcji z dolnej części formularza.

 2. Znajdź kod HTML pierwszego przycisku opcji — <input type="radio"
name="spam" id="yes" value="yes"> — i dodaj do niego atrybuty class
oraz title (zmiany wyróżniono pogrubieniem):

<input type="radio" name="spam" value="yes"
class="required" title="Zaznacz jedno z pól.">

Grupa powiązanych przycisków opcji zawsze ma tę samą nazwę (tu jest to spam),
dlatego choć dodałeś regułę i komunikat o błędzie do tylko jednej kontrolki tego
typu, będą one obowiązywać we wszystkich trzech. Ponieważ pole jest wyma-
gane, użytkownik musi wybrać jeden z trzech przycisków opcji, aby wysłać
formularz.

 3. Zapisz plik, wyświetl go w przeglądarce i kliknij przycisk Wyślij.

Zwróć uwagę na dziwne zjawisko. Komunikaty o błędach dla pól wyboru i przy-
cisków opcji pojawiają się bezpośrednio po pierwszych kontrolkach, zakreślo-
nych na rysunku 8.9. Co gorsza, wiadomość znajduje się między polem formu-
larza a jego etykietą (na przykład między polem wyboru a napisem „Heliskiing”).

Wtyczka Validation umieszcza komunikat o błędzie bezpośrednio po polu for-
mularza, do którego zastosowano regułę walidacji. Zwykle jest to właściwe roz-
wiązanie. Jeśli komunikat znajduje się po polu tekstowym lub menu (jak we wcze-
śniejszych częściach przykładu), wygląda dobrze. Jednak tu wiadomość należy
wyświetlić w innym miejscu, najlepiej pod wszystkimi polami wyboru lub przy-
ciskami opcji.

Na szczęście wtyczka Validation umożliwia kontrolowanie rozmieszczenia
komunikatów o błędach. Służy do tego następny literał obiektowy języka Java-
Script przekazywany do funkcji validate().

 4. Znajdź dodany wcześniej skrypt walidacji i wpisz przecinek po zamykającym
nawiasie klamrowym obiektu messages (ale przed komentarzem // Koniec
obiektu messages.). Wstaw pusty wiersz po obiekcie messages i wpisz po-
niższy kod:

errorPlacement: function(error, element) {
 if (element.is(":radio") || element.is(":checkbox")) {
 error.appendTo(element.parent());
 } else {
 error.insertAfter(element);
 }
} // Koniec obiektu errorPlacement.

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Przykład zastosowania
walidacji

318

Rysunek 8.9. Wtyczka Validation wyświetla komunikaty o błędach w niewłaściwym miejscu. W przypadku pól
wyboru i przycisków opcji wygląda to fatalnie. Aby umieścić wiadomość w innym miejscu, trzeba przekazać
funkcji validate() odpowiednie instrukcje

Wtyczka Validation przyjmuje opcjonalny obiekt errorPlacement, zawiera-
jący funkcję anonimową (patrz strona 168), która określa lokalizację komuni-
katu o błędzie. Każdy błąd jest przesyłany przez tę funkcję, gdy zatem chcesz
zmienić położenie jedynie wybranych komunikatów, konieczne będzie dodanie
logiki warunkowej umożliwiającej identyfikację tych elementów formularza,
dla których położenie komunikatów ma zostać zmienione. Przyjmuje ona wia-
domość i nieprawidłowy element formularza, co pozwala użyć instrukcji wa-
runkowej (patrz strona 93) do sprawdzenia, czy dany znacznik jest przyciskiem
opcji lub polem wyboru. Jeśli tak jest, skrypt umieszcza komunikat o błędzie na
końcu elementu zawierającego nieprawidłowy znacznik. Na tej stronie grupa
pól wyboru znajduje się w znaczniku <div>, podobnie jak przyciski opcji. Dlatego
można użyć funkcji appendTo() biblioteki jQuery (patrz strona 157), aby dodać
komunikat o błędzie bezpośrednio przed zamykającym znacznikiem </div>.

R O Z D Z I AŁ 8 . W Z B O G A C A N I E F O R M U L A R Z Y

Przykład zastosowania
walidacji

319

Kod JavaScript formularza jest już gotowy. Oto kompletny skrypt (wraz z funkcją
$(document).ready()):

1 $(document).ready(function() {
2 $('#signup').validate({
3 rules: {
4 email: {
5 required: true,
6 email: true
7 },
8 password: {
9 required: true,
10 rangelength:[8,16]
11 },
12 confirm_password: {equalTo:'#password'},
13 }, // Koniec obiektu rules.
14 messages: {
15 email: {
16 required: "Podaj adres e-mail.",
17 email: "To nie jest prawidłowy adres e-mail."
18 },
19 password: {
20 required: 'Wpisz hasło.',
21 rangelength: 'Hasło musi mieć od 8 do 16 znaków.'
22 },
23 confirm_password: {
24 equalTo: 'Podane hasła nie pasują do siebie.'
25 }
26 }, // Koniec obiektu messages.
27 errorPlacement: function(error, element) {
28 if (element.is(":radio") || element.is(":checkbox")) {
29 error.appendTo(element.parent());
30 } else {
31 error.insertAfter(element);
32 }
33 } // Koniec obiektu errorPlacement.
34 }); // Koniec funkcji validate
35 }); // Koniec funkcji ready

Formatowanie komunikatów o błędach
Na stronie funkcjonuje już walidacja formularza, jednak komunikaty o błędach nie
wyglądają zbyt atrakcyjnie. Nie tylko są porozrzucane na stronie, ale ponadto nie
wyróżniają się w wystarczającym stopniu. Będą prezentować się dużo lepiej z pogru-
bioną, czerwoną czcionką, umieszczone pod nieprawidłowymi polami formularza.
Wszystkie te modyfikacje można wprowadzić przy użyciu prostego arkusza stylów.

 1. Na początku pliku validation.html kliknij pusty wiersz umieszczony po-
między otwierającym znacznikiem <style> a zamykającym znacznikiem
</style>.

Strona zawiera pusty arkusz stylów, w którym umieścisz swój kod CSS. Pod-
czas tworzenia rzeczywistej witryny taki kod zostałby zapewne umieszczony
w zewnętrznym pliku CSS — bądź to w głównym arkuszu stylów używanym
także przez inne strony, bądź w specjalnym, wykorzystywanym tylko przez for-
mularze (na przykład, w pliku forms.css). Jednak w tym przykładzie, dla zacho-
wania prostoty, style zostaną umieszczone bezpośrednio na stronie.

C ZĘŚĆ I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y

Przykład zastosowania
walidacji

320

 2. Dodaj do pliku poniższy kod CSS:
#signup label.error {
 font-size: 0.8em;
 color: #F00;
 font-weight: bold;
 display: block;
 margin-left: 215px;
}

Selektor CSS #signup label.error wskazuje wszystkie znaczniki <label>
klasy error umieszczone w elemencie o identyfikatorze signup. Tu jest to
identyfikator formularza, a wtyczka Validation umieszcza komunikaty o błę-
dach w znaczniku <label> i dodaje do nich klasę error (patrz strona 310).
Oznacza to, że ten styl CSS formatuje tylko wiadomości o błędach we wspo-
mnianym formularzu.

Użyte właściwości CSS są całkiem proste. Najpierw styl modyfikuje czcionkę:
zmniejsza rozmiar do 0,8 em, zmienia kolor na czerwony i pogrubia. Instruk-
cja display: block informuje przeglądarkę, że ma traktować dany znacznik
<label> jak element blokowy. Oznacza to, że zamiast umieszczać komunikat
o błędzie obok pola, przeglądarka potraktuje go jak niezależny akapit ze znakami
przełamania wiersza na początku i na końcu. Ponadto trzeba dodać lewy mar-
gines, aby wiadomość pojawiała się równo z polami formularza (które mają
wcięcie 215 pikseli względem lewej krawędzi głównego obszaru strony).

Aby w jeszcze wyraźniejszy sposób wyróżnić pola, w których podczas weryfikacji
danych natrafiono na problemy, możesz utworzyć reguły CSS modyfikujące wy-
gląd konkretnych pól formularza.

 3. Dodaj ostatnią regułę:
#signup input.error, #signup select.error {
 background: #FFA9B8;
 border: 1px solid red;
}

Ta reguła powoduje wyróżnienie nieprawidłowych pól formularza przez doda-
nie do nich koloru tła i czerwonego obramowania wokół ich krawędzi.

To już wszystko. Zapisz plik i wyświetl stronę validation.html w przeglądarce, aby
sprawdzić, jaki wpływ style CSS mają na komunikaty o błędach (aby zobaczyć
zmiany, prawdopodobnie będziesz musiał wcisnąć w przeglądarce przycisk Odśwież).

Formularz powinien wyglądać tak, jak ten z rysunku 8.7. Jego gotową wersję
znajdziesz w pliku complete_validation.html w katalogu R08.

Wprowadzenie
do biblioteki jQuery UI

Rozdział 9. Rozbudowa interfejsu użytkownika

Rozdział 10. Formularze raz jeszcze

Rozdział 11. Dostosowywanie wyglądu jQuery UI

Rozdział 12. Interakcje i efekty jQuery UI

III
CZĘŚĆ

Rozbudowa interfejsu
użytkownika

Przekonałeś się, jak przy użyciu biblioteki jQuery i niewielkich fragmentów kodu
JavaScript można rozszerzać możliwości formularzy, obrazów oraz odnośników.
Nauczyłeś się dodawać do swoich stron animacje i tworzyć proste elementy in-
terfejsu użytkownika, takie jak wysuwający się formularz do logowania (patrz
strona 216) czy też animowany pasek z miniaturkami zdjęć (patrz strona 225).
Być może teraz jesteś gotów na poznanie bardziej złożonych elementów interfejsu
użytkownika, takich jak okna dialogowe, zestawy kart oraz etykietki ekranowe.
Mógłbyś się nauczyć tworzenia takich rozwiązań od zera, jednak — zgodnie z tym,
czego się dowiedziałeś na stronie 265 — istnieje wiele wtyczek jQuery, które już
je implementują. jQuery UI jest wtyczką jQuery rozwiązującą bardzo wiele pro-
blemów związanych z obsługą interfejsu użytkownika, w której cały niezbędny kod
został zgromadzony w jednym, łatwym w użyciu pakiecie.

Czym jest jQuery UI?
jQuery UI (http://jqueryui.com/) jest zaawansowaną wtyczką jQuery oraz jej sio-
strzanym projektem (patrz rysunek 9.1). Udostępnia obszerny zestaw efektów,
sposobów interakcji z użytkownikiem oraz elementów interfejsu użytkownika
(powszechnie nazywanych widżetami), które upraszczają proces tworzenia interak-
tywnych aplikacji internetowych. W dalszej części książki, w rozdziale 14., użyjesz
jQuery UI oraz własnego kodu JavaScript do opracowania prostej (lecz użytecznej)
aplikacji internetowej.

9
ROZDZIAŁ

http://jqueryui.com/

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Czym jest jQuery UI?

324

Rysunek 9.1. Witryna jQuery UI pozwala na pobranie wtyczki i tworzenie własnych „tematów” graficznych
określających postać elementów interfejsu użytkownika budowanych przy użyciu jQuery UI. Można na niej
znaleźć także przykłady dostępnych widżetów, efektów animacji oraz sposobów interakcji, a dokumentacja
umieszczona pod adresem http://api.jquery.com/ pozwala poznać zasady ich działania

Wtyczka jQuery UI składa się z wielu różnych fragmentów, które można podzie-
lić na trzy kategorie.

 Widżety. Widżet to fragment kodu JavaScript tworzący użyteczny element
interfejsu użytkownika. Przykładowo widżet Dialog pozwala na tworzenie wy-
skakujących okien dialogowych — przypominają one niestandardowe okienka
informacyjne (patrz strona 330), lecz zapewniają pełną kontrolę nad swoim
wyglądem i działaniem. Można ich używać, by na przykład wyświetlić for-
mularz do logowania bądź regulamin witryny. Takie okna dialogowe doskonale
nadadzą się do wyświetlania ważnych informacji, za każdym razem gdy użyt-
kownik wejdzie na witrynę, lub informacji o zdjęciu, kiedy użytkownik wskaże
je myszą.

Kolejnym przykładem może być widżet kalendarza, który zapewnia użyt-
kownikom możliwość łatwego i wygodnego wybierania dat. Za jego pomocą
można wyświetlić na stronie okienko z kalendarzem, w którym użytkownik
klika datę. Z powodzeniem można by go zastosować podczas tworzenia for-
mularza rezerwacji na stronie biura podróży („Wybierz początek okresu rezer-
wacji”) bądź też jako sposób poruszania się po liście nadchodzących zdarzeń.

http://api.jquery.com/

R O Z D Z I AŁ 9 . R O Z B U D O W A I N T E R F E J S U UŻY T K O W N I K A

Dlaczego warto używać
jQuery UI?

325

Wtyczka jQuery UI udostępnia wiele takich widżetów, a kilka z nich poznasz
w tym rozdziale oraz w następnym.

 Sposoby interakcji. Wtyczka jQuery UI zawiera także kilka bardzo użytecz-
nych narzędzi pozwalających użytkownikom na prowadzenie interakcji ze
stroną. Pozwala na przykład tworzyć elementy, które można przeciągać. Wy-
obraź sobie aplikację sklepu internetowego, w której użytkownik może do-
słownie przeciągnąć wybrany produkt do swojego koszyka, albo internetową
wersję gry w warcaby, w której gracze, zamiast klikać, przeciągają pionki. Inny
mechanizm jQuery UI pozwala na tworzenie elementów, których wielkość
da się zmieniać —możesz na przykład wyświetlić okno dialogowe zawierające
formularz do napisania wpisu na blogu. Użytkownik przeglądający taką stronę
może przeciągnąć wierzchołek pola, by go powiększyć lub zmniejszyć. Innymi
słowy, zwykły znacznik <div> może działać jak okno przeglądarki, dysponujące
elementami do zmiany wielkości. Biblioteka jQuery UI oferuje kilka takich
sposobów interakcji, które zostały opisane w rozdziale 12.

 Efekty. jQuery UI udostępnia także kilka sposobów animacji, takich jak stop-
niowe pojawienie się (ang: fade in, patrz strona 214), zaniknięcie (ang: fade
out, patrz strona 214), zsunięcie (ang. slide down, patrz strona 216) oraz
bardziej ogólną funkcję animate(). Jednak dostępnych sposobów animacji
jest znacznie więcej — jQuery UI pozwala na animowanie zmian koloru,
zmian stylów CSS i tak dalej. Informacje na ten temat zostały podane w dalszej
części książki, od strony 461.

Dlaczego warto używać jQuery UI?
Można się zastanawiać, dlaczego warto używać akurat jQuery UI, skoro istnieją
tysiące innych wtyczek jQuery. Nie tylko w jQuery UI można znaleźć wiele wy-
myślnych wtyczek pozwalających na tworzenie etykietek ekranowych, kart czy też
okien dialogowych. Można znaleźć wtyczki oferujące dokładnie to samo, co jQuery
UI, a nawet znacznie więcej. Więcej informacji na temat tych rozwiązań podano na
stronie 327. Mimo to, istnieje kilka powodów przemawiających za tym, że jQuery
UI jest świetnym rozwiązaniem. Oto one.
 Wtyczka ta jest rozwijana przez Fundację jQuery (https://jquery.org). Jest to

organizacja niedochodowa, powołana w celu promowania rozwoju biblio-
teki jQuery, jQuery UI oraz kilku innych projektów. Innymi słowy, jQuery
i jQuery UI są jak rodzeństwo, a zespoły odpowiedzialne za ich rozwój ściśle
współpracują; jeśli zatem zmieni się biblioteka jQuery, zmiany są bardzo szybko
uwzględniane także w jQuery UI.

 jQuery UI jest kompletnym pakietem. Jeśli byłoby trzeba, można by, element
po elemencie, zebrać zestaw wtyczek powielających wszystkie możliwości
jQuery UI. Jednak w takim przypadku musielibyśmy używać kilkunastu wtyczek
napisanych przez różne osoby i wymagających kilkunastu różnych plików
CSS oraz JavaScript. Zapanowanie nad tymi wszystkimi wtyczkami byłoby
dosyć czasochłonnym wyzwaniem. Natomiast wtyczka jQuery UI składa się
z jednego pliku JavaScript oraz dwóch plików CSS. Gdy pojawią się jakiekolwiek
zmiany, aktualizacja tych trzech plików będzie szybka i łatwa.

https://jquery.org

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Dlaczego warto używać
jQuery UI?

326

U W A G A N A W T Y C Z K I

Co zamiast jQuery UI?
 Wtyczka jQuery UI nie jest jedyną biblioteką uła-

twiającą tworzenie interfejsu użytkownika. Poniżej

opisano kilka najpopularniejszych rozwiązań, które

mogą być zamiennikami. Kendo UI (http://www.

telerik.com/kendo-ui) jest kompletnym zestawem

wtyczek przeznaczonych do tworzenia aplikacji

internetowych (oraz mobilnych). Zawiera niektóre

możliwości biblioteki jQuery UI, na przykład kalen-

darz do wybierania dat oraz etykiety ekranowe,

lecz także wiele bardziej zaawansowanych rozwią-

zań, takich jak narzędzia do wizualizacji danych po-

zwalające na tworzenie różnego typu wykresów

i diagramów. Podobnie jak jQuery, także Kendo UI

udostępnia narzędzie do tworzenia tematów gra-

ficznych oraz obszerną dokumentację. Niestety,

w odróżnieniu od jQuery UI, która jest darmowa,

Kendo UI jest produktem komercyjnym, którego

cena waha się od 399 do 999 USD.

 Wijmo UI (http://wijmo.com/) jest zestawem za-

awansowanych widżetów do tworzenia interfej-

sów użytkownika. Bazuje na jQuery oraz jQuery UI

i obejmuje ponad 40 widżetów, wśród których są

wykresy, siatki, arkusze kalkulacyjne i tak dalej.

Jest to doskonały zestaw wtyczek, dostarczający

wszystko, czego aplikacje internetowe mogą po-

trzebować (a nawet więcej), i działa świetnie zarówno

na klasycznych komputerach, jak i na urządzeniach

mobilnych. Jednak ze względu na cenę, która

waha się od 495 do 1195 USD na programistę,

Wijmo UI jest narzędziem, na które mogą sobie

pozwolić wyłącznie firmy z dużymi budżetami.

 jQWidgets (http://www jqwidgets.com/) jest ko-

lejnym zestawem wtyczek dysponującym własnym

narzędziem do tworzenia tematów graficznych

oraz obszernym zestawem widżetów, takich jak

tabele danych, siatki, suwaki, okno do wyboru kolo-

ru i wiele innych. Podobnie jak pozostałe wymie-

nione tu biblioteki, także i ta jest produktem ko-

mercyjnym, a cena zaczyna się od 199 USD.

 Zapewnia ona jednolity wygląd. Wszystkie widżety jQuery UI mają podobny,
spójny wygląd. Panele kart są podobne do okien dialogowym oraz kalendarza,
dzięki czemu nie trzeba spędzać długich godzin na dostosowywaniu wyglądu
wielu różnych wtyczek, by sprawiały wrażenie, że faktycznie należą do jednej
witryny. Co więcej, narzędzie ThemeRoller (opisane bardziej szczegółowo
w rozdziale 11.) daje możliwość wybierania czcionek, kolorów oraz innych
aspektów wyglądu widżetów jQuery UI. Za jego pomocą znacznie łatwiej moż-
na dostosować wygląd widżetów jQuery UI do schematu kolorów, czcionek
i ogólnego wyglądu naszej istniejącej witryny.

 jQuery UI to projekt, który ma bardzo dobre wsparcie. Wiele wtyczek jQuery
powstało jako efekt pracy i miłości jednego programisty, ewentualnie dwóch,
a w najlepszym przypadku trzech. Jeśli stracą oni zainteresowanie projektem,
znajdą nową pracę albo pójdą do klasztoru, ich wtyczki już nigdy nie będą aktu-
alizowane, a jakiekolwiek błędy odnalezione w ich kodzie nie zostaną popra-
wione. Natomiast projektem jQuery UI zajmuje się bardzo wiele osób, dlatego
można mieć pewność, że jeszcze bardzo długo będzie aktywnie rozwijany.
(A konkretnie, jak wiele osób się nich zajmuje? Gdyby zajrzeć na listę osób
zaangażowanych w prace nad projektem — dostępną na stronie https://github.
com/jquery/jquery-ui/blob/master/AUTHORS.txt — można się przekonać, że jest
to ponad 270 osób).

http://www.telerik.com/kendo-ui
http://www.telerik.com/kendo-ui
http://wijmo.com/
http://www.jqwidgets.com/
https://github.com/jquery/jquery-ui/blob/master/AUTHORS.txt
https://github.com/jquery/jquery-ui/blob/master/AUTHORS.txt

R O Z D Z I AŁ 9 . R O Z B U D O W A I N T E R F E J S U UŻY T K O W N I K A

Stosowanie jQuery UI

327

Stosowanie jQuery UI
Witrynę poświęconą bibliotece jQuery UI można znaleźć pod adresem http://jqueryui.
com/. Na stronie głównej poczesne miejsce zajmuje ramka zawierająca odnośniki
pozwalające na pobranie biblioteki (patrz rysunek 9.1). Nie zwracaj uwagi na
odnośniki Quick Download — są one przeznaczone dla programistów, którzy chcą
pracować na kodzie biblioteki lub szczegółowo go analizować. (Jeśli jednak klikniesz
ten odnośnik, pobierzesz archiwum zawierające kilkanaście plików używanych
podczas tworzenia jQuery UI, a kilka z nich służy do automatyzacji procesu przygo-
towywania biblioteki do użycia i są zupełnie nieprzydatne dla osób, które chcą je-
dynie korzystać z biblioteki na swojej stronie).

Kliknij zatem przycisk Custom Download lub opcję Download umieszczoną
w pasku nawigacyjnym w górnej części strony. W obu przypadkach zostanie wy-
świetlona strona Download Builder (patrz rysunek 9.2) pozwalająca na wybranie
komponentów, których chcesz używać, i odrzucenie tych, które nie będą potrzebne.
Możesz na przykład dojść do wniosku, że widżety paska postępów, suwaka oraz
pola do edycji wartości liczbowych (ang. spinner) nie będą potrzebne; wtedy wy-
starczy usunąć zaznaczenie z pól wyboru umieszczonych przy ich nazwach, a nie
zostaną dołączone do pobieranej wersji biblioteki. Wybierając tylko te widżety,
które będą naprawdę niezbędne, możesz uzyskać możliwie najmniejszą wersję bi-
blioteki.

Poniżej listy dostępnych komponentów znajduje się sekcja o nazwie Theme
(temat graficzny). Można w niej wybrać różne tematy graficzne, które mogą być
stosowane w jQuery UI, a nawet przejść do narzędzia ThemeRoller pozwalającego
na wybranie własnych kolorów, czcionek oraz określenie innych aspektów wyglądu
jQuery UI (w tym celu wystarczy kliknąć odnośnik design a custom theme1).
Więcej informacji o tematach graficznych oraz ich tworzeniu można znaleźć
w rozdziale 11.

Aby pobrać pliki jQuery UI, wystarczy kliknąć przycisk Download umieszczony
na samym dole strony Download Builder. Spowoduje to pobranie pliku ZIP, za-
wierającego katalog o nazwie, takiej jak jquery-ui-1.11.1.custom. Wewnątrz nie-
go znajdują się dwa podkatalogi (przedstawione z lewej strony rysunku 9.3). Nas
interesuje jedynie katalog images, zawierający obrazy używane przez jQuery UI.
Katalog external można pominąć: zawiera on kopię biblioteki jQuery, która i tak
zapewne już wcześniej została pobrana i dodana do tworzonej witryny.

Aby zastosować bibliotekę jQuery UI, potrzebny będzie plik JavaScript, zawiera-
jący cały kod wymagany do tworzenia widżetów, efektów i zapewniania możli-
wości interakcji z użytkownikiem. Dodatkowo potrzebny będzie plik CSS, który
określi wygląd widżetów oraz efektów tworzonych przez jQuery UI. Jednak, jak
widać na rysunku 9.3, takich plików CSS i JavaScript jest kilka, a zatem należy wie-
dzieć, które z nich wybrać.

1 zaprojektuj niestandardowy temat — przyp. tłum.

http://jqueryui.com/
http://jqueryui.com/

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Stosowanie jQuery UI

328

Rysunek 9.2. Strona do przygotowywania wersji biblioteki jQuery UI dostosowanej do potrzeb. Można w niej
wybrać tylko te widżety, sposoby interakcji oraz efekty, które będą potrzebne. W tym celu wystarczy usunąć
znaczniki pól wyboru przy nazwach tych elementów biblioteki, których nie planujemy używać. Jeśli chcemy
wybrać tylko kilka z dostępnych elementów, można kliknąć pole wyboru Toggle All (przełącz wszystkie; zakre-
ślone na rysunku), aby usunąć zaznaczenie wszystkich pól, a następnie zaznaczyć tylko te, które nas interesu-
ją. Niektóre widżety są zależne od innych elementów biblioteki — na szczęście strona jest na tyle inteligentna,
że sama zaznaczy takie dodatkowe, niezbędne elementy. Jeśli na przykład usuniemy zaznaczenie wszystkich
elementów, a następnie wybierzemy widżet Accordion, automatycznie zostaną zaznaczone także pola wyboru
Core oraz Widget, gdyż są wymagane do działania wybranego widżetu

Rysunek 9.3. Archiwum po-
brane z witryny jQuery UI za-
wiera wiele plików, a większość
z nich nie będzie potrzebna
(z lewej). Pliki JavaScript i CSS,
w których nazwach nie wystę-
puje fragment „min”, nie są zmi-
nimalizowane: możesz z nich
skorzystać, jeśli chcesz dowie-
dzieć się, jak działają kody CSS
oraz JavaScript wtyczki

R O Z D Z I AŁ 9 . R O Z B U D O W A I N T E R F E J S U UŻY T K O W N I K A

Stosowanie jQuery UI

329

Zgodnie z informacjami zamieszczonymi na stronie 139, wszystkie pliki biblioteki
zawierające w nazwie litery „min”, takie jak jquery-ui.min.js, to pliki „zminimali-
zowane”, co oznacza, że w celu zoptymalizowania wielkości usunięto z nich
wszystkie niepotrzebne znaki odstępów oraz przeprowadzono inne zmiany. Właśnie
te zminimalizowane pliki najlepiej nadają się do wykorzystania na witrynie, gdyż
zapewnią najkrótszy czas pobierania strony. Jednak proces minimalizacji sprawia,
że zawartość pliku staje się nieczytelna, dlatego też wprowadzanie zmian w takich
plikach jest niemożliwe. Zazwyczaj możliwość czytania i analizy kodu JavaScript
biblioteki jQuery UI nie jest potrzebna, chyba że zależy nam na zrozumieniu spo-
sobów jej działania. Oznacza to, że na witrynie warto używać pliku jquery-ui.min.js.

Nieco większym problemem może być wybór pliku CSS — w pobranym archiwum
ZIP jest ich aż sześć! Nam potrzebny będzie plik jquery-ui.min.css, gdyż zawiera
cały kod CSS niezbędny do działania jQuery UI. Optymalny sposób organizacji
plików jQuery UI został przedstawiony na rysunku 9.3, po prawej stronie.

Uwaga: Dlaczego dostępnych jest wiele plików CSS? Oprócz jquery-ui.min.css, w pobranym archiwum

umieszczone są także pliki jquery-ui.theme.min.css oraz jquery-ui structure.min.css. Plik, w którego

nazwie występuje słowo „structure”, zawiera kod CSS określający „strukturę” widżetów jQuery UI,

czyli takie informacje jak rozmieszczenie elementów na stronie; z kolei plik „theme” zawiera wy-

łącznie informacje o używanych kolorach, czcionkach, ich wielkości, o wypełnieniach oraz innych

wizualnych aspektach widżetów. Innymi słowy, aby uzyskać ten sam efekt, który daje użycie pliku

jquery-ui.min.css, konieczne byłoby dołączenie do strony obu pozostałych arkuszy stylów. To za dużo

zachodu.

Dodawanie jQuery UI do strony
Pamiętaj, że jQuery UI jest zwyczajną wtyczką biblioteki jQuery, zatem odnoszą
się do niej podstawowe zasady stosowania wtyczek przedstawione na stronie
265. Oznacza to, że najpierw należy dołączyć arkusz stylów CSS, następnie plik
biblioteki jQuery, wprowadzić niezbędne zmiany w kodzie HTML strony i w końcu
wywołać odpowiednią funkcję wtyczki. Poniżej znajdziesz szczegółowy opis tych
czynności, zamieszczony, by zebrać je i przedstawić w jednym miejscu.

 1. Pobierz wtyczkę jQuery UI zgodnie z informacjami podanymi w poprzed-
niej części rozdziału.
Kiedy już pobierzesz pliki na dysk, musisz przenieść zarówno je, jak i katalog —
czyli wszystkie pliki niezbędne do działania biblioteki jQuery — do katalogu
tworzonej witryny, co pokazano na rysunku 9.3. Najpierw umieść plik jquery-
ui.min.css oraz katalog images w katalogu zawierającym arkusze stylów; na-
stępnie przenieś plik jquery-ui.min.js do katalogu z plikami JavaScript. Zaw-
sze używaj plików zminimalizowanych, czyli tych, w których nazwach znajduje
się fragment „min”. Ich mniejszy rozmiar oznacza, że będą szybciej pobierane.
Do korzystania z jQuery UI potrzebujesz jedynie plików jquery-ui.min.js,
jquery-ui.min.css oraz katalogu images. Ten ostatni należy umieścić w tym
samym katalogu, w którym wcześniej umieściłeś plik CSS (patrz rysunek 9.3,
po prawej stronie).

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Wyświetlanie
komunikatów

330

 2. Dołącz arkusz stylów CSS do strony w następujący sposób:
<link href="css/jquery-ui.min.css" rel="stylesheet">

Co więcej, ten plik warto dołączyć do strony przed znacznikiem dołączającym
arkusz stylów witryny:

<link href="css/jquery-ui.min.css" rel="stylesheet">
<link href="css/site.css" rel="stylesheet">

Dzięki temu, gdybyś uznał za niezbędne wprowadzenie drobnych zmian w te-
macie graficznym jQuery, mógłbyś umieścić odpowiednie reguły CSS w arkuszu
stylów witryny.

Ogólnie rzecz biorąc, nie warto modyfikować arkusza stylów jQuery UI, gdyż
może się okazać, że w przyszłości będzie trzeba go zastąpić nowszym — do-
starczonym wraz z nowszą wersją wtyczki. (Więcej informacji na temat przygo-
towywania i stosowania tematów graficznych jQuery UI można znaleźć w roz-
dziale 11.).

 3. Do strony dołącz pliki biblioteki jQuery oraz jQuery UI.
<script src="js/jquery-1.11.0.min.js"></script>
<script src="js/jquery-ui.min.js"></script>

Wtyczka jQuery UI nie będzie działać bez biblioteki jQuery, dlatego koniecznie
musisz się upewnić, że jej plik został dołączony przed plikiem JavaScript
jQuery UI.

Kiedy już umieścisz wszystkie niezbędne pliki biblioteki jQuery UI na witrynie
i dołączysz do jej stron, będziesz mógł skorzystać z jej możliwości. Ponieważ
każdy efekt, sposób interakcji z użytkownikiem oraz widżet są inne, nie można
podać jednego zestawu instrukcji opisującego sposób ich użycia. W dalszej części
rozdziału zostały przedstawione niektóre spośród najczęściej używanych widżetów
jQuery UI.

Wyświetlanie komunikatów
przy użyciu okien dialogowych

Standardowe okno dialogowe przeglądarek WWW ma bardzo destrukcyjny cha-
rakter (patrz rysunek 1.3): jego wygląd w niczym nie przypomina projektu gra-
ficznego strony, a używanej w nim czcionki, jej wielkości oraz koloru nie można
zmieniać. Co więcej, dodatkowo mogą być w nim prezentowane komunikaty,
których nie chcemy wyświetlać; przykładowo przeglądarka Chrome dodaje ko-
munikat „Zapobiegaj wyświetlaniu dodatkowych okien dialogowych na tej stro-
nie”. Na szczęście jQuery UI udostępnia widżet okna dialogowego pozwalający na
budowanie własnych okien dialogowych, takich jak przedstawione na rysunku
9.4. Do takich okien dialogowych można dodawać tekst, formularze oraz obrazy,
nadawać im wygląd odpowiadający projektowi witryny, a nawet określać czynności,
które będą wykonywane podczas interakcji z użytkownikiem.

R O Z D Z I AŁ 9 . R O Z B U D O W A I N T E R F E J S U UŻY T K O W N I K A

Wyświetlanie
komunikatów

331

Rysunek 9.4.
Widżet Dialog jQuery
UI pozwala na bardzo
łatwe tworzenie
okien dialogowych
odpowiadających
swoim wyglądem
projektowi witryny

Stosowanie okien dialogowych jQuery UI jest zaskakująco proste (podobnie
zresztą, jak korzystanie z większości widżetów i możliwości tej biblioteki).

 1. Dołącz do strony pliki CSS i JavaScript jQuery UI, zgodnie z informacjami
podanymi wcześniej — na stronie 329.

Od czegoś trzeba zacząć!
 2. Dodaj do treści strony znacznik <div> zawierający komunikat, który chcesz
wyświetlić w oknie dialogowym, oraz atrybut title zawierający tytuł okna.

Przykładowo poniżej został zamieszczony fragment kodu HTML użyty do
utworzenia okna dialogowego przedstawionego na rysunku 9.4.

<div id="hello" title="Witaj, świecie!">
 <p>To okno dialogowe jest w rzeczywistości zwyczajnym elementem
 div, umieszczonym w wybranym miejscu strony przy użyciu
 umiejscawiania bezwzględnego.</p>
 <p>Spróbuj przeciągnąć okno w inne miejsce strony.
 Owszem, możesz to zrobić!</p>
</div>

Ponieważ musisz nakazać jQuery UI przekształcić ten znacznik <div> w okno
dialogowe, zatem potrzebujesz jakiegoś sposobu, by je zidentyfikować. Dobrym
rozwiązaniem jest dodanie identyfikatora, takiego jak id= hello .

Uwaga: Do tworzenia okien dialogowych wcale nie trzeba używać znaczników <div>. Doskonale do

tego celu nada się każdy element blokowy, na przykład <article> lub <p>.

 3. Umieść na stronie wywołanie funkcji $(document).ready():
$(document).ready(function() {

}); // Koniec funkcji ready.

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Wyświetlanie
komunikatów

332

 4. Użyj jQuery do wybrania elementu <div>, a następnie wywołaj funkcję
dialog():

$(document).ready(function() {
 $('#hello').dialog();
}); // Koniec funkcji ready.

Zastosowałeś tu wywołanie $('#hello'), gdyż właśnie taki identyfikator
nadałeś znacznikowi <div> w kroku 2., choć możesz także użyć dowolnego inne-
go sposobu wybierania elementów udostępnianego przez jQuery (patrz strona
147), by pobrać odpowiedni element strony i przekształcić go w okno dialogowe.

Wykonanie powyższych czynności sprawi, że okno dialogowe zostanie wyświe-
tlone natychmiast po wczytaniu strony. Takie rozwiązanie jest dobre, jeśli
chcemy wyświetlić użytkownikowi jakiś pilny komunikat, na przykład „Witryna
zostanie wyłączona w celach konserwacji dziś w godzinach od 3:00 do 4:00 rano”,
bądź też chcemy wyświetlić reklamę, zanim użytkownik będzie mógł przeczytać
zawartość witryny. W następnej części rozdziału dowiesz się, w jaki sposób można
początkowo ukryć okno dialogowe i wyświetlić je dopiero w odpowiedzi na jakieś
zdarzenie. Jednak najpierw spróbuj utworzyć swoje pierwsze okno dialogowe.

Miniprzykład — tworzenie okna dialogowego
Teraz, kiedy już wiesz, jak działa widżet okna dialogowego, spróbuj go wypróbo-
wać w praktyce — dodaj do strony okno dialogowe, które będzie wyświetlane
bezpośrednio po jej wczytaniu.

Uwaga: Informacje dotyczące sposobu pobierania przykładów można znaleźć na stronie 46.

 1. W edytorze tekstów otwórz plik hello_world.html umieszczony w katalogu
R09.

Plik zawiera już znaczniki dołączające bibliotekę jQuery oraz szkielet wy-
wołania funkcji $(document).ready() (patrz strona 190), jednak będziesz
musiał dołączyć pliki CSS oraz JavaScript biblioteki jQuery UI.

 2. Do sekcji nagłówka strony dodaj poniższe wiersze kodu wyróżnione po-
grubioną czcionką:

<link href="../_css/jquery-ui.min.css" rel="stylesheet">
<link href="../_css/site.css" rel="stylesheet">
<script src="../_js/jquery.min.js"></script>
<script src="../_js/jquery-ui.min.js"></script>

Zwróć uwagę, że arkusz stylów jQuery UI dołączyłeś przed arkuszem site.css,
natomiast plik JavaScript za plikiem biblioteki jQuery. Teraz nadszedł czas,
by dodać kod HTML, który stanie się oknem dialogowym.

 3. Odszukaj pusty wiersz umieszczony bezpośrednio poniżej komentarza
<!-- Tutaj dodaj kod HTML okna dialogowego. --> i wpisz w nim:

<div id="hello" title="Witaj, świecie!">
 <p>Okienko dialogowe jQuery UI.</p>
</div>

A teraz przekształcisz ten znacznik <div> w okno dialogowe.

R O Z D Z I AŁ 9 . R O Z B U D O W A I N T E R F E J S U UŻY T K O W N I K A

Wyświetlanie
komunikatów

333

 4. W pustym wierszu w wywołaniu funkcji $(document).ready() wpisz:
$(document).ready(function() {
 $('#hello').dialog();
}); // Koniec funkcji ready.

To wywołanie pobiera znacznik <div> dodany w poprzednik kroku i zamienia
go w okno dialogowe. To naprawdę jest takie proste!

 5. Zapisz stronę i wyświetl ją w przeglądarce.
Na stronie zostanie wyświetlone okno dialogowe. Możesz zmieniać jego położe-
nie — wystarczy wskazać jego pomarańczowy pasek tytułu, wcisnąć lewy przy-
cisk myszy i przeciągnąć okno w inne miejsce. Możesz nawet zmienić wielkość
okna — wystarczy przeciągnąć dowolny z jego wierzchołków. Kiedy ponownie
umieścisz wskaźnik myszy w obszarze paska tytułu, zauważysz, że wskaźnik
zmieni kształt na czterokierunkową strzałkę. To nie jest standardowe zacho-
wanie przeglądarki WWW — to jeden z wielu drobnych efektów tworzonych
przez jQuery UI.
Kompletną wersję tego przykładu znajdziesz w pliku complete_hello_world.html.

Określanie właściwości okna dialogowego
Okna dialogowe udostępniają wiele właściwości, takich jak wysokość, szerokość,
sposób animacji wyświetlania i ukrywania okna, które możemy określać, prze-
kazując w wywołaniu funkcji dialog() literał obiektowy z odpowiednimi parami
nazwa – wartość. Zgodnie z informacjami podanymi na stronie 165, literały obiek-
towe to grupa par nazwa – wartość, zapisanych wewnątrz nawiasów klamrowych.
Oto przykład takiego literału:

{
 name : 'Dave',
 awesomeAuthor : true
}

Literał obiektowy zawierający opcje, które wtyczka jest w stanie zrozumieć, jest
przekazywany w wywołaniu funkcji dialog(). Załóżmy na przykład, że nie chcesz,
by użytkownicy mogli przesuwać okno i zmieniać jego wielkość. W tym celu wy-
starczy, że przekażesz w wywołaniu funkcji dialog() literał obiektowy z dwiema
opcjami, tak jak na poniższym przykładzie:

$('#hello').dialog({
 draggable : false,
 resizable : false
});

Widżet Dialog utworzono w taki sposób, aby uniemożliwiał przeciąganie okna
dialogowego, jeśli właściwości draggable zostanie przypisana wartość false,
oraz uniemożliwiał zmianę wielkości okna, jeśli właściwości resizable zostanie
przypisana wartość false. Poniżej przedstawionych zostało kilka najbardziej przy-
datnych opcji okien dialogowych.

 draggable. Właściwości tej można przypisać wartość false, aby unieruchomić
okno dialogowe i uniemożliwić użytkownikom jego przesuwanie. (Jeśli chcesz
zapewnić użytkownikom możliwość przesuwania okna, nie musisz robić nic
szczególnego — to standardowe zachowanie okien dialogowych jQuery UI).

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Wyświetlanie
komunikatów

334

 resizable. Właściwości należy przypisać wartość false, aby użytkownicy nie
mogli zmieniać wielkości okna dialogowego. (Także w tym przypadku, jeśli
chcesz, by użytkownicy mogli zmieniać wielkość okna, nie musisz nic robić
— okna domyślnie zapewniają tę możliwość).

 height oraz width. Standardowo jQuery UI wyświetla okno dialogowe na
tyle duże, by zmieściła się w nim cała prezentowana zawartość. Jednak to
domyślne działanie można zmienić — wystarczy przekazać dokładne wymiary
okna wyrażone w pikselach. Aby na przykład utworzyć okno dialogowe o szero-
kości 600 pikseli i 400 wysokości, wystarczyłoby przekazać następujące wła-
ściwości:

width: 600,
height: 400

Określając wymiary okna, można używać wyłącznie pikseli (inne sposoby
określania długości, takie jak wartości procentowe bądź jednostki em, nie są
obsługiwane), przy czym do liczb nie należy dodawać liter px, które zazwy-
czaj są zapisywane za wymiarami podawanymi w regułach stylów. Jeśli okre-
ślisz wymiary okna, lecz jego zawartość będzie na tyle duża, że się w nim cała
nie zmieści, jQuery UI wyświetli wewnątrz okna pasek przewijania — użyt-
kownik będzie mógł z niego skorzystać, by wyświetlić całą zawartość okna.
(Tak zazwyczaj działają okna dialogowe zawierające regulaminy korzystania
z witryny lub usługi, które trzeba w nieskończoność przewijać, by przeczytać
wszystkie paragrafy).

Nie trzeba podawać wartości obu tych właściwości. Może Ci na przykład za-
leżeć, by okno miało odpowiednią szerokość, lecz jego wysokość nie będzie
mieć znaczenia. W takim przypadku wystarczy przekazać samą właściwość
width.

 Minimalna szerokość i wysokość. Określając wartości właściwości minWidth
oraz minHeight, można nakazać utworzenie okna dialogowego o określonych
wymiarach minimalnych. Aby na przykład okno dialogowe nie było węższe
od 600 pikseli, ani niższe od 400 pikseli, należałoby zastosować następujące
właściwości:

minWidth: 600,
minHeight: 400

W przypadku określenia tych właściwości jQuery UI pozwoli, by jego wymiary
były większe od podanych, ale nigdy nie dopuści, by były od nich mniejsze. In-
nymi słowy, jeśli zawartość będzie zbyt duża, by można ją wyświetlić w oknie
o takich wymiarach, jQuery UI powiększy je, by wyświetlić całą zawartość.

 Maksymalna szerokość i wysokość. Można także nakazać jQuery UI utwo-
rzenie okna, którego wielkość nie będzie mogła przekroczyć zadanej szerokości
i wysokości. Te maksymalne wymiary określane są odpowiednio przy użyciu
właściwości maxWidth oraz maxHeight. Aby na przykład okno dialogowe mogło
mieć co najwyżej 600 pikseli szerokości i 400 pikseli wysokości, należałoby użyć
poniższych właściwości:

maxWidth: 600,
maxHeight: 400

R O Z D Z I AŁ 9 . R O Z B U D O W A I N T E R F E J S U UŻY T K O W N I K A

Wyświetlanie
komunikatów

335

Jeśli zawartość okna nie jest zbyt duża, to jQuery UI może je zmniejszyć po-
niżej tych wartości maksymalnych, jednak nigdy ich nie przekroczy. Jeśli
zawartość jest na tyle duża, że nie można jej zmieścić w oknie o podanych
wymiarach, zostanie w nim wyświetlony pasek przewijania, za pomocą któ-
rego użytkownik będzie mógł przesuwać zawartość w górę i w dół.

 modal. Modalne okna dialogowe są używane w celu przyciągnięcia uwagi
użytkownika oraz uniemożliwienia mu wykonywania innych operacji niż
związane z obsługą okna. Kiedy użytkownik wyświetli modalne okno dialo-
gowe, nie będzie mógł kliknąć w żadnym innymi miejscu strony — cała po-
wierzchnia strony z wyjątkiem okna zostanie przykryta ciemną, półprzezro-
czystą nakładką, przez co nawet trudno odczytać inne treści. Modalnych
okien dialogowych można używać, jeśli chcemy, by użytkownik musiał prze-
czytać komunikat, a może nawet podjąć jakąś ważną decyzję (taką jak: „Czy na
pewno chcesz usunąć z biblioteki wszystkie odcinki serialu Dr Who?”), zanim
będzie mógł wykonywać jakiekolwiek inne czynności. Aby utworzyć modalne
okno dialogowe, należy przypisać właściwości modal wartość true:

modal: true

Uwaga: Pełną listę dostępnych opcji oraz dodatkowe informacje na temat stosowania widżetu okna

dialogowego można znaleźć na stronie http://api.jqueryui.com/dialog/.

 show oraz hide. Okno dialogowe zazwyczaj jest wyświetlane na ekranie, kiedy
zostaje otworzone, i znika po zamknięciu. Ale czy takie działanie jest zabawne?
Dlatego, dzięki właściwościom show oraz hide, można określać animacje,
które będą odtwarzane odpowiednio w momencie wyświetlania oraz ukry-
wania okna dialogowego. Obie te właściwości mogą przyjmować wiele róż-
nych wartości. Jeśli przypiszemy im wartość true, okno będzie jedynie dosyć
szybko pojawiać się lub zanikać.

show: true,
hide: true

Można im jednak przypisać jakąś liczbę, określającą czas trwania animacji
wyrażony w milisekundach. Załóżmy na przykład, że chcesz, by okno poja-
wiało naprawdę szybko — powiedzmy, w czasie 250 milisekund — lecz zani-
kało przez całe 2 sekundy. Możesz to zrobić, używając poniższych właściwości:

show: 250,
hide: 2000

Jednak możliwości nie ograniczają się do stopniowego pojawiania się lub zani-
kania. W obu tych właściwościach można także zapisać nazwę dowolnego efek-
tu jQuery (patrz strona 211). Trzeba tylko pamiętać, by zapisać ją w apostro-
fach, na przykład: 'slideDown'. A zatem gdybyś chciał, by oko dialogowe było
wsuwane i wysuwane ze strony, powinieneś użyć następujących właściwości:

show: 'slideDown',
hide: 'slideUp'

Można także zastosować efekty jQuery UI (patrz strona 461), takie jak 'scale'
lub 'explode'. A jakby tego wszystkiego było mało, to w każdej z tych wła-
ściwości można też zapisać kolejny literał obiektowy określający nazwę efektu,
czas jego trwania, opóźnienie oraz tempo animacji (patrz strona 465). Załóżmy

http://api.jqueryui.com/dialog/

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Wyświetlanie
komunikatów

336

na przykład, że chcesz, by po wydaniu polecenia zamknięcia okno odczekało 250
milisekund, a następnie znikało przez 1 sekundę przy użyciu efektu 'explode'
odtwarzanego za pomocą funkcji 'easeInQuad' (lepiej nie próbuj tego robić
w domu). W takim przypadku powinieneś skorzystać z właściwości hide o na-
stępującej postaci:

hide: {effect: 'explode', delay: 250, duration: 1000, easing: 'easeInQuad'}

 position. Standardowo okno dialogowe jest wyświetlane dokładnie pośrodku
okna przeglądarki. Można je jednak wyświetlić w innym miejscu. Do okre-
ślania położenia okna dialogowego służy właściwość position. Podobnie jak
właściwościom show oraz hide, także jej można przypisywać wartości kilku
różnych typów. W przypadku prostego określenia współrzędnych X i Y, wy-
starczy przekazać tablicę (patrz strona 77) zawierającą dwie liczby. Pierwsza
z nich określa przesunięcie okna dialogowego od lewej krawędzi strony wy-
rażone w pikselach; natomiast druga — przesunięcie od górnej krawędzi
strony. Załóżmy na przykład, że chciałbyś wyświetlić okno 100 pikseli od
lewej krawędzi strony i tuż poniżej (dajmy na to 10 pikseli) od górnej krawędzi.
W takim przypadku właściwość position powinna mieć następującą postać:

position: [100,10]

Położenie okna dialogowego można także określać przy użyciu słów kluczo-
wych: center, left, top, right oraz bottom. Aby przykładowo wyświetlić
okno dialogowe w prawym dolnym rogu okna przeglądarki, należałoby użyć
następującej właściwości position:

position: 'right bottom'

Trzeba przy tym pamiętać, że pierwsze z podanych słów kluczowych musi
określać położenie okna w poziomie (czyli może przyjmować wartości: left,
center lub right), natomiast drugie — położenie w pionie (czyli może przyj-
mować wartości: top, center lub bottom). Oba słowa kluczowe należy od-
dzielić od siebie znakiem odstępu.

I w końcu, ostatnią możliwością określenia położenia okna dialogowego jest
zapisanie we właściwości position obiektu position jQuery UI. Ten bardzo
użyteczny obiekt został dokładniej opisany w ramce na stronie 343.

Miniprzykład — przekazywanie opcji do okna dialogowego
W wywołaniu funkcji dialog() można przekazać dowolną kombinację opcji opi-
sanych w poprzednim punkcie rozdziału. Ich działanie i sposób użycia możesz wy-
próbować, rozwijając przykład zamieszczony we wcześniejszej części rozdziału.
W tym przykładzie wyświetlisz modalne okno dialogowe, dzięki czemu aż do
momentu jego zamknięcia użytkownik nie będzie mógł nic zrobić na stronie;
oprócz tego uniemożliwisz przeciąganie okna oraz zmianę jego wielkości. I jeszcze
ostatnia sprawa: zadbasz o to, by okno znikło z wielkim hukiem.

 1. W edytorze tekstów ponownie wyświetl plik hello_world.html, nad którym
pracowałeś w przykładzie na stronie 331.
Zacznij od przekazania pustego literału obiektowego w wywołaniu funkcji
dialog().

R O Z D Z I AŁ 9 . R O Z B U D O W A I N T E R F E J S U UŻY T K O W N I K A

Wyświetlanie
komunikatów

337

 2. Umieść kursor w wywołaniu funkcji dialog(), pomiędzy nawiasem otwie-
rającym i zamykającym. Wpisz {, następnie dwukrotnie naciśnij klawisz
Enter i wpisz }. Kod powinien wyglądać tak:

$(document).ready(function() {
 $('#hello').dialog({

 });
}); // Koniec funkcji ready.

Teraz możesz się zająć dodawaniem par określających wartości właściwości.
 3. Wewnątrz literału obiektowego wpisz: modal: true:

$(document).ready(function() {
 $('#hello').dialog({
 modal: true
 });
}); // Koniec funkcji ready.

Zapisz plik i otwórz go w przeglądarce. Cały obszar strony na zewnątrz okna
dialogowego zostanie przykryty ciemną, półprzezroczystą warstwą w skośne
paski. Aby strona ponownie była widoczna, musisz zamknąć okno dialogowe.

 4. W wierszu, który właśnie dodałeś, za słowem true wpisz przecinek. Naci-
śnij klawisz Enter i dopisz kolejne dwa wiersze (wyróżnione pogrubioną
czcionką):

$(document).ready(function() {
 $('#hello').dialog({
 modal: true,
 resizable: false,
 draggable: false
 });
}); // Koniec funkcji ready.

Pamiętaj, że pary nazwa – wartość muszą być oddzielane od siebie przecinkami.
Każdy wiersz kodu zawierający taką parę, z wyjątkiem ostatniego, musi się
kończyć przecinkiem. Dwa wiersze kodu, które oddałeś w tym kroku, unie-
możliwiają użytkownikom odpowiednio zmienianie wielkości okna dialogowego
oraz przeciąganie okna w inne miejsce. Teraz nadszedł czas, by zapewnić, że
okno będzie zamykane w sposób atrakcyjny wizualnie.

 5. Na końcu ostatniego z wpisanych wierszy kodu dodaj przecinek, naciśnij
klawisz Enter, po czym wpisz: hide: 'explode':

$(document).ready(function() {
 $('#hello').dialog({
 modal: true,
 resizable: false,
 draggable: false,
 hide: 'explode'
 });
}); // Koniec funkcji ready.

Właściwość dodana w tym kroku sprawi, że jQuery UI podczas zamykania
okna dialogowego wykorzysta efekt o nazwie 'explode'. Zapisz stronę i wy-
świetl ją w przeglądarce. Zwróć uwagę na to, co się dzieje podczas zamykania
okna dialogowego. Spróbuj się pobawić, testując inne efekty udostępniane
przez jQuery UI — w tym celu zastąp 'explode' innymi wartościami, takimi
jak 'bounce', 'blinds' lub 'drop'.
Kompletną wersję tej strony można znaleźć w przykładach dołączonych do książ-
ki, w pliku complete_dialog_properties.html, umieszczonym w katalogu R09.

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Wyświetlanie
komunikatów

338

Otwieranie okna dialogowego w odpowiedzi na zdarzenia
Okna dialogowe jQuery UI są łatwe w użyciu i stanowią doskonały zamiennik
dla nudnych okien informacyjnych przeglądarki. Jednak najprawdopodobniej nie
będziesz chciał, żeby okno było wyświetlane za każdym razem, gdy użytkownik
wyświetli stronę. Okna dialogowe są znacznie bardziej przydane, gdy wyświetla
się je w reakcji na czynności wykonywane przez użytkownika. Kiedy przykłado-
wo użytkownik kliknie przycisk „Zapisz się, by otrzymywać naszą gazetkę”,
można wyświetlić okno dialogowe zawierające formularz rejestracyjny, zamiast
przenosić go na inną stronę.

Okna dialogowe można wyświetlać w odpowiedzi na dowolne ze zdarzeń, które
poznałeś na stronie 182: kliknięcia, naciśnięcia klawiszy, zmianę wielkości okna
przeglądarki (choć takie rozwiązanie byłoby dość dziwne). Oprócz tego, zawsze
można otwierać okna dialogowe z poziomu własnego kodu. Załóżmy na przy-
kład, że utworzyłeś na swojej stronie quiz, który wymaga podania odpowiedzi
w określonym czasie. Jeśli czas upłynie, zanim użytkownik skończy podawać
odpowiedzi, możesz wyświetlić okno dialogowe z komunikatem: „Czas minął!”.

W celu wyświetlenia okna dialogowego musisz zrobić kilka rzeczy. Przede
wszystkim, musisz zażądać, by nie było ono otwierane bezpośrednio po utwo-
rzeniu — a normalnie właśnie tak się dzieje (patrz poprzedni miniprzykład).
Poza tym, będziesz potrzebował czegoś, co później spowoduje wyświetlenie
okna; w przeważające większości przypadków okna dialogowe są wyświetlane
przy użyciu funkcji obsługujących zdarzenia (patrz strona 182).

Aby ukryć okno dialogowe bezpośrednio po jego utworzeniu, w opcjach przeka-
zywanych w wywołaniu funkcji dialog() należy przekazać właściwość autoOpen
o wartości false. Załóżmy, że na swojej stronie umieściłeś znacznik <div>
o identyfikatorze login. Aby przekształcić ten znacznik w okno dialogowe jQuery
UI, a jednocześnie sprawić, że początkowo będzie ono niewidoczne, musiałbyś użyć
następującego kodu JavaScript:

$('#login').dialog({
 autoOpen: false
})

Po wczytaniu takiej strony jQuery UI przekształci znacznik <div> w okno dialo-
gowe i jednocześnie je ukryje. Aby wyświetlić takie okno, należy przekazać do
funkcji dialog() argument 'open'. Przykładowo załóżmy, że na swojej stronie
umieściłeś odnośnik „Zaloguj się” i chcesz, by jego kliknięcie powodowało wyświetle-
nie okna dialogowego. Załóżmy też, że odnośnik ten ma identyfikator loginLink.
Poniższy kod JavaScript pobiera odnośnik i dodaje do niego funkcję obsługującą
zdarzenia click, która powoduje wyświetlenie okna dialogowego:

$('#loginLink').click(function(evt) {
 evt.preventDefault();
 $('#login').dialog('open');
}); // Koniec funkcji click.

Drugi wiersz kodu — evt.preventDefault() — sprawia, że przeglądarka nie obsłu-
ży kliknięcia odnośnika, czyli nie przejdzie na wskazywaną przez niego stronę (wię-
cej informacji na temat metody preventDefault() można znaleźć na stronie 195).

R O Z D Z I AŁ 9 . R O Z B U D O W A I N T E R F E J S U UŻY T K O W N I K A

Wyświetlanie
komunikatów

339

Choć użytkownik zawsze może zamknąć okno dialogowe, klikając przycisk Close
widoczny w jego prawym górnym rogu, jednak można to także zrobić w sposób
programowy. Jeśli na przykład umieścisz na stronie okno dialogowe zawierające
formularz, możesz chcieć, by było ono zamykane po przesłaniu formularza;
dzięki temu użytkownik nie będzie musiał najpierw wysyłać formularza, a potem
zamykać okna.

Uwaga: Jak obsługiwać wyświetlanie i ukrywanie okna dialogowego dowiesz się w następnym przykładzie.

Przyjmijmy teraz, że okno dialogowe, którego przykład znajduje się nieco wcze-
śniej — znacznik <div> o identyfikatorze login — zawiera formularz. Chciałbyś,
że okno było zamykane po przesłaniu formularza. Tak można to zrobić:

$('#login form').submit(function() {
 $('#login').dialog('close');
}); // Koniec funkcji submit.

Aby zamknąć okno dialogowe, wystarczy pobrać odpowiedni znacznik <div> i wy-
wołać funkcję dialog(), przekazując do niej argument 'close'. Bardzo proste!

Uwaga: Przedstawiony tu przykład jest tylko częścią kompletnego rozwiązania. Po przesłaniu formula-

rza musiałbyś wykonać jeszcze kilka innych operacji. Przesłanie formularza powoduje opuszczenie bie-

żącej strony WWW i przejście na następną, prezentującą efekty przetworzenia formularza. Dlatego też

musiałbyś uniemożliwić przesłanie formularza i samodzielnie wysłać podane w nim dane na serwer,

używając wyłącznie kodu JavaScript oraz technologii AJAX. Rozwiązania tego typu poznasz w rozdziale 13.

Dodawanie przycisków do okien dialogowych
Okna dialogowe nadają się nie tylko do wyświetlania komunikatów dla użyt-
kowników witryny. Doskonale sprawdzają się także w sytuacjach, gdy trzeba po-
brać od użytkowników jakieś dane. Załóżmy na przykład, że napisałeś aplikację,
która pozwala użytkownikom na tworzenie własnej listy zadań do zrobienia (i fak-
tycznie, w rozdziale 14. napiszesz taką aplikację). Jeśli użytkownik doda zadanie, lecz
później zechce je usunąć, wystarczy, że kliknie przycisk w odpowiednim wierszu li-
sty. Aby jednak mieć pewność, że użytkownik nie usunie żadnego zadania przez
przypadek, mógłbyś wyświetlać okno dialogowe, które poprosi użytkownika o po-
twierdzenie decyzji (patrz rysunek 9.5).

Widżet Dialog jQuery UI pozwala na dodawanie przycisków do wszystkich two-
rzonych okien dialogowych. Co więcej, istnieje także możliwość wykonywania okre-
ślonych fragmentów kodu, w zależności od tego, który przycisk zostanie kliknię-
ty. Jeśli użytkownik kliknie przycisk Usuń, zadanie zostanie usunięte z listy,
jeśli jednak kliknie przycisk Anuluj, nic się nie stanie.

W celu utworzenia przycisków do wywołania funkcji dialog() należy przekazać
właściwość buttons, której wartością jest literał obiektowy zawierający nazwę
każdego z przycisków oraz kod, który ma zostać wykonany po jego kliknięciu. W ra-
mach przykładu załóżmy, że chcesz wyświetlić w oknie dialogowym przyciski Po-
twierdź oraz Anuluj. Można to zrobić w następujący sposób:

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Wyświetlanie
komunikatów

340

Rysunek 9.5. Chcesz,
aby okno dialogowe
było interaktywne?
Dodaj do niego przyci-
sk ! Taki przycisk, kiedy
użytkownik go kliknie,
może wykonywać zu-
pełnie dowolne opera-
cje. Przykładowo klik-
nięcie widocznego tu
przycisku Potwierdź
sprawi, że umieszczony
na stronie obrazek
robota „eksploduje”

$('#dialog').dialog({
 buttons : {
 "Potwierdź" : function() {
 // Kod wykonywany po kliknięciu przycisku "Potwierdź".
 },
 "Anuluj" : function() {
 // Kod wykonywany po kliknięciu przycisku "Anuluj".
 }
 } // Koniec właściwości buttons.
}); // Koniec funkcji dialog.

To całkiem spory kawałek kodu, w którym znajduje się wiele nawiasów klamro-
wych { i }. Pamiętaj jednak, że każdy z tych przycisków jest jedynie elementem
literału obiektowego — właściwością składającą się z nazwy oraz funkcji. Przy-
kładowo poniżej przedstawiony został kod tworzący przycisk Potwierdź:

"Potwierdź" : function() {
 // Kod wykonywany po kliknięciu przycisku "Potwierdź".
}

Jego pierwszy element — łańcuch znaków Potwierdź — to tekst, który zostanie
wyświetlony na przycisku w oknie dialogowym. Drugim elementem jest funkcja
(patrz strona 168) zawierająca kod, który zostanie wykonany po kliknięciu przy-
cisku. Ten kod może wykonywać całkowicie dowolne operacje, zaczynając od usu-
nięcia elementu strony, a kończąc na uruchomieniu przeglądarkowej gry napisa-
nej w całości w JavaScripcie. W większości przypadków będziemy także chcieli
zamknąć okno po kliknięciu przycisku. Zatem przyda się argument 'close'. Aby
po kliknięciu przycisku Potwierdź i zakończeniu wszelkich innych operacji, których
wykonanie potwierdzono, okno dialogowe zostało zamknięte, należałoby dodać
na końcu funkcji anonimowej wywołanie $(this).dialog('close'):

"Potwierdź" : function() {
 // Kod wykonywany po kliknięciu przycisku "Potwierdź".
 $(this).dialog('close');
}

R O Z D Z I AŁ 9 . R O Z B U D O W A I N T E R F E J S U UŻY T K O W N I K A

Wyświetlanie
komunikatów

341

Więcej informacji ma temat wywołania $(this) można znaleźć na stronie 169.
W kontekście okna dialogowego $(this) odwołuje się do znacznika <div>, który
został przekształcony w to okno. Dysponując tym odwołaniem, można na jego
rzecz wywołać funkcję dialog(), aby zamknąć okno. Teraz nadszedł czas, abyś
nabrał nieco doświadczenia w dodawaniu przycisków do okien dialogowych.

Miniprzykład — dodawanie przycisków
do okien dialogowych
W tym przykładzie zapewnisz użytkownikowi możliwość usunięcia obrazka ze
strony. Aby usunąć obrazek, wystarczy go kliknąć. Aby mieć pewność, że obrazek
nie zostanie usunięty przypadkowo, dodasz do strony okno dialogowe, w którym
użytkownik będzie musiał potwierdzić żądaną operację.

 1. W edytorze tekstów otwórz plik dialog_buttons.html.
W tym przykładzie do strony jest już dołączony arkusz stylów jQuery UI oraz
oba pliki JavaScript; możesz zatem zacząć od razu od dodania kodu HTML okna
dialogowego.

 2. Odszukaj pusty wiersz, umieszczony bezpośrednio pod komentarzem
<!-- Tutaj dodaj okno dialogowe. --> i wpisz w nim:

<div id="confirm" title="Potwierdź zniszczenie">
 <p>Czy jesteś pewny, że chcesz zniszczyć robota?</p>
</div>

Teraz zmienisz ten element <div> w okno dialogowe.
 3. Odszukaj pusty wiersz poniżej wywołania funkcji $(document).ready()
i wpisz w nim:

$('#confirm').dialog({

});

Ten kod zmienia wybrany element w okno dialogowe. Para nawiasów klamro-
wych { oraz } reprezentuje pusty literał obiektowy (patrz strona 165), w którym
zaraz zapiszesz opcje okna dialogowego. Najpierw zadbasz o to, by okno było
modalne. W ten sposób użytkownik nie będzie mógł zrobić na stronie nic innego,
dopóki go nie zamknie.

 4. Wewnątrz literału obiektowego wpisz modal: true:
$('#confirm').dialog({
 modal: true
});

Dodatkowo chcesz, aby początkowo okno dialogowe było ukryte. Będzie ono
wyświetlane dopiero po kliknięciu przez użytkownika obrazka przedstawiającego
robota.

 5. Za słowem true dodaj przecinek, naciśnij klawisz Enter, a następnie wpisz
kod wyróżniony poniżej pogrubioną czcionką:

$('#confirm').dialog({
 modal: true,
 autoOpen: false
});

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Wyświetlanie
komunikatów

342

Poszczególne pary nazwa – wartość muszą być oddzielone od siebie przecin-
kami, dlatego nie zapomnij dodać przecinka za wartością true. Już za chwilkę
zajmiesz się dodawaniem do okna dialogowego przycisków, jednak najpierw
dodasz kod niezbędny do wyświetlenia tego okna w odpowiedzi na kliknięcie
obrazka robota. Znacznik obrazka ma identyfikator robot, zatem bez trudu bę-
dziesz mógł się do niego odwołać i dodać obsługę zdarzenia click.

 6. Za wywołaniem funkcji dialog() dodaj trzy wiersze tekstu wyróżnione
poniżej pogrubioną czcionką; po tej zmianie kod powinien wyglądać w na-
stępujący sposób:

$(document).ready(function() {
 $('#confirm').dialog({
 modal: true,
 autoOpen: false
 });
 $('#robot').click(function() {

 }); // Koniec funkcji click.
}); // Koniec funkcji ready.

Ten kod pobiera obrazek robota i dodaje do niego procedurę obsługi zdarzeń
(patrz strona 182). Teraz, aby wyświetlić okno dialogowe, wystarczy jedynie
wybrać odpowiedni element <div> i wywołać funkcję dialog(), przekazując
do niej argument 'open'.

 7. W wywołaniu funkcji click() dopisz jeden wiersz kodu (wyróżniony po-
grubioną czcionką):

$(document).ready(function() {
 $('#confirm').dialog({
 modal: true,
 autoOpen: false
 });
 $('#robot').click(function() {
 $('#confirm').dialog('open');
 }); // Koniec funkcji click.
}); // Koniec funkcji ready.

Teraz, kiedy użytkownik kliknie obrazek robota, zostanie wyświetlone okno
dialogowe.

 8. Zapisz plik i wyświetl go w przeglądarce. Kliknij obrazek robota, aby zo-
baczyć swoje nowe okno dialogowe.
W oknie dialogowym nie ma jeszcze żadnych przycisków. Dodaj je, krok po
kroku, w kilku kolejnych punktach; tylko tak dobrze zrozumiesz, jak działają.

 9. Wróć do edytora tekstów i pliku dialog_buttons.html. Wewnątrz wywoła-
nia funkcji dialog(), w ostatnim wierszu przekazywanych do niej opcji, za
wartością false, wpisz przecinek, naciśnij klawisz Enter, po czym wpisz
poniższy kod wyróżniony pogrubioną czcionką:

$(document).ready(function() {
 $('#confirm').dialog({
 modal: true,
 autoOpen: false,
 buttons : {

 }
 });
 $('#robot').click(function() {

R O Z D Z I AŁ 9 . R O Z B U D O W A I N T E R F E J S U UŻY T K O W N I K A

Wyświetlanie
komunikatów

343

 $('#confirm').dialog('open');
 }); // Koniec funkcji click.
}); // Koniec funkcji ready.

W ten sposób przekażesz do funkcji dialog() następną opcję — buttons. Jej
wartością jest kolejny literał obiektowy zawierający informacje o przyciskach.
Najpierw dodasz przycisk Potwierdź.

P O R A D N I A D L A Z A A W A N S O W A N Y C H

Dokładne umiejscawianie za pomocą jQuery UI
Widżety okna dialogowego oraz etykietki ekranowej po-
zwalają na kontrolę położenia elementu. Służy do tego wła-
ściwość position. Właściwość ta jest obiektem (patrz
strona 165) definiującym, gdzie zostanie umieszczone pu-
de ko elementu w odniesieniu do innego elementu strony.
Sposób tworzenia tego obiektu jest dosyć dziwny, jednak
kiedy nabędziemy nieco doświadczenia, wyda się całkiem
prosty. Obiekt position może zawierać kilka właściwości,
lecz najczęściej stosowane są dwie z nich: my oraz at.

Aby na przykład umieścić okno dialogowe w prawym dolnym
rogu okna przeglądarki, należałoby użyć następującego kodu:

$('#dialog').dialog({
 position: {
 my: 'right bottom',
 at: 'right bottom’
 }
}); // Koniec funkcji dialog.

Właściwość my odnosi się do okna dialogowego; nato-
miast właściwość at do okna przeglądarki. A zatem wła-
ściwość my określa, które miejsce okna dialogowego
znajdzie się w miejscu wskazanym przez właściwość at.
W tym przypadku obiekt position informuje, że prawy
dolny wierzchołek (my) okna dialogowego ma się znaleźć
w prawym, dolnym wierzchołku okna (at).

Podczas określania wartości tych właściwości stosowana
jest składnia CSS (taka sama jak używana we właściwości
CSS background-position). Pierwsze słowo kluczo-
we tej wartości określa położenie w poziomie i może nim
być: left, right lub center. Drugie słowo określa
położenie w pionie, a jego dopuszczalnymi wartościami
są: top, center oraz bottom.Położenie okien dialo-
gowych jest określane względem okna przeglądarki.
W odróżnieniu do nich, etykietki ekranowe są rozmieszcza-
ne względem elementu wyzwalającego, czyli elementu
powodującego ich wyświetlenie. Jednak określając położe-
nie okna lub etykietki, można zastosować także trzecią
właściwość — of — pozwalającą umieścić je względem
innego elementu strony. Może się ona przydać podczas
tworzenia prezentacji opisującej różne części interfejsu,
w której użytkownik poznaje poszczególne elementy strony.

Moglibyśmy na przykład wyświetlić okno dialogowe

koło przycisku do logowania, by pokazać użytkowni-

kowi, gdzie może się zalogować.

We właściwości of zapisywany jest selektor (patrz

strona 148) lub obiekt jQuery. Załóżmy, że przycisk

do logowania ma identyfikator login, a okno dia-

logowe chcemy wyświetlić bezpośrednio poniżej nie-

go; w takim przypadku możemy użyć następującego

kodu:

$('#dialog').dialog({
 position: {
 my: 'center top',
 at: 'center bottom',
 of: '#login'
 }
}); // Koniec funkcji dialog.

Aby uzyskać dodatkową kontrolę nad położeniem

okna dialogowego lub etykietki ekranowej, można

także zastosować przesunięcie. Chcemy przykłado-

wo, by okno dialogowe nachodziło na przycisk do

logowania na wysokość 10 pikseli, można to uzyskać,

stosując następujący kod:

$('#dialog').dialog({
 position: {
 my: 'center top-10',
 at: 'center bottom',
 of: '#login'
 }
}); // Koniec funkcji dialog.

Określając przesunięcie, można dodawać lub odej-

mować liczby (będą one traktowane jako wartości

wyrażone w pikselach) bądź wartości procentowe

(na przykład: my: 'center top+25%'). Trzeba

zwrócić uwagę, by nie umieszczać znaków odstępu

pomiędzy słowem kluczowym (np. top) a opera-

torem (+ lub -) oraz wartością (na przykład 25%).

Jeśli tego nie dopilnujemy, przesunięcie nie zostanie

uwzględnione.

Więcej informacji na temat obiektu position
można znaleźć na stronie http://api.jqueryui.com/
position/.

http://api.jqueryui.com/position/
http://api.jqueryui.com/position/

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Wyświetlanie
komunikatów

344

 10. Wewnątrz obiektu buttons dodaj następujący kod:
buttons : {
 "Potwierdź" : function() {

 }
} // Koniec właściwości buttons.

Słowo Potwierdź stanie się nazwą pierwszego przycisku. Kiedy użytkownik
go kliknie, zostanie wywołana podana funkcja anonimowa. Zapisz stronę i wy-
próbuj jej działanie w przeglądarce: kiedy klikniesz obrazek robota, powinno się
pojawić okno dialogowe zawierające jeden przycisk: Potwierdź. Niestety, klik-
nięcie tego przycisku nie daje żadnych rezultatów. Wróć do edytora.

 11. Wewnątrz funkcji anonimowej dodanej w poprzednim kroku wpisz po-
niższy wiersz kodu:

buttons : {
 "Potwierdź" : function() {
 $('#robot').effect('explode');
 }
} // Koniec właściwości buttons.

Ten kod wybiera obrazek robota, a następnie odtwarza na nim efekt jQuery
UI o nazwie 'explode', którego już użyłeś na stronie 337. (Więcej infor-
macji na temat tego oraz wielu innych efektów jQuery UI można znaleźć na
stronie 461).
Czas dodać kolejny przycisk.

 12. Za zamykającym nawiasem klamrowym funkcji przycisku Potwierdź wstaw
przecinek, naciśnij klawisz Enter, po czym wpisz poniższy kod wyróżniony
pogrubioną czcionką:

buttons : {
 "Potwierdź" : function() {
 $('#robot').effect('explode');
 },
 "Anuluj" : function() {

 }
} // Koniec właściwości buttons.

Jeśli teraz zapiszesz stronę i wyświetlisz ją w przeglądarce, zobaczysz, że
okno dialogowe ma już dwa przyciski. Kliknięcie przycisku Anuluj jeszcze
nic nie robi i z resztą nie powinno, gdyż przycisk ten służy jedynie do odwo-
łania akcji potwierdzanej przez pierwszy przycisk. Łatwo jednak zauważysz,
że kliknięcie przycisku Anuluj nawet nie zamyka okna dialogowego. A to
akurat powinno robić.

 13. Wewnątrz funkcji anonimowej przycisku Anuluj wpisz $(this).dialog
('close');:

buttons : {
 "Potwierdź" : function() {
 $('#robot').effect('explode');
 },
 "Anuluj" : function() {
 $(this).dialog('close');
 }
} // Koniec właściwości buttons.

R O Z D Z I AŁ 9 . R O Z B U D O W A I N T E R F E J S U UŻY T K O W N I K A

Prezentowanie informacji
w etykietkach

345

Ponieważ przyciski są tworzone w funkcji dialog(), która został wywołana na
rzecz znacznika <div>, zatem wywołanie $(this) odwołuje się do samego okna
dialogowego. A zatem, w tym przypadku wywołanie $(this).dialog('close')
ma taki sam efekt, co wywołanie $('#confirm').dialog('close');.
Zapisz stronę i wyświetl ją w przeglądarce. Kliknij obrazek robota, by wy-
świetlić okno dialogowe, następnie kliknij przycisk Anuluj — okno zostanie
zamknięte! Jeszcze raz kliknij obrazek robota, lecz tym razem w oknie dia-
logowym kliknij przycisk Potwierdź: obrazek robota „eksploduje” i zniknie.
Niestety, okno dialogowe nie zniknie wraz z robotem. Na szczęście ten pro-
blem można łatwo rozwiązać.

 14. Dodaj wywołanie $(this).dialog('close'); jako ostatni wiersz kodu
funkcji anonimowej przycisku Potwierdź. Poniżej przedstawiona została
końcowa postać kodu:

$(document).ready(function() {
 $('#confirm').dialog({
 modal: true,
 autoOpen: false,
 buttons : {
 "Potwierdź" : function() {
 $('#robot').effect('explode');
 $(this).dialog('close');
 },
 "Anuluj" : function() {
 $(this).dialog('close');
 }
 } // Koniec właściwości buttons.
 });
 $('#robot').click(function() {
 $('#confirm').dialog('open');
 }); // Koniec funkcji click.
}); // Koniec funkcji ready.

Zapisz stronę i wyświetl ją w przeglądarce. Dokończona strona (po wyświetleniu
okna dialogowego) powinna wyglądać tak, jak na rysunku 9.5. Spróbuj kliknąć
oba przyciski i sprawdź, co się stanie. Kompletną wersję strony zbudowanej
w tym przykładzie można znaleźć w pliku complete_dialog_buttons.html,
umieszczonym w katalogu R09.

Prezentowanie informacji
w etykietkach ekranowych

Czasami może się zdarzyć, że będziemy musieli dostarczyć użytkownikom stro-
ny nieco więcej informacji. Załóżmy na przykład, że na swojej stronie prezentu-
jesz wiersz ikon prowadzących do różnych serwisów społecznościowych, takich
jak Twitter, Facebook, Reddit, Instagram i tak dalej. Ktoś, kto nie zna tych serwi-
sów, zapewne nie będzie w stanie rozpoznać tych ikon i domyślić się, gdzie każda
z nich prowadzi. Aby pomóc takim użytkownikom, mógłbyś dodać do każdej z ikon
etykietkę ekranową — małe okienko wyświetlane po wskazaniu danej ikony myszą
i prezentujące jej opis, na przykład: „Moja strona na Facebooku”.

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Prezentowanie informacji
w etykietkach

346

Biblioteka jQuery UI zapewnia możliwość bardzo szybkiego i prostego dodawania
takich etykietek ekranowych do dowolnych elementów strony (patrz rysunek 9.6).

Rysunek 9.6. Za po-
mocą etykietek ekra-
nowych można przeka-
zywać użytkownikom
dodatkowe informacje.
Pozwalają one tworzyć
niewielkie okienka wy-
świetlane po wskazaniu
elementu myszą (patrz
zakreślony fragment
rysunku). Etykietki są
doskonałym sposobem
na wyjaśnianie, co się
stanie po kliknięciu iko-
ny, prezentowanie
podpisu pod rysunkiem
lub nawet wyświetlanie
zdjęć i innej zawartości
HTML po wskazaniu
wybranego elementu
strony

Można nawet dodawać bardziej rozbudowane etykiety, prezentujące większe frag-
menty kodu HTML, zawierające nawet obrazki i odnośniki. Poniższa lista prezen-
tuje podstawowe czynności związane z dodawaniem etykietek ekranowych.

 1. Dołącz do strony biblioteki jQuery i jQuery UI; czynności zostały opisane
na stronie 329.
Niewiele mógłbyś zrobić bez niezbędnych plików CSS i JavaScript.

 2. W dowolnym elemencie strony, do którego chcesz dodać etykietkę ekra-
nową, podaj atrybut title:

Niektóre przeglądarki same wyświetlają etykietki po dodaniu do elementu
atrybutu title. Podobnie jak informacyjne okna dialogowe, także etykietki
ekranowe wyświetlane przez przeglądarkę nie zapewniają możliwości zmiany
wyglądu. Co więcej, nie są one dostępne we wszystkich przeglądarkach. Dlatego
stosowanie etykietek jQuery UI zapewnia maksymalną kontrolę i efektywność.

 3. Wybierz odpowiedni element i wywołaj funkcję tooltip():
$(document).ready(function() {
 $('[title]').tooltip();
}); // Koniec funkcji ready.

W tym przypadku zastosowany został prosty selektor atrybutu (patrz strona
152), pozwalający na wybranie wszystkich elementów, w których został podany
atrybut title. Wywołanie funkcji tooltip() doda do każdego z tych elemen-
tów etykietkę ekranową. I to naprawdę już wszystko. jQuery UI zajmie się całą
resztą i utworzy atrakcyjne etykietki dla każdego z wybranych elementów.

R O Z D Z I AŁ 9 . R O Z B U D O W A I N T E R F E J S U UŻY T K O W N I K A

Prezentowanie informacji
w etykietkach

347

Jeśli trzeba, można bardziej precyzyjnie wybrać elementy, do których zostaną
dodane etykietki. Jeśli na przykład nie chcesz, by były dodawane do wszystkich
elementów zawierających atrybut title, mógłbyś dopisać do wybranych ele-
mentów jakąś klasę — na przykład: tooltip — a następnie wybrać je, uży-
wając odpowiedniego selektora:

$('.tooltip').tooltip();

Miniprzykład — szybkie dodawanie etykietek ekranowych
Biblioteka jQuery UI udostępnia najszybszy sposób dodawania etykietek ekrano-
wych do wybranych elementów stron (ich użytkownicy na pewno Ci podziękują).

 1. W edytorze tekstów otwórz plik tooltips.html.
Do tej przykładowej strony zostały już dołączone niezbędne pliki CSS oraz Java-
Script. Możesz zatem natychmiast przystąpić do działania i dodać atrybut title
do wybranych elementów. Zawartość tych atrybutów będzie później prezento-
wana na etykietkach ekranowych.

 2. Odszukaj akapit <p>Akapit tekstu.</p> i dodaj do niego atrybut title
o wartości "Owszem, jestem akapitem.":

<p title="Owszem, jestem akapitem.">Akapit tekstu.</p>

Atrybut title można dodawać do dowolnych elementów umieszczanych
w ciele strony. (Tworząc te etykietki, możesz się wykazać znacznie większą
kreatywnością).

 3. Odszukaj obrazek i dodaj do niego atrybut
title o wartości "A ja jestem mapą!":

Został jeszcze jeden znacznik i wszystkie zmiany w kodzie HTML będą wpro-
wadzone.

 4. Odszukaj akapit z przyciskiem <button >Przycisk</button> i dodaj do
znacznika <button> atrybut title o wartości "Kliknij ten przycisk!":

<button title="Kliknij ten przycisk!">Przycisk</button>

Teraz pozostało jedynie dodanie kodu jQuery.
 5. Wewnątrz funkcji $(document).ready() dodaj wywołanie $('[title']).
tooltip(), tak by pełny kod wyglądał tak:

$(document).ready(function() {
 $('[title]').tooltip();
}); // Koniec funkcji ready.

Możesz wierzyć lub nie, lecz to już wszystko. Wywołanie $('[title]') wybiera
wszystkie znaczniki, w których został podany atrybut title, a kolejne wywołanie
— .tooltip() — dodaje do nich etykietę ekranową. Zapisz stronę, a następnie
wyświetl ją w przeglądarce. Wskaż myszą akapit tekstu, obrazek oraz przycisk,
aby sprawdzić, czy będą wyświetlane etykietki (patrz rysunek 9.6). Gotowa
wersja przykładu jest dostępna w pliku complete_tooltip.html, w katalogu R09.

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Prezentowanie informacji
w etykietkach

348

Opcje etykietek ekranowych
Domyślnie etykietki ekranowe są stopniowo wyświetlane i ukrywane, a jQuery
UI umieszcza je pod elementem, do którego zostały dodane. Jednak podobnie jak
podczas tworzenia okien dialogowych (patrz strona 330), także i w wywołaniu
funkcji tooltip() można przekazywać literał obiektowy (patrz strona 165) kon-
trolujący zachowanie etykietek. Poniżej przedstawiona została lista najbardziej
przydatnych opcji.

 show. Właściwość show daje możliwość określenia animacji, która zostanie
wykonana podczas wyświetlania etykietki ekranowej. Działa dokładnie tak
samo jak właściwość show okien dialogowych, opisana na stronie 335. Innymi
słowy, etykietka może się pojawiać stopniowo, zostać wsunięta na miejsce
lub pojawić się w dowolny inny sposób określany przez dostępne efekty jQuery
UI (patrz strona 461), poprawiając tym samym wizualną atrakcyjność strony.

 hide. Działa tak samo jak właściwość show, przy czym określa sposób ukry-
wania etykietki.

 track. Przypisanie tej właściwości wartości true sprawi, że etykietka ekranowa
będzie przesuwała się wraz z ruchami wskaźnika myszy (o ile tylko będzie on
umieszczony w obszarze elementu, do którego etykietka została dodana).

track: true

Takie przesuwające się etykietki bez wątpienia przyciągają uwagę użytkow-
nika, jednak mogą także dekoncentrować i utrudniać czytanie umieszczonego
w nich tekstu.

 tooltipClass. Właściwość pozwala podać nazwę klasy, do której będzie na-
leżeć etykietka.

tooltipClass: 'tooltip'

Przygotowanie własnej klasy oraz dodanie jej do etykietek umożliwia zmo-
dyfikowanie lub rozszerzenie domyślnych stylów etykietek ekranowych okre-
ślanych przez jQuery UI.

 position. Wartością tej właściwości ma być obiekt position jQuery UI
(patrz ramka na stronie 343), określający położenie etykietki w odniesieniu do
elementu docelowego (czyli elementu, którego wskazanie powoduje jej wy-
świetlenie).

Uwaga: Stosując właściwość position, należy zachować dużą ostrożność. Etykietki ekranowe znikają,

kiedy wskaźnik myszy znajdzie się na obszarze strony, który same zajmują. Jeśli zatem umieścisz ety-

kietkę na obszarze elementu, który je wyświetla, może się zdarzyć, że etykietka nigdy nie zostanie wy-

świetlona. Wynika to z faktu, że umieszczenie wskaźnika myszy w obszarze elementu powodującego

wyświetlenie etykietki sprawi, że wskaźnik znajdzie się także w obszarze etykietki, co spowoduje jej na-

tychmiastowe ukrycie.

Wszystkie te opcje podaje się w literale obiektowym, przekazywanym w wywoła-
niu funkcji tooltip(). Załóżmy na przykład, że chcesz, by etykietka stopniowo
się pojawiała, znikała przy użyciu efektu 'explode' i poruszała zgodnie z ru-
chami wskaźnika myszy. W takim przypadku powinieneś użyć wywołania funkcji
tooltip() o następującej postaci:

R O Z D Z I AŁ 9 . R O Z B U D O W A I N T E R F E J S U UŻY T K O W N I K A

Prezentowanie informacji
w etykietkach

349

$('[title]').tooltip({
 show: true,
 hide: 'explode',
 track: true
});

Umieszczanie w etykietkach treści HTML
Jak się mogłeś przekonać, dodawanie etykietek ekranowych przy użyciu jQuery
UI jest bardzo proste. Co jednak można zrobić, gdy chcemy wyświetlić w ety-
kietce więcej treści, na przykład zdjęcie lub kilka akapitów tekstu? Oczywiście
takich treści nie można zapisać w atrybucie title — nie byłoby to prawidłowe
i mogłoby doprowadzić do problemów na stronie. W takich sytuacjach widżet ety-
kietek ekranowych zapewnia możliwość określenia alternatywnego źródła treści.
Do tego celu służy właściwość content pozwalająca na wskazanie elementu za-
wierającego treść, która zostanie wyświetlona w etykietce.

Właściwości content można używać na kilka różnych sposobów. Najprostszym
z nich jest zapisanie w niej łańcucha znaków zawierającego kod HTML, który
stanie się treścią etykietki. Załóżmy, że umieściłeś na stronie odnośnik do strony
z informacjami na swój temat.

Strona o mnie

Jeśli na witrynie jest dostępna Twoja fotografia, mógłbyś ją umieścić w etykietce,
tak by była wyświetlana, gdy użytkownik wskaże odnośnik myszą.

$('#me').tooltip({
 content: ''
});

Wywołanie $('#me') powoduje wybranie odnośnika, a wywołanie .tooltip()
dodaje do niego etykietkę ekranową. Właściwość content określona w literale
obiektowym przekazywanym do funkcji tooltip() określa, że wewnątrz etykietki
ma zostać umieszczony kod HTML — w tym przypadku jest to znacznik .

Kolejnym sposobem wyświetlania kodu HTML w etykietkach ekranowych jest
umieszczenie go w innym elemencie na stronie, a następnie użycie właściwości
content, która sprawi, że zostanie on pobrany z elementu źródłowego i umiesz-
czony w etykietce. Jak takie rozwiązanie działa? Skoro umieścimy kod HTML na
stronie, zostanie on wyświetlony w oknie przeglądarki, a przecież nam zależy na
tym, by był widoczny wyłącznie w etykietce. Jednym z możliwych rozwiązań tego
problemu jest ukrycie takiego elementu przy użyciu metody hide() jQuery, a na-
stępnie wywołanie funkcji tooltip(), by pobrać niewidoczny kod HTML i wy-
świetlić go w etykietce.

Istnieje jednak inne, prostsze rozwiązanie, które ostatnio coraz częściej jest
używane przez programistów JavaScript; polega ono na utworzeniu „szablonu”
poprzez umieszczenie kodu HTML wewnątrz znaczników <script>. Ponieważ
przeglądarki traktują zawartość tych znaczników jak kod JavaScript, zatem nie
wyświetlą takiego kodu HTML. Jednak do tego kodu można się odwołać przy
użyciu jQuery i w jakiś sposób wykorzystać — na przykład wyświetlając go w ety-
kietce! Na przykład załóżmy, że chciałbyś wyświetlić w etykietce ekranowej nagłówek

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Prezentowanie informacji
w etykietkach

350

<h2> oraz krótką listę wypunktowaną. W takim przypadku możesz zacząć od
utworzenia szablonu umieszczonego w znaczniku <script>:

<script id="tooltipTemplate" type="text/template">
 <h2>O mnie</h2>

 Jestem totalnie super.
 Nawet myję zęby trzy razy dziennie!

</script>

Ponieważ do tego szablonu musisz się jakoś odwołać, zatem bardzo ważne jest
określenie wartości atrybutu id, choć oczywiście nie musi on mieć wartości
tooltipTemplate . Wartość identyfikatora może być zupełnie dowolna. Opcjo-

nalny jest także atrybut type= text/template , choć wielu programistów ko-
rzystających z tej techniki używa go, by jasno określić przeznaczenie znacznika
<script>. Powszechnie stosowanym rozwiązaniem jest także umieszczanie
tych znaczników na samym końcu strony, tuż przed zamykającym znacznikiem
</body>.

Kiedy już przygotujesz szablon, możesz się do niego odwołać, pobrać umieszczo-
ny w nim kod HTML i użyć w etykietce. W poniższym kodzie pokazano, jak to
zrobić:

$('#me').tooltip({
 content: $('#toolTipTemplate').html()
});

Zgodnie z informacjami podanymi na stronie 157, metoda html() jQuery po-
zwala na pobranie kodu HTML umieszczonego w wybranych elementach. W tym
przypadku wybieramy znacznik <script> zawierający przygotowany szablon,
a następnie pobieramy jego kod HTML. jQuery UI użyje potem tego kodu HTML
do przygotowania zawartości etykietki ekranowej.

Miniprzykład — umieszczanie kodu HTML
w etykietkach ekranowych
Tworzenie etykietek ekranowych zawierających kod HTML jest nieco bardziej
złożone od opracowania zwyczajnych etykietek z krótkim fragmentem tekstu,
jednak z pomocą sztuczki ze znacznikiem <script> i tak jest dosyć proste.

 1. W edytorze tekstów otwórz plik advanced_tooltips.html.
Do strony zostały już dołączone wszystkie niezbędne pliki arkuszy stylów
jQuery UI oraz JavaScript. Kolejnym krokiem będzie dodanie kodu HTML,
który w przyszłości stanie się treścią etykietki ekranowej.

 2. Tuż przed końcem strony, poniżej komentarza <!-- Tutaj umieść szablon.
--> wpisz następujący kod HTML:

<script id="contactInfo" type="text/template">
 <p>Zadzwoń do nas na numer: 555-555-5555</p>
 <p></p>
</script>

R O Z D Z I AŁ 9 . R O Z B U D O W A I N T E R F E J S U UŻY T K O W N I K A

Dodawanie zestawów
kart

351

Zastosowaliśmy tu technikę opisaną nieco wcześniej na stronie 349, która po-
zwala ukrywać kod HTML wewnątrz znaczników <script>. Przeglądarka nie
wyświetli takiego kodu, lecz wciąż będzie można odwołać się do niego przy uży-
ciu jQuery.

 3. Wewnątrz wywołania funkcji $(document).ready() dodaj następujący
fragment kodu:

$('#contact').tooltip({
 content: $('#contactInfo').html()
}); // Koniec funkcji tooltip.

Takie wywołania funkcji wyglądają znajomo. W tym przypadku wywołanie
wybiera element strony (a konkretnie znacznik <p> o identyfikatorze contact),
a następnie wywołuje na jego rzecz funkcję tooltip(), określając przy tym za-
wartość etykietki. Wywołanie $('#contactInfo') wybiera znacznik <script>,
który dodałeś do strony w poprzednim kroku, a wywołanie .html() pobiera jego
zawartość.
Zapisz plik i wyświetl go w przeglądarce. Wskaż myszą tekst Skontaktuj się
z nami — powinna pojawić się etykietka ekranowa pokazana na rysunku
9.7. Dokończona wersja przykładu jest dostępna w pliku complete_advanced_
tooltips.html, umieszczonym w katalogu R09.

Rysunek 9.7. Zawartość etykietek
ekranowych nie musi ograniczać się
do treści, które można zapisać
w atrybucie title. Można w nich wy-
świetlać dowolny kod HTML, w tym
także obrazki, akapity tekstu oraz klipy
wideo. Pamiętaj jednak, że wskazanie
etykietek myszą powoduje ich ukrycie,
dlatego nie można w nich umieszczać
elementów, z którymi użytkownik musi
prowadzić interakcję, takich jak odno-
śniki lub pola formularzy. Takie ele-
menty lepiej umieszczać w oknach
dialogowych (patrz strona 330)

Dodawanie zestawów kart
Czasami tworzenie stron WWW przypomina walkę o uwagę użytkownika. Może
się zdarzyć, że na stronie trzeba będzie umieścić tak wiele informacji, że stanie się
ona długa, przepełniona i nieczytelna. Jednym z rozwiązań problemów tego typu
jest zastosowanie kart. Karty pozwalają podzielić stronę na fragmenty, z których

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Dodawanie zestawów
kart

352

w danej chwili jest wyświetlany tylko jeden, wybierany przez użytkownika, który
kliknął widoczny nagłówek. Komercyjne witryny, takie jak Best Buy, powszech-
nie korzystają z tego rozwiązania (patrz rysunek 9.8). Kiedy informacje zostaną
rozdzielone na karty, użytkownicy będą w stanie znaleźć wszystko, czego potrze-
bują — na przykład specyfikację techniczną produktu, jego recenzje, opcje zapła-
ty i wysyłki — a jednocześnie nie będą przytłoczeni nadmiarem informacji pre-
zentowanych na stronie.

Rysunek 9.8. Karty są
często stosowane na
witrynach, które muszą
prezentować bardzo
dużo informacji. Przy-
kładowo powszechnie
są one stosowane na
witrynach zajmujących
się handlem elektro-
nicznym, dzięki czemu
potencjalni klienci nie
są przytłaczani lością
dostępnych informacji,
a mimo to mogą szyb-
ko dotrzeć do poszuki-
wanych informacji

Zestawy kart jQuery UI (podobnie jak większość innych widżetów tej biblioteki)
tworzy się w bardzo prosty sposób. Najważniejsza jest znajomość struktury kodu
HTML, bo jQuery UI wymaga, by kod HTML zestawu kart miał ściśle określoną
postać; konkretnie rzecz biorąc, musi się składać z trzech głównych komponentów.
Oto one.

 Element <div> pełniący rolę głównego kontenera. Cały zestaw kart i paneli
treści musi być umieszczony wewnątrz jednego elementu. Nie musi to być
koniecznie element div, choć faktycznie jest najczęściej stosowany. To ten

R O Z D Z I AŁ 9 . R O Z B U D O W A I N T E R F E J S U UŻY T K O W N I K A

Dodawanie zestawów
kart

353

element jest wybierany przy użyciu jQuery i on następnie informuje, gdzie
należy szukać nagłówków kart i paneli treści. Warto więc dodać do tego ele-
mentu identyfikator, aby można go było łatwo wybrać.

Uwaga: Jeśli na jednej stronie ma być wyświetlonych kilka zestawów kart, warto do każdego z konte-

nerów dodać tę samą nazwę klasy, na przykład <div class="tabbedPanels">. Dzięki temu wszystkie

elementy div pełniące rolę kontenerów dla zestawu kart będzie można wybrać za pomocą jednego

wywołania $('.tabbedPanels') i utworzyć te zestawy, korzystając z tylko jednego wiersza kodu:

$('.tabbedPanels').tabs();

 Nagłówki kart. Nagłówki kart można utworzyć w formie listy wypunkto-
wanej lub numerowanej. Każdy nagłówek karty jest reprezentowany przez
jeden znacznik . Wewnątrz każdego znacznika należy umieścić
znacznik <a>, którego atrybut href będzie zawierał identyfikator skojarzo-
nego z nagłówkiem panelu treści. Załóżmy na przykład, że chcemy zbudować
zestaw składający się z trzech kart. Ich nagłówki można by utworzyć przy użyciu
następującej listy:

 Informacje szczegółowe
 Opinie
 Zamówienie

 Panele treści. Każdy panel treści jest jednym elementem blokowym HTML.
Zazwyczaj są to znaczniki <div>, lecz stosuje się także znaczniki <article>,
<section> bądź dowolne inne znaczniki blokowe. W tym znaczniku <div>
należy podać identyfikator, którego wartość będzie odpowiadać adresowi odno-
śnika podanego w nagłówku karty. Oto przykład:

<div id="details">
 <!-- Tu należy umieścić treść panelu -->
</div>

Ten identyfikator (atrybut id) jest bardzo ważny. jQuery UI używa go do
skojarzenia nagłówka karty z odpowiednim panelem treści. Dodatkowo przy-
daje się w przeglądarkach, które nie obsługują języka JavaScript, gdyż zastoso-
wanie etykiety (ang. named anchor) zapewnia możliwość przejścia z elementu
listy do skojarzonego z nim elementu div. Wewnątrz takiego panelu treści
można umieścić dowolną zawartość HTML: obrazki, teksty, listy, klipy wideo
i tak dalej. Zawartość panelu zostanie wyświetlona wyłącznie po kliknięciu
nagłówka karty.

Poniżej przedstawiona została kompletna struktura kodu HTML zestawu kart:
<div id="tabbedPanel">

 Informacje szczegółowe
 Opinie
 Zamówienie

 <div id="details">
 <!-- Kod HTML panelu 1. -->
 </div>
 <div id="reviews">
 <!-- Kod HTML panelu 2. -->
 </div>

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Dodawanie zestawów
kart

354

 <div id="order">
 <!-- Kod HTML panelu 3. -->
 </div>
</div>

Nazwy używanych identyfikatorów są całkowicie dowolne. Dla głównego ele-
mentu kontenera nie musi to być tabbedPanel, podobnie dowolne wartości mo-
gą mieć identyfikatory poszczególnych paneli treści — nie muszą to być details,
review oraz order. Trzeba tylko pamiętać, by adresy podawane w znacznikach
<a> na liście nagłówków kart odpowiadały identyfikatorom paneli treści.

Uwaga: Zestawy karty tworzone przez jQuery UI można także obsługiwać przy użyciu klawiatury.

Użytkownik może nacisnąć strzałkę w prawo, aby wyświetlić następną kartę umieszczoną z prawej

strony, oraz klawisz strzałki w lewo, by wyświetlić kartę umieszczoną po lewej stronie.

Aby przekształcić taki kod HTML na zestaw kart, wystarczy wybrać element pełniący
rolę ich kontenera i wywołać funkcję tabs():

$('#tabbedPanel').tabs();

Instrukcja spowoduje utworzenie kart przedstawionych na rysunku 9.9.

Rysunek 9.9. Tworzenie karty
przy użyciu jQuery UI jest na-
prawdę proste: wystarczy prosty
kod HTML i odrobina JavaScriptu.
Jeśli nie odpowiada Ci wygląd
karty, możesz go zmodyfikować
w internetowym narzędziu
ThemeRoller (patrz strona 407)

Opcje zestawów kart
Widżet Tabs tworzący zestaw karty, podobnie jak wszystkie inne widżety jQuery
UI, zapewnia możliwość dostosowywania sposobu działania. Aby określić jego
opcje, wystarczy przekazać w wywołaniu funkcji tabs() literał obiektowy, za-
wierający nazwy i wartości wybranych właściwości. Poniżej przedstawiono kil-
ka najczęściej stosowanych.

 show oraz hide. Te dwie właściwości określają, w jaki sposób panele treści
będą wyświetlane i ukrywane. Można w nich używać tych samych wartości,
co w analogicznych właściwościach widżetu okna dialogowego. Aby na przy-
kład panel treści był wsuwany podczas wyświetlania oraz wysuwany podczas
ukrywania, w wywołaniu funkcji tabs() należy przekazać dwie poniższe
właściwości:

show: 'slideDown',
hide: 'slideUp'

 active. Standardowo po wyświetleniu strony zawierającej zestaw kart prezen-
towana jest pierwsza z nich — nagłówek karty zostanie wyróżniony, a widoczna
będzie zawartość pierwszego panelu treści. Jednak nic nie stoi na przeszkodzie,

R O Z D Z I AŁ 9 . R O Z B U D O W A I N T E R F E J S U UŻY T K O W N I K A

Dodawanie zestawów
kart

355

by początkowo wyświetlić drugą, ostatnią bądź którąkolwiek inną kartę.
Właśnie do tego celu służy właściwość active:

active: 1

Karty, podobnie jak elementy tablic JavaScript (patrz strona 77), są numero-
wane od 0. Oznacza to, że przypisanie właściwości active wartości 1 spo-
woduje wyświetlenie drugiej karty. Jeśli zamiast liczby przypiszemy tej wła-
ściwości wartość false — active: false — zostaną ukryte wszystkie panele
treści. W takim przypadku któryś z paneli zostanie wyświetlony dopiero wtedy,
gdy użytkownik kliknie jeden z nagłówków kart. Warto zwrócić uwagę, że moż-
liwość ta jest dostępna wyłącznie w przypadku, gdy właściwości collapsible
zostanie przypisana wartość true.

 collapsible. Tej wartości można przypisać wartość true, jeśli chcemy, by
użytkownik mógł ukryć wszystkie panele treści. Zazwyczaj widoczny jest
przynajmniej jeden z nich. Jeśli jednak właściwości collapsible przypi-
szemy wartość true, kliknięcie nagłówka widocznej karty spowoduje ukrycie
powiązanego z nią panelu treści, a z całego zestawu kart będą widoczne wy-
łącznie nagłówki. Takie rozwiązanie można stosować, gdy na stronie jest
naprawdę mało miejsca. Jednak w praktyce jest ono używane raczej spora-
dycznie, a większość użytkowników witryny nie będzie do niego przyzwy-
czajona. Trzeba pamiętać, że jeśli właściwości active przypiszemy wartość
false — aby ukryć wszystkie panele treści — to właściwości collapsible
koniecznie trzeba przypisać wartość true.

 event. Po kliknięciu nagłówka karty wyświetlany jest skojarzony z nim pa-
nel treści. A przynajmniej taki jest standardowy sposób działania tego widżetu.
Jeśli jednak chcemy, by zmiana wyświetlonej karty następowała w wyniku
innego zdarzenia, jego nazwę (patrz strona 179) należy podać we właściwości
event. Poniżej pokazano, co należy zrobić, by karty były wyświetlane po wska-
zaniu ich nagłówka myszą:

event: 'mouseover'

Jednak do stosowania tej właściwości należy podchodzić z dużą ostrożność.
Użytkownicy stron WWW są przyzwyczajeni do pewnych konwencji, a najpo-
pularniejszą z nich jest ta, że aby coś się na stronie stało, należy kliknąć. Jeśli
użytkownicy będą musieli dwukrotnie kliknąć nagłówek karty, aby ją wyświe-
tlić (czyli użyć zdarzenia dblclick), to może się zdarzyć, że nigdy nie wpadną
na to, jak dotrzeć do umieszczonych na niej treści.

 heightStyle. Właściwość kontroluje wysokość każdego z paneli treści i mo-
że przyjmować wartości content, auto oraz fill. Wartością domyślną jest
content. Sprawia ona, że wysokość każdego panelu treści odpowiada wyso-
kości jego zawartości. Jeśli jeden panel zawiera kilka akapitów tekstu, a drugi
tylko jedno zdanie, podczas zmiany widocznej karty zmieni się także wyso-
kość całego widżetu. Jeśli różnice w ilości treści na poszczególnych kartach
są znaczące, zmiany wysokości związane z ich przełączeniem mogą rozpra-
szać użytkownika.

Użycie opcji auto sprawi, że wszystkie panel treści będą miały taką samą
wysokość, równą wysokości najwyższego z nich. Zatem w tym przypadku
zmiana wybranej karty nie będzie miała wpływu na wysokość całego widżetu;

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Dodawanie zestawów
kart

356

jednocześnie jednak na kartach, których zawartość jest krótka, będzie dużo
wolnego miejsca. I w końcu ostatnia z opcji — auto — powoduje, że wyso-
kość całego widżetu zostanie dostosowana do wysokości elementu strony,
w którym został umieszczony. Użycie tej opcji sprawia, że zazwyczaj na każdej
z kart jest dużo wolnego miejsca, co oznacza marnowanie cennego obszaru
strony, dlatego tej opcji lepiej unikać.

Miniprzykład — dodawanie zestawu kart
W tym przykładzie przedstawiony zostanie proces dodawania do strony zestawu
kart. Jego najtrudniejszym elementem jest przygotowanie odpowiedniego kodu
HTML. Kod JavaScript jest bardzo prosty.

 1. W edytorze tekstów otwórz plik tabs.html.

Do tej przykładowej strony zostały już dołączone niezbędne pliki CSS i Java-
Script. W ramach dodatkowego ułatwienia nie będziesz także musiał wpisywać
całego kodu HTML niezbędnego do utworzenia kart. (Wymagane elementy
tego kodu zostały opisane na stronie 352). Jednak przygotowany na stronie
kod nie jest kompletny, więc będziesz musiał go uzupełnić. Konkretnie rzecz
biorąc, brakuje identyfikatora kontenera zawierającego wszystkie karty oraz
odnośników prowadzących z nagłówków karty do paneli treści.

 2. W kodzie HTML strony odszukaj znacznik <h1>Zestaw kart</h1>. Do
znacznika <div> umieszczonego poniżej tego nagłówka dodaj atrybut
id="tabContainer":

<h1>Zestaw kart</h1>
<div id="tabContainer">

Widżet zestawu karty jQuery UI jest tworzony w elemencie strony zawiera-
jącym zestaw nagłówków kart oraz paneli treści — zazwyczaj jest to znacznik
<div>. Dodając do niego identyfikator, zyskujesz możliwość wybrania tego
elementu przy użyciu jQuery i wywołania na jego rzecz funkcji tabs(). A teraz
zajmiesz się dodaniem odnośników.

 3. Odszukaj wypunktowaną listę (znacznik) umieszczoną poniżej otwie-
rającego znacznika <div>, który zmodyfikowałeś w poprzednim kroku.
Do każdego ze znaczników <a> umieszczonych w elementach tej listy dodaj
odwołanie do etykiety:

Karta 1.
Karta 2.
Karta 3.

To są odnośniki do etykiet — prowadzą one do konkretnych miejsc strony,
określonych na podstawie podanych identyfikatorów. Innymi słowy, odno-
śnik umieszczony w pierwszym znaczniku prowadzi do znacznika
<div> pierwszego panelu treści, odnośnik umieszczony w drugim elemencie
listy — do znacznika <div> drugiego panelu treści i tak dalej. Aby te odno-
śniki zaczęły działać prawidłowo, musisz dodać odpowiednie identyfikatory
do znaczników <div> tworzących panele treści.

R O Z D Z I AŁ 9 . R O Z B U D O W A I N T E R F E J S U UŻY T K O W N I K A

Dodawanie zestawów
kart

357

P O R A D N I A D L A Z A A W A N S O W A N Y C H

Niestandardowe zdarzenia jQuery UI
Na stronach od 178 do 182 poznałeś standardowe zda-
rzenia przeglądarki, takie jak click, mouseover, focus
czy też resize. Zdarzenia te są wbudowane w przeglą-
darkę i generowane, kiedy użytkownik wykona na stronie
odpowiednie czynności, takie jak kliknięcie odnośnika lub
przesłanie formularza. Zdarzenia są bardzo użyteczne,
gdyż pozwalają na pisanie programów, które odpowiadają
na czynności wykonywane przez użytkownika na stronie.

Widżety jQuery UI mają swoje własne zdarzenia — nie są
one jednak dokładnie takie same jak zdarzenia generowa-
ne przez przeglądarkę, do których jesteśmy przyzwy-
czajeni. Odpowiadają one po prostu określonym etapom
tworzenia, wykonywania oraz kończenia działania widżetu.

Przykładowo widżet zestawu kart udostępnia zdarzenie
beforeActivate, pozwalające określić kod, który zosta-
nie wykonany bezpośrednio przed wyświetleniem niewi-
docznej wcześniej karty. Może się ono przydać, jeśli na
przykład będziemy chcieli wykonać jakąś operację za każ-
dym razem, gdy użytkownik kliknie nagłówek karty. Zda-
rzenia beforeActivate możemy użyć do modyfikowa-
nia adresu wyświetlonego w pasku adresu przeglądarki za
każdym razem, gdy zostanie kliknięty nagłówek karty, tak
by był do niego dodawany znak # oraz identyfikator pa-
nelu; na przykład tabs.html#panel3. Stosując to roz-
wiązanie wraz z instrukcją warunkową podaną w kroku 9.
na stronie 359, mógłbyś zapewnić użytkownikom możli-
wość zapisania adresu strony powodującego wyświetlenie
odpowiedniej karty.

W tym celu musiałbyś przekazać w wywołaniu funkcji
tabs() właściwość beforeActivate zawierającą odpo-
wiednią funkcję, taką jak przedstawiona na przykładzie:

$('#tabContainer').tabs({
 beforeActivate: function(evt) {
 location.hash =
$(evt.currentTarget).attr('href');
 }
});

W tym kodzie dzieje się ca kiem sporo, jednak ogólnie

rzecz biorąc, odnajduje on atrybut href klikniętego

nagłówka karty (#panel1, #panel2 lub #panel3) i zapisuje

jego wartość we właściwości hash obiektu location (wię-

cej informacji na jej temat można znaleźć w kroku 8. na

stronie 359). Działającą wersję takiej strony możesz

znaleźć w pliku complete_tabs_with_custom_events.
html w katalogu R09.

Nie tylko widżet kart, lecz także wszystkie inne widże-

ty jQuery UI zapewniają wiele sposobów wykonywania

różnych operacji podczas ich tworzenia, modyfikowa-

nia i usuwania. Programiści nazywają rozwiązania tego

typu „punktami zaczepienia” (ang. hook), gdyż pozwalają

dołączać własny kod do już istniejącego kodu (na przy-

kład biblioteki jQuery UI). Stosowanie tych rozwiązań

jest dosyć złożonym, lecz jednocześnie intersującym

zagadnieniem.

Najlepszym sposobem poznania tych niestandardo-

wych zdarzeń widżetów jQuery UI jest poszukanie in-

formacji na ich temat w dokumentacji API (API to skrót

oznaczający interfejs programowania aplikacji, ang.

application programming interface i określa zbiór

wszystkich właściwości i funkcji, które są dostępne

dla programisty). Na początku każdej strony znajduje się

ramka QuickNav, a w niej, w kolumnie Events, lista

wszystkich zdarzeń obsługiwanych przez dany wi-

dżet. Przykładowo strona dokumentacji widżetu Dialog

(http://api.jqueryui.com/dialog/) przedstawia listę

11 zdarzeń, z których możemy skorzystać!

 4. Odszukaj znacznik <div> umieszczony tuż poniżej znacznika mo-
dyfikowanego w poprzednim kroku (przed nim znajduje się komentarz
<!-- Panel 1 -->, dzięki czemu łatwo go zauważysz). Dodaj do niego
atrybut id="panel1":

<!-- Panel 1 -->
<div id="panel1">

W taki sam sposób będziesz musiał dodać identyfikatory do pozostałych dwóch
paneli treści.

 5. Powtórz czynności opisane w kroku 4., aby dodać identyfikatory do po-
zostałych dwóch paneli treści (łatwo je znajdziesz dzięki umieszczonym
przed nimi komentarzom).

http://api.jqueryui.com/dialog/

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Dodawanie zestawów
kart

358

Upewnij się, że do znaczników <div> dodałeś odpowiednie identyfikatory,
pasujące do odnośników dodanych w kroku 3. Przykładowo znacznik <div>
drugiego panelu treści powinien mieć postać: <div id= panel2 >. Teraz
przekształcisz cały kod HTML na zestaw kart.

 6. Wewnątrz wywołania funkcji $(document).ready() dodaj wywołanie funkcji
tabs():

$(document).ready(function() {
 $('#tabContainer').tabs();
}); // Koniec funkcji ready.

Zapisz plik w przeglądarce, po czym wyświetl go w tejże przeglądarce. Strona
powinna wyglądać tak, jak na rysunku 9.10. Jeśli wygląda inaczej, wyświetl
okno konsoli JavaScript (patrz strona 51) i sprawdź, czy są w nim widoczne
jakieś komunikaty o błędach. Jeśli nie ma żadnych informacji o błędach,
sprawdź, czy w kodzie HTML, w znacznikach <div> paneli treści zostały poda-
ne dobre identyfikatory.

Rysunek 9.10.
Gotowa strona
prezentująca
wygląd zestawu
kart

W następnym kroku dodasz efekty, które będą odtwarzane podczas zmiany
prezentowanej karty; konkretnie rzecz biorąc, panel treści wyświetlanej kar-
ty będzie się stopniowo pojawiał, a karty, która była widoczna poprzednio —
stopniowo zanikał.

 7. W wywołaniu funkcji tabs() wpisz następujący literał obiektowy (wyróż-
niony pogrubioną czcionką):

$(document).ready(function() {
 $('#tabContainer').tabs({
 show: 'fadeIn',
 hide: 'fadeOut'
 });
}); // Koniec funkcji ready.

W ten sposób dodasz efekty przejść, które będą odtwarzane przy przełącza-
niu kart. Możesz wypróbować różne efekty, na przykład 'slideDown' oraz
'slideUp'. Zapisz stronę i wyświetl ją w przeglądarce.

R O Z D Z I AŁ 9 . R O Z B U D O W A I N T E R F E J S U UŻY T K O W N I K A

Dodawanie zestawów
kart

359

Zestaw kart działa bardzo dobrze, choć jest z nim jeden drobny problem:
bezpośrednio po wyświetleniu strony jest w nim zawsze widoczna pierwsza
karta bądź karta określona przy użyciu właściwości active (patrz strona 354).
Co mógłbyś zrobić, gdybyś chciał wysłać w e-mailu adres strony i to taki ad-
res, którego kliknięcie spowoduje wyświetlenie konkretnej karty? Przykładowo
wyobraź sobie, że pracujesz w dziale obsługi klienta i ktoś poprosił o przesła-
nie adresu strony ze specyfikacją techniczną jednego z oferowanych produktów.
Na firmowej witrynie istnieje strona z taką specyfikacją umieszczoną na
jednej z kart; problem polega jednak na tym, że domyślnie wyświetlana jest zaw-
sze karta „Informacje o produkcie”.

Gdybyś tak mógł przesłać adres w postaci http://stronafirmowa.com.pl/
produktA.html#specs, a po przejściu na tę stronę zostałaby wyświetlona karta
ze specyfikacją techniczną produktu? Cóż, można tak zrobić, choć wymaga
to zastosowania prostej magii — fragmentu kodu JavaScript. Cała tajemnica
polega na pobraniu z adresu URL fragmentu #specs i zastosowaniu go do
wyświetlenia odpowiedniej karty.

 8. Poniżej wywołania funkcji tabs() dodaj nowy wiersz i wpisz w nim var
hash = location.hash;.

Obiekt window udostępnia tak zwany obiekt location, zawierający wiele
informacji dotyczących adresu URL aktualnie prezentowanej strony, w tym
nazwę komputera (location.hostname), cały adres URL (location.href)
oraz wiele innych (pełną listę dostępnych właściwości tego obiektu można
znaleźć na stronie: https://developer.mozilla.org/en-US/docs/Web/API/Location).
Właściwość location.hash zwraca jedynie tę część adresu, która zawiera
fragment rozpoczynający się od znaku #.

Przykładowo załóżmy, że podałeś adres http://stronafirmowa.com.pl/produktA.
html#specs. W takim przypadku właściwość location.hash będzie zawierać
fragment #specs. W następnym kroku skorzystasz z tej właściwości, by wy-
świetlić kartę odpowiadającą wartości podanej w adresie URL.

 9. Poniżej kodu wpisanego w poprzednim kroku dodaj instrukcję warunkową,
tak by ostateczna postać skryptu miała następującą postać:

$(document).ready(function() {
 $('#tabContainer').tabs({
 show: 'fadeIn',
 hide: 'fadeOut'
 });
 var hash = location.hash;
 if (hash) {
 $('#tabContainer').tabs('load', hash)
 }
}); // Koniec funkcji ready.

Dodana instrukcja najpierw sprawdza, czy w adresie URL bieżącej strony
znajduje się fragment zapisany po znaku #. Jeśli na przykład użytkownik
wpisał jedynie adres strony w postaci tabs.html, takiego fragmentu w nim
nie będzie. W takim przypadku reszta kodu jest pomijana, a po wyświetleniu
strony zostanie standardowo wyświetlona pierwsza karta. Jeśli jednak użytkow-
nik dopisał do adresu na przykład: #panel1, zostanie wykonany kod umieszczony
wewnątrz instrukcji warunkowej. Całe jego działanie sprowadza się do wybrania
elementu kontenera zestawu kart ($('#tabContainer')), wywołaniu funkcji

https://developer.mozilla.org/en-US/docs/Web/API/Location

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Dodawanie zestawów
kart

360

tabs() i przekazaniu do niej dwóch argumentów. Pierwszym z nich jest łańcuch
znaków 'load' — wbudowane polecenie jQuery UI, nakazujące funkcji tabs()
wyświetlenie konkretnego panelu treści. Drugi argument, hash, zawiera identy-
fikator tego panelu, na przykład: #panel, #panel2 lub #panel3.

 10. Zapisz stronę i wyświetl ją w przeglądarce.

Powinna zostać wyświetlona pierwsza karta; następnie w pasku adresu przeglą-
darki dopisz na końcu adresu strony #panel3 (za tabs.html). Naciśnij klawisz
Enter, aby wyświetlić stronę.

Powinno to spowodować wyświetlenie trzeciej karty. (Jeśli tak się nie stało,
spróbuj skopiować adres wyświetlony w pasku adresu, otworzyć nowe okno
przeglądarki i wkleić do niego adres). Kompletna wersja przykładu znajduje
się w pliku complete_tabs.html umieszczonym w katalogu R09.

Karty prezentujące zawartość
Biblioteka jQuery UI pozwala nawet pobierać zawartość wyświetlaną na po-
szczególnych kartach z innych stron WWW. Innymi słowy, zamiast tworzenia
wypunktowanej listy odnośników prowadzących do elementów div na tej samej
stronie, można utworzyć listę odnośników wskazujących na inne strony (bądź
też na treści generowane przez serwer WWW). Z tego rozwiązania można sko-
rzystać, gdy zawartość każdej z kart nieustannie się zmienia (są to notowania gieł-
dowe, recenzje, wpisy na forum i tak dalej). Wyświetlając na karcie treści genero-
wane dynamicznie — na przykład informacje pobierane z często aktualizowanej
bazy danych przy użyciu takich technologii jak PHP, .NET czy też Ruby on Rails
— można mieć pewność, że będą one cały czas aktualne.

Aby pobrać i wyświetlić w panelu treści zawartość uzyskaną z innej strony WWW
lub z serwera, wystarczy utworzyć główny znacznik <div> zawierający zestaw kart,
listę wypunktowaną z odnośnikami do odpowiednich stron i wywołać funkcję
tabs(). Załóżmy, że chcemy, by każdy panel prezentował zawartość odrębnej
strony WWW, a konkretnie rzecz biorąc — stron: panel1.html, panel2.html oraz
panel3.html. W takim przypadku wypunktowana lista z odnośnikami powinna
mieć następującą postać:

<div id="tabContainer">

 Karta 1
 Karta 2
 Karta 3

</div>

Może się zdarzyć, że wyświetlając na kartach treści generowane dynamicznie, nie
będziemy odwoływali się do stron, lecz do skryptów wykonywanych na serwerze
i napisanych na przykład w języku PHP:

<div id="tabContainer">

 Aktualne recenzje
 Dyskusja na forum

</div>

R O Z D Z I AŁ 9 . R O Z B U D O W A I N T E R F E J S U UŻY T K O W N I K A

Dodawanie zestawów
kart

361

W przypadku budowania takich zestawów kart nie trzeba tworzyć znaczników
<div> opisanych w kroku 3. na stronie 356. Zostaną one utworzone automa-
tycznie, podczas generowania paneli treści. Aby opracować zestaw kart, wystar-
czy, tak samo jak wcześniej, wybrać element <div> i wywołać funkcję tabs():

$('#tabContainer').tabs();

W ramach wykonywania funkcji tabs() jQuery UI pobierze kod HTML strony,
która ma być prezentowana na panelu treści pierwszej widocznej karty. Bazując
na powyższym przykładzie, podczas prezentowania strony jQuery UI pobierze
zawartość pliku panel1.html i wyświetli ją w panelu treści, poniżej nagłówków
kart. Kiedy użytkownik kliknie drugą kartę, jQuery UI pobierze zawartość strony
wskazanej przez drugi odnośnik na liście i wygeneruje nowy panel treści oraz
wyświetli w nim pobrany kod HTML.

W większości przypadków można nawet odwoływać się do zewnętrznych witryn,
takich jak Google, Wikipedia, czy też do serwerów innych niż ten, z którego po-
chodzi strona prezentująca zestaw kart. Jednak te zewnętrzne witryny mogą blo-
kować takie odwołania i w takim przypadku treści, takie jak czcionki, obrazy lub
klipy wideo, nie będą wczytywane.

Takie rozwiązanie niesie ze sobą jeszcze jeden problem — w panelu treści zosta-
nie wyświetlona cała zawartość pobranej strony. A zatem, jeśli odwołamy się do
kompletnej strony WWW, zawierającej znaczniki <header>, <title>, odwołania
do plików CSS i JavaScript, to wszystkie te treści i pliki zewnętrzne zostaną
wczytane. W efekcie powstanie strona, wyświetlona wewnątrz strony. Jeśli jednak
chcemy jedynie pobrać i wyświetlić w panelu treści danej karty fragment zawartości
zewnętrznej strony, możemy to zrobić na dwa sposoby.

Łatwiejszym jest utworzenie fragmentów strony — plików HTML zawierających
wyłącznie te fragmenty treści, które chcemy wyświetlać na kartach. Utworzenie
takich fragmentów nie przysporzy żadnych problemów w przypadku pobierania
stron dynamicznie z serwera WWW — w takim przypadku skrypt działający na
serwerze powinien wygenerować wyłącznie ten fragment treści, który chcemy
wyświetlić (natomiast wszystkie pozostałe fragmenty strony, takie jak sekcja <head>
wymagana przez kompletną stronę WWW, powinny zostać pominięte).

Ewentualnie można także wczytać pełną stronę i ograniczyć treści, które pojawią
się na panelu treści przy użyciu zdarzeń niestandardowych (patrz ramka na
stronie 357). A tak działa takie rozwiązanie: widżet zestawu kart jQuery UI udo-
stępnia zdarzenie o nazwie load. Pozwala ono na wykonanie funkcji bezpośred-
nio po wczytaniu treści z zewnętrznego źródła. Wewnątrz tej funkcji można użyć
jQuery do odszukania tych fragmentów, które chcemy wyświetlić, następnie je
pobrać i umieścić w panelu. Rozwiązanie to jest nieco złożone, lecz nie wymaga
tworzenia bardzo rozbudowanego kodu.

Najpierw należy upewnić się, że istnieje możliwość pobrania konkretnych treści
z zewnętrznej strony WWW. Prostym sposobem, by zapewnić tę możliwość, jest
umieszczenie wybranego fragmentu treści wewnątrz znacznika <div> o jakimś
identyfikatorze, na przykład <div id= panelContent >. Dzięki temu będzie
można odwołać się do wybranego fragmentu zawartości strony bez jej niepo-
trzebnych fragmentów, takich jak znaczniki <head> i <title>.

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Dodawanie zestawów
kart

362

Kolejną czynnością, jaką trzeba wykonać, jest przekazanie opcji load w wywołaniu
funkcji tabs(). Opcja load określa zdarzenie niestandardowe, a jej wartością musi
być funkcja anonimowa (patrz strona 168), która poinformuje jQuery, co należy
zrobić po pobraniu zawartości z zewnętrznego źródła i wyświetleniu jej w panelu
treści. Gdy generowane jest zdarzenie load, biblioteka jQuery UI utworzyła już
panel treści i wstawiła do niego zawartość zewnętrznej strony. W tym momencie
w panelu znajduje się cały kod HTML zewnętrznej strony, włącznie z jego niepo-
żądanymi fragmentami. Jednak możemy szybko usunąć całą treść i zastąpić ją
tylko tym fragmentem, który nas interesuje. Cały proces jest wykonywany tak
szybko, że początkowo pobrany, pełny kod HTML zewnętrznej strony nawet nie
jest wyświetlany w przeglądarce.

Oto przykładowy kod, który realizuje taką podmianę:
1. $('#tabContainer').tabs({
2. load: function(evt,ui) {
3. var newHTML = ui.panel.find('#panelContent').html();
4. ui.panel.html(newHTML);
5. }
6. })

Opcja load została zapisana w wierszach od 2. do 5. Biblioteka jQuery UI prze-
kazuje do swoich niestandardowych zdarzeń dwie informacje (są to parametry
evt oraz ui zapisane w wierszu 2.). Parametr evt to zwyczajny obiekt zdarzenia
jQuery (patrz strona 194). Pozwala on na stosowanie dowolnych właściwości
i metod zdarzenia, opisanych na stronach od 195 do 197. W tym przypadku inte-
resuje nas drugi argument przekazany do funkcji anonimowej obsługującej zda-
rzenie, czyli ui. Obiekt ui reprezentuje aktualizowany element interfejsu użyt-
kownika. W przypadku zestawów kart obiekt ui ma dwie właściwości: ui.panel
oraz ui.tab. Pierwsza, ui.panel, reprezentuje nowo utworzony panel treści
(czyli znacznik <div> utworzony przez jQuery UI podczas wczytywania treści ze
źródła zewnętrznego).

W wierszu 3. tworzymy nową zmienną, newHTML, w której zostanie zapisana
ostateczna zawartość panelu (bez niepotrzebnego kodu HTML, takiego jak
znacznik <head>). Kiedy jQuery UI tworzy nowy panel treści, wczytuje całą zawar-
tość zewnętrznej strony WWW, dzięki czemu możemy ją odczytać i pobrać tylko
ten fragment, który nas interesuje. Wywołanie ui.panel.find('#panelContent')
pobiera zawartość nowego panelu treści i odnajduje wewnątrz niej element o iden-
tyfikatorze panelContent (metoda find() biblioteki jQuery została opisana na
stronie 555). Następnie wywoływana jest metoda html() (opisana na stronie 148),
która pobiera zawartość odnalezionego wcześniej elementu. Innymi słowy, po-
wyższe wywołanie zapisuje w zmiennej newHTML interesujący nas fragment strony.

Uwaga: Przykład wykorzystania wyświetlania zawartości zewnętrznych stron na kartach można zna-

leźć w pliku remote_tabs.html umieszczonym w katalogu R09.

W wierszu 4. zawartość panelu treści (czyli cała zawartość zewnętrznej strony,
włącznie z <head>, <title> oraz wszystkimi innymi niepotrzebnymi znaczni-
kami) zostaje zastąpiona nowym kodem HTML (zawierającym tylko wybrany
fragment strony). Powyższy kod jest wykonywany tak szybko, że przeglądarka
nigdy nie zdąży wyświetlić na karcie pełnego kodu zewnętrznej strony — użyt-
kownik zobaczy wyłącznie odpowiednio wybrany fragment treści.

R O Z D Z I AŁ 9 . R O Z B U D O W A I N T E R F E J S U UŻY T K O W N I K A

Oszczędzanie miejsca

363

Oszczędzanie miejsca
z wykorzystaniem akordeonów

Akordeony (ang. accordion) jQuery UI, podobnie jak karty, są kolejnymi widże-
tami, których przeznaczeniem jest oszczędzanie miejsca na stronach. Przykład
takiego widżetu można zobaczyć na rysunku 9.11. Jednak w odróżnieniu od
kart, które są przełączane przy użyciu wiersza nagłówków, każdy z paneli akor-
deonu posiada własny nagłówek, umieszczony bezpośrednio nad nim, którego
kliknięcie pozwala dany panel ukryć lub wyświetlić. Kliknięcie nagłówka akordeonu
powoduje wyświetlanie panelu bezpośrednio poniżej i jednoczesne ukrycie panelu,
który był widoczny wcześniej. Innymi słowy, także w widżecie akordeonu w danej
chwili widoczny jest tylko jeden panel.

Rysunek 9.11. Raz to widać,
a raz nie. Biblioteka jQuery UI
potrafi przekształcić zwyczajną
kolekcję nagłówków i znaczników
<div> (widoczną u góry) na inte-
raktywny widżet prezentujący
kolekcję zwijanych i wyświetla-
nych paneli (u dołu)

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Oszczędzanie miejsca

364

Ogólnie rzecz biorąc, akordeony działają bardzo podobnie do kart. Większość opcji
stosowanych w obu widżetach jest taka sama i działa identycznie. Różnią się one
jednak pod względem struktury kodu HTML, który jest całkowicie odmienny.
Kod używany do tworzenia widżetu akordeonu składa się z trzech podstawowych
fragmentów. Oto one.

 Zewnętrzny znacznik <div> zawierający cały widżet. Do tego znacznika
<div> trzeba będzie odwołać się przy użyciu jQuery, zatem warto określić w nim
identyfikator lub nazwę klasy.

 Nagłówek zawierający tekst. Ten nagłówek jest widocznym elementem
strony, który można klikać, by otwierać lub zamykać panel treści (przykła-
dem może być pomarańczowy nagłówek „Co mówi robot?” widoczny na ry-
sunku 9.11). Poziom użytych nagłówków nie odgrywa tu znaczenia — mogą to
być znaczniki <h2>, <h3> lub inne. Jednak w całym widżecie muszą to być te
same znaczniki. (Z technicznego punktu widzenia, nie muszą to nawet być
znaczniki nagłówków — wystarczy dowolny element blokowy; jednak najczę-
ściej są stosowane właśnie nagłówki).

 Element blokowy umieszczony bezpośrednio pod nagłówkiem. Zazwyczaj
jest to znacznik <div> zawierający treści, które chcemy wyświetlić. Znacznik
ten musi zostać umieszczony bezpośrednio za nagłówkiem.

Nagłówek oraz umieszczony bezpośrednio za nim element div stanowią jedną
część akordeonu. Aby utworzyć więcej takich części, wystarczy dodać kolejne pary
nagłówek – element blokowy. Przykładowo poniżej została przedstawiona pod-
stawowa struktura kodu HTML akordeonu składającego się z trzech elementów:

<div id="accordion">
 <h3>Nagłówek wyświetla lub ukrywa pierwszy panel akordeonu</h3>
 <div>
 <!-- Zawartość pierwszego panelu akordeonu. -->
 </div>
 <h3>Nagłówek wyświetla lub ukrywa drugi panel akordeonu</h3>
 <div>
 <!-- Zawartość drugiego panelu akordeonu. -->
 </div>
 <h3>Nagłówek wyświetla lub ukrywa trzeci panel akordeonu</h3>
 <div>
 <!-- Zawartość trzeciego panelu akordeonu. -->
 </div>
</div>

Po przygotowaniu kodu HTML o wymaganej strukturze, dołączeniu niezbęd-
nych plików CSS jQuery UI oraz plików JavaScript bibliotek jQuery i jQuery UI
(patrz strona 133) utworzenie widżetu akordeonu jest bardzo proste — sprowadza
się do wybrania elementu zawierającego opcje i wywołania funkcji accordion():

$('#accordion').accordion();

Jak zwykle, jQuery UI zajmuje się wszystkimi najtrudniejszymi zadaniami i prze-
kształca naszą prostą strukturę kodu HTML na widżet akordeonu przedstawiony
w dolnej części rysunku 9.11. Podobnie jak w innych widżetach jQuery UI, także
podczas tworzenia akordeonów można przekazywać obiekt zawierający opcje (wiele
z nich działa dokładnie tak samo jak w przypadku zestawów kart).

R O Z D Z I AŁ 9 . R O Z B U D O W A I N T E R F E J S U UŻY T K O W N I K A

Oszczędzanie miejsca

365

 active. Opcja active działa dokładnie tak samo jak analogiczna opcja sto-
sowana w widżecie zestawu kart (patrz strona 354). Jej wartością jest liczba
określająca, który z paneli akordeonu ma być widoczny bezpośrednio po wy-
świetleniu strony. Aby na przykład wyświetlić drugi panel, należy użyć opcji:

active: 1

Podobnie jak w tablicach JavaScript, także numeracja paneli rozpoczyna się
od 0. Jeśli tej właściwości zostanie przypisana wartość false, a wartości
collapsible wartość true, zostanie utworzony akordeon pozwalający na
ukrycie wszystkich paneli.

 collapsible. Jeśli tej opcji zostanie przypisana wartość true, a opcji active
wartość false, bezpośrednio po wyświetleniu strony wszystkie panele akor-
deonu będą ukryte. Oprócz tego, jeśli tej opcji zostanie przypisana wartość
true, nagłówki paneli będą działać jak przełączniki: jeśli panel poniżej na-
główka będzie widoczny, kliknięcie tego nagłówka spowoduje jego ukrycie;
jeśli natomiast panel będzie ukryty, zostanie wyświetlony.

 animate. Standardowo panele akordeonu są wyświetlane i ukrywane przy
użyciu efektów wsuwania i wysuwania. Ten domyślny sposób działania
można wyłączyć, dzięki czemu panele treści będą się natychmiast pojawiały
i znikały. W tym celu wystarczy przypisać opcji animate wartość false:

animate: false

Zastosowanie innych wartości pozwala na wprowadzenie kilku dalszych zmian
działania widżetu. Podana liczba określi czas odtwarzania animacji (wyrażony
w milisekundach). Aby naprawdę poważnie zdenerwować użytkowników,
można zażądać, by panele akordeonu wyświetlały się i chowały przez boleśnie
długi czas wynoszący 5 sekund:

animate: 5000

W tej opcji można także podać łańcuch znaków, określający nazwę jednej z kil-
kunastu dostępnych funkcji wyznaczających szybkość odtwarzania animacji.
Zgodnie z informacjami podanymi na stronie 465, funkcje określają szybkość
odtwarzania animacji w całym okresie trwania. Na przykład początkowo
animacja może być odtwarzana wolno, a potem przyspieszać. By skorzystać
z funkcji easeInElastic, należałoby użyć opcji animate o następującej postaci:

animate: 'easeInElastic'

Jednak niemal wszystkie efekty, oprócz domyślnego, dają raczej paskudne
efekty.

 event. Opcja określa zdarzenie, które będzie powodowało wyświetlenie pa-
nelu akordeonu. Działa ona dokładnie tak samo jak w widżecie zestawu kart
(patrz strona 355).

 heightStyle. Opcja działa tak samo jak analogiczna opcja stosowana w wi-
dżecie zestawu kart (patrz strona 355).

 icons. Jak widać na rysunku 9.11, jQuery UI dodaje z lewej strony nagłów-
ków akordeonu niewielkie ikony. W nagłówku aktualnie widocznego panelu
wyświetlana jest niewielka ikona strzałki w dół, natomiast w nagłówkach
wszystkich pozostałych — niewidocznych — paneli wyświetlana jest ikona
strzałki w prawo. Wszystkie tematy graficzne jQuery UI udostępniają obszerny

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Oszczędzanie miejsca

366

zestaw ikon (ich pełną listę można znaleźć na stronie http://api.jqueryui.
com/theming/icons/). Zastosowane ikony można określić przy użyciu opcji
icons, których wartością musi być literał obiektowy, podobny do przedsta-
wionego poniżej:

icons : {
 header: "ui-icon-plus",
 activeHeader: "ui-icon-minus"
}

Literał obiektowy definiuje dwie ikony, które powinny być używane w widżecie.
Właściwość header określa ikonę, która ma być wyświetlana w nagłówkach
niewidocznych paneli akordeonu, natomiast właściwość activeHeader —
ikonę wyświetlaną w nagłówku aktualnie wyświetlonego panelu. W powyż-
szym przykładzie w nagłówkach paneli byłyby wyświetlanie niewielkie ikony
„+” i „-”.

Jak we wszystkich innych widżetach jQuery UI, także w widżecie akordeonu moż-
na połączyć dowolnie wiele opcji, określając w ten sposób, jak ma wyglądać i dzia-
łać. Załóżmy, że chcielibyśmy zmienić zdarzenie powodujące wyświetlanie i ukry-
wanie paneli oraz ikony pokazywane w ich nagłówkach. Moglibyśmy to zrobić,
używając wywołania funkcji accordion() o następującej postaci:

$('#accordion').accordion({
 event: 'mouseover',
 icons : {
 header: 'ui-icon-circle-plus',
 activeHeader: 'ui-icon-circle-minus'
 }
});

Miniprzykład — tworzenie akordeonu jQuery UI
Akordeony są bardzo podobne do zestawów kart. Większość pracy, jaką należy
wykonać podczas ich stosowania, sprowadza się do sformatowania kodu HTML.
Jednak struktura kodu używanego do tworzenia akordeonów jest nawet prostsza
niż w zestawach kart. W tym przykładzie punktem wyjścia będzie już przygotowany
plik zawierający kod HTML, który następnie przekształcisz na widżet akordeonu.

1. Przejrzyj kod HTML, aby zobaczyć, co już zawiera. Otwórz w przeglądar-
ce plik accordion.html.

Strona zawiera nagłówek — Akordeon jQuery — oraz prostą kolekcję na-
główków, tekstów oraz obrazków (patrz rysunek 9.11, u góry).

2. W edytorze tekstów otwórz plik accordion.html i przeanalizuj kod HTML
umieszczony poniżej znacznika <h1>.

Zwróć uwagę, że znajduje się tam znacznik <div> — to kontener, wewnątrz
którego znajdują się wszystkie elementy przyszłego akordeonu. Wewnątrz
niego zobaczysz znacznik <h3>, a za nim znacznik <div>. Pierwszy z nich,
<h3>, reprezentuje nagłówek akordeonu, natomiast drugi, <div>, to panel
treści. W kodzie strony znajdują się trzy takie pary znaczników <h3> – <div>,
a zatem, kiedy już dodasz niezbędny kod JavaScript, powstanie widżet akor-
deonu zawierający trzy panele. Najpierw musisz zadbać o możliwość wygod-
nego wybrania znacznika <div> zawierającego cały kod akordeonu.

http://api.jqueryui.com/theming/icons/
http://api.jqueryui.com/theming/icons/

R O Z D Z I AŁ 9 . R O Z B U D O W A I N T E R F E J S U UŻY T K O W N I K A

Oszczędzanie miejsca

367

 3. Odszukaj znacznik <div> umieszczony poniżej znacznika <h1> i dodaj do
niego atrybut id:

<div id="accordion">

To cały kod HTML, który trzeba dodać do strony, by utworzyć widżet akor-
deonu. Teraz musisz zająć się kodem JavaScript.

 4. W wywołaniu $(document).ready() wybierz znacznik <div> zawierający
kod HTML akordeonu i wywołaj funkcję accordion():

$(document).ready(function() {
 $('#accordion').accordion();
}); // Koniec funkcji ready.

Zapisz plik i wyświetl go w przeglądarce. Strona powinna wyglądać niemal
tak samo jak przedstawiona u dołu rysunku 9.11. Dlaczego zatem ten przy-
kład jest określony jako „mini”? To jQuery UI sprawia, że tworzenie akorde-
onów jest tak proste. Jednak Twoja praca jeszcze się nie skończyła. Chcesz,
by bezpośrednio po wyświetleniu strony wszystkie panele akordeonu były
niewidoczne.

 5. W wywołaniu funkcji accordion() dodaj poniższy literał obiektowy (wy-
różniony pogrubioną czcionką):

$(document).ready(function() {
 $('#accordion').accordion({
 active: false,
 collapsible: true
 });
}); // Koniec funkcji ready.

Kiedy wyświetlisz stronę w przeglądarce, przekonasz się, że wszystkie panele
akordeonu początkowo będą niewidoczne. Kliknij jeden z nagłówków, aby
wyświetlić panel treści; kiedy ponownie klikniesz ten sam nagłówek, panel
zostanie ukryty. Panele akordeonu są ukrywane po kliknięciu ich nagłówka
wyłącznie w przypadku, gdy opcji collapsible została przypisana wartość
true. Spróbuj teraz zastosować w akordeonie jakieś inne ikony, wybrane
spośród obszernego zbioru ikon udostępnianych przez jQuery UI (ich pełną
listę możesz znaleźć na stronie http://api.jqueryui.com/theming/icons/).

 6. Do opcji przekazywanych w wywołaniu funkcji accordion() dodaj kolejną,
czyli icons. Jej wartością powinien być kolejny literał obiektowy, zawie-
rający dwie właściwości:

$(document).ready(function() {
 $('#accordion').accordion({
 active: false,
 collapsible: true,
 icons: {
 header: 'ui-icon-circle-plus',
 activeHeader: 'ui-icon-circle-minus'
 }
 });
}); // Koniec funkcji ready.

Nie zapomnij dodać przecinka za wartością true w trzecim wierszu kodu.
Jak widać, JavaScript pozwala umieszczać jeden literał obiektowy wewnątrz
innych. Czasami analizowanie takiego kodu może być dosyć trudne, trzeba
jednak pamiętać, że literały obiektowe można traktować jak wszystkie inne
obiekty — zmienne, liczby lub łańcuchy znaków — i używać jak wartości
przypisywanych zmiennym lub właściwościom obiektów.

http://api.jqueryui.com/theming/icons/

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Dodawanie menu

368

 7. Zapisz stronę i wyświetl ją w przeglądarce.

Strona powinna wyglądać tak, jak ta w dolnej części rysunku 9.11. Jeśli wy-
gląda inaczej, dokładnie przejrzyj kod i sprawdź, jak wyglądała strona po wyko-
naniu czynności opisanych w kroku 4. Końcową wersję tego przykładu można
znaleźć w pliku complete_accordion.html umieszczonym w katalogu R09.

Dodawanie menu
W skład jQuery UI wchodzi także widżet Selectmenu pozwalający na przekształcanie
wypunktowanych, zagnieżdżonych list w rozwijalne menu. Z założenia, menu
prezentowane jest w formie pionowej kolumny, w której kolejne opcje znajdują się
jedna nad drugą, a podmenu są wyświetlane z prawej strony (patrz rysunek 9.12).
Jeśli jednak ograniczymy się do jednego zestawu podmenu, można skłonić widżet
do prezentowania zawartości głównego poziomu menu w układzie poziomym.

Rysunek 9.12.
Widżet menu jQuery UI
pozwala na bardzo
proste tworzenie wie-
lopoziomowych menu,
które swoim wyglądem
odpowiadają innym
widżetom jQuery UI.
Doskonale nadaje się
on do tworzenia menu
aplikacji internetowych,
które upodobnią je do
tradycyjnych aplikacji
komputerowych

Podobnie jak wszystkie pozostałe widżety jQuery UI, także menu jest bardzo
proste w użyciu. Najtrudniejszym zadaniem związanym z budową menu jest utwo-
rzenie odpowiedniej struktury kodu HTML. Z kodem o takiej samej strukturze
spotkałeś się już przy okazji prezentowania wtyczki jQuery SmartMenus, na stro-
nie 270. Tworzenie tego kodu zaczynamy od zapisania prostej listy wypunktowanej
zawierającej odnośniki — staną się one przyciskami głównego poziomu menu,
prezentowanymi bezpośrednio po wyświetleniu strony. Jeśli zechcemy dodać do
jednego z tych przycisków rozwijane podmenu, wystarczy umieścić w wybranym
elemencie kolejną listę wypunktowaną. Poniższy przykład przedstawia
menu zawierające trzy opcje poziomu głównego oraz podmenu, wyświetlane po
wskazaniu myszą ostatniej opcji:

<ul id="mainMenu">
 O nas
 Kontakt
 Produkty

 Produkt A

R O Z D Z I AŁ 9 . R O Z B U D O W A I N T E R F E J S U UŻY T K O W N I K A

Dodawanie menu

369

 Produkt B
 Produkt C

Kiedy powyższy kod HTML zostanie skonwertowany na menu, użytkownik bę-
dzie mógł wskazać myszą opcję Produkty, a w efekcie zostanie wyświetlone
podmenu zawierające trzy kolejne opcje. Jak we wszystkich widżetach jQuery
UI, także podczas stosowania menu w elemencie zawierającym cały kod HTML
widżetu warto podać identyfikator. Tu elementem tym będzie pierwszy znacznik
, gdyż właśnie w nim znajdują się wszystkie opcje poziomu głównego oraz
podmenu.

Uwaga: Aby wizualnie zorganizować opcje w menu, można dodać separator, który rozdzieli opcje

w podmenu. W tym celu należy dodać znacznik , w którym nie będzie odnośnika, a jedynie znak „-”

(minus):

–

W takim przypadku, zamiast dodawać przycisk, jQuery UI wyświetli poziomą linię.

Stosowanie tego widżetu jest całkiem proste.

 1. Do tworzonej strony WWW dołącz plik CSS jQuery UI oraz pliki JavaScript
jQuery i jQuery UI.

To te same podstawowe czynności związane ze stosowaniem wszystkich wi-
dżetów jQuery UI, które zostały opisane na stronie 133.

 2. Dodaj do strony wypunktowaną listę odnośników wraz z ewentualnymi
kolejnymi, zagnieżdżonymi listami wypunktowanymi dla podmenu.

Warto upewnić się, że odnośniki umieszczone w opcjach głównego poziomu
menu prowadzą do głównych stron witryny.

 3. Dodaj kod CSS ograniczający wielkość opcji głównego poziomu menu
oraz podmenu.

Domyślny kod CSS stosowany przez widżet menu jQuery UI nie ogranicza
szerokości opcji menu, dlatego też mogą one być wyjątkowo szerokie. Aby
ograniczyć szerokość opcji głównego poziomu menu, należy utworzyć regułę
stylu dla selektora .ui-menu, a w niej określić wartość właściwości width:

.ui-menu {
 width: 10em;
}

Klasa ui-menu jest automatycznie stosowana przez jQuery UI podczas two-
rzenia widżetu menu. Jest dodawana do każdego znacznika wchodzącego
w skład menu — zarówno menu głównego, jak i wszystkich podmenu.

Określając szerokość menu, można stosować dowolne jednostki miary — em,
px oraz % — choć w przypadku wartości procentowych należy zachować dużą
ostrożność. Ponieważ szerokość każdego podmenu jest określana względem
elementu rodzica, zatem każdy kolejny poziom podmenu będzie odpowiednio
węższy od poprzedniego. Aby rozwiązać ten problem, wszystkie podmenu (czyli
znaczniki umieszczone wewnątrz innego znacznika) powinny mieć
szerokość 100% (czyli taką samą jak ich rodzic). Oto przykład:

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Dodawanie menu

370

.ui-menu {
 width: 25%;
}
.ui-menu .ui-menu {
 width: 100%;
}

Ten kod CSS powinieneś dodać do arkusza stylów witryny, a nie jQuery UI.
Jeśli w przyszłości zdecydujesz się zmienić używany temat graficzny lub sko-
rzystać z nowszej wersji jQuery UI, wszystkie zmiany wprowadzone w pliku
CSS jQuery UI zostaną stracone. Więcej informacji o stosowaniu stylów do
określania wyglądu widżetów jQuery UI znajdziesz w rozdziale 11.

 4. Wybierz zewnętrzny znacznik menu i wywołaj metodę menu():
$('#mainMenu').menu();

Uwaga: Kompletny przykład widżetu menu można znaleźć w pliku complete_menu.html umieszczo-

nym w katalogu R09.

Widżet menu, podobnie jak inne widżety jQuery UI, udostępnia kilka opcji po-
zwalających na dostosowywanie jego działania i wyglądu. Opcje te, opisane na po-
niższej liście, należy zapisywać w literale obiektowym, przekazywanym w wy-
wołaniu funkcji menu().

 icons. Jak widać na rysunku 9.12, jQuery UI dodaje niewielkie ikony z pra-
wej strony wszystkich opcji, które zawierają podmenu. Ikona ta informuje
użytkowników, że dana opcja ukrywa kolejny poziom menu. W każdym tema-
cie graficznym jQuery UI dostępny jest obszerny zestaw ikon (ich pełną listę
znajdziesz na stronie http://api.jqueryui.com/theming/icons/). Ikonę stoso-
waną w widżecie można zmienić, podając jej nazwę w opcji icons, jak poka-
zano na poniższym przykładzie:

icons : {
 submenu: "ui-icon-circle-triangle-e"
}

Niestety można podać tylko jedną nazwę ikony, co oznacza, że ikony wyświe-
tlane w opcjach menu głównego będą takie same jak prezentowane w opcjach
niższych poziomów menu.

 position. Opcja position określa położenie podmenu względem opcji me-
nu nadrzędnego, wewnątrz której zostały umieszczone. Zazwyczaj podmenu
umieszczane są bezpośrednio z prawej strony tej opcji, jednak to położenie
można zmieniać poprzez przekazanie obiektu position, opisanego na stro-
nie 343. Aby na przykład pokazać podmenu bezpośrednio poniżej opcji, która
je wyświetla, należałoby użyć opcji w następującej postaci:

position : {
 my: "center top",
 at: "center bottom"
}

Należy to rozumieć w następujący sposób: mój (ang. my, czyli podmenu)
środek górnej krawędzi ma być wyświetlony przy (ang. at) środku dolnej krawę-
dzi opcji menu nadrzędnego. Technika ta jest przydatna w przypadku two-
rzenia menu o układzie poziomego paska nawigacyjnego opisanego na stro-
nie 373.

http://api.jqueryui.com/theming/icons/

R O Z D Z I AŁ 9 . R O Z B U D O W A I N T E R F E J S U UŻY T K O W N I K A

Dodawanie menu

371

Tworzenie poziomego paska nawigacyjnego
Menu jQuery UI nie zostały napisane z myślą o budowaniu klasycznych pasków
nawigacyjnych, takich jak te, które można zobaczyć na samej górze wszystkich prze-
glądarek. Jeśli właśnie o coś takiego chodzi, zapewne lepszym rozwiązaniem będzie
zastosowanie wtyczki SmartMenus opisanej na stronie 270. Jednak można skłonić
widżet do wyświetlenia menu poziomego, zawierającego jeden poziom podmenu;
przykład takiego menu został przedstawiony w górnej części rysunku 9.13.

Rysunek 9.13. Jeśli chcemy zachować spójność interfejsu użytkownika poprzez wykorzystanie arkusza stylów
biblioteki jQuery UI oraz jej widżetów, możemy utworzyć w pełni funkcjonalne menu poziome , używając wi-
dżetu menu, o le tylko zadowoli nas jeden poziom podmenu (u góry). Widżet Selectmenu jQuery UI nie nadaje
się najlepiej do tworzenia poziomych menu o wielu poziomach podmenu (u dołu). Ponieważ wszystkie podmenu są
umieszczane w tym samym miejscu względem opcji menu nadrzędnego, zatem kolejne poziomy podmenu
będą się wzajemnie przesłaniać. Oba rodzaje menu poziomych można znaleźć w plikach complete_horiz_menu.html
oraz bad_horiz_menu_mult level.html umieszczonych w katalogu R09

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Dodawanie menu

372

Wielopoziomowe menu w układzie poziomym nie działają najlepiej, gdyż widżet
menu jQuery UI rozmieszcza wszystkie podmenu w taki sam sposób, określając
ich położenie względem opcji menu nadrzędnego. W przypadku menu o układzie
pionowym (patrz rysunek 9.12) takie rozwiązanie bardzo dobrze zdaje egzamin:
podmenu są wyświetlane z prawej strony opcji menu nadrzędnego. Jednak w menu
poziomym pierwszy poziom podmenu jest zazwyczaj wyświetlany bezpośrednio
poniżej opcji menu nadrzędnego (patrz rysunek 9.13, u góry), natomiast kolejne
poziomy podmenu — z prawej strony odpowiedniej opcji. Niestety, jeśli korzy-
stamy z jQuery UI i jeden poziom umieścimy poniżej opcji menu nadrzędnego,
wszystkie podmenu będą wyświetlane w taki sam sposób; w efekcie uzyskamy
menu, w którym opcje kolejnych poziomów menu będą się przesłaniać, co pokazano
u dołu rysunku 9.13.

 1. Aby utworzyć menu poziome, zacznij od umieszczenia na stronie wy-
punktowanej listy odnośników, a później dodaj do niej co najwyżej jeden
poziom list zagnieżdżonych (jako przykład takiego menu może posłużyć
kod HTML przedstawiony na stronie 368).

Teraz będziesz musiał dodać kod CSS, który sprawi, że opcje głównego po-
ziomu menu będą wyświetlane w poziomie. Ten kod CSS powinieneś umie-
ścić w arkuszu stylów witryny, a nie w pliku CSS jQuery UI.

 2. Dodaj kod CSS określający postać opcji głównego poziomu menu, dzięki
któremu będą one wyświetlane w układzie poziomym:

#mainMenu > li {
 width: 10em;
 float: left;
}

Zastosowany selektor CSS — #mainMenu > li — wybiera wszystkie znacz-
niki , które są bezpośrednimi potomkami elementu o identyfikatorze
mainMenu. (Przykład zakłada, że zgodnie z kodem zamieszczonym na stronie
368, do głównego znacznik zawierającego całe menu dodałeś identyfi-
kator). Znak większości (>) jest selektorem elementów dzieci i wybiera tylko
te znaczniki , które są bezpośrednimi dziećmi głównego znacznika ;
oznacza to, że ta reguła nie będzie się odnosiła do znaczników umiesz-
czonych w podmenu.

Reguła ta nadaje wszystkim opcjom menu określoną szerokość, a następnie
sprawia, że będą umieszczane jedna obok drugiej. Kolejnym krokiem będzie
określenie szerokości podmenu.

 3. Dodaj kolejną regułę CSS:
.ui-menu .ui-menu {
 width: 10em;
}

Ta reguła określa szerokość podmenu. jQuery UI dodaje do każdego menu —
znacznika — klasę .ui-menu. Oznacza to, że powyższy selektor — .ui-menu
.ui-menu — wybierze tylko te znaczniki , które są umieszczone wewnątrz
innego znacznika . Innymi słowy, reguła ta odnosi się tylko do podmenu
i określa ich szerokość.

R O Z D Z I AŁ 9 . R O Z B U D O W A I N T E R F E J S U UŻY T K O W N I K A

Dodawanie menu

373

 4. W końcu dodaj jeszcze jedną regułę, by rozwiązać problem z menu
głównym:

#mainMenu {
 float: left;
}

Ta reguła rozwiązuje problem określany jako „uciekający element pływający”
(ang. escaping float) — chodzi o sytuację, w której wysokość elementu zawie-
rającego wyłącznie elementy pływające jest redukowana do zera. A mówiąc
po ludzku, problem ten oznacza, że obramowania i tło elementu nie wyglą-
dają prawidłowo, gdy wszystkie elementy umieszczone wewnątrz są elemen-
tami pływającymi. Przedstawiona tu technika pozwala rozwiązać ten pro-
blem, a sprowadza się do zastosowania właściwości float także w elemencie
nadrzędnym.

W ten sposób uporałeś się z kodem CSS, teraz dodasz odpowiedni kod Java-
Script.

 5. Wywołaj metodę menu() w sposób opisany na stronie 370, zastosuj jed-
nak kilka dodatkowych opcji, które określą położenie podmenu oraz
zmienią używane ikony:

$('#menu').menu({
 position: {
 my: 'center top',
 at: 'center bottom'
 },
 icons: {
 submenu: 'ui-icon-triangle-1-s'
 }
});

Opcja position (opisana na stronie 370) kontroluje rozmieszczenie podme-
nu. W tym przypadku podmenu jest wyświetlane bezpośrednio poniżej opcji
menu nadrzędnego. Oprócz tego, w opcjach zawierających podmenu widżet
Selectmenu wyświetla zazwyczaj strzałkę w prawo. Ponieważ teraz pasek
menu jest wyświetlony w układzie poziomym, a podmenu są wyświetlane
poniżej opcji menu głównego, dlatego zmieniłeś używaną ikonę na strzałkę
w dół ('ui-icon-triangle-1-s').

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

374

Formularze raz jeszcze

ormularze to pierwsze interaktywne elementy stron WWW i cały czas, w takiej
bądź innej formie, są stosowane w większości aplikacji internetowych. For-
mularze pozwalają na pobieranie informacji od użytkowników, umożliwiają

im kupowanie towarów w sklepach internetowych, za ich pomocą członkowie
internetowych społeczności mogą redagować i publikować swoje wpisy i tak dalej.
Informacje zamieszczone w rozdziale 8. pokazały, jak możemy sprawić, by formula-
rze były bardziej inteligentne i łatwiejsze w użyciu. Biblioteka jQuery UI udo-
stępnia dodatkowe możliwości rozbudowy formularzy i zapewnia spójny projekt,
dzięki któremu elementy formularzy będą wyglądały i funkcjonowały podobnie.

W tym rozdziale dowiesz się, jak używać czterech widżetów jQuery UI — kalen-
darza (Datepicker), automatycznie uzupełnianej listy (Autocomplete), listy wy-
boru (Selectmenu) oraz przycisków (Button) — które naprawdę mogą sprawić, by
formularze doskonale wyglądały i działały.

Wybieranie dat ze stylem
Wiele formularzy wymaga wybierania dat. Formularze służące do dodawania
zdarzeń w kalendarzu, rezerwowania lotów bądź stolika w restauracji wymagają
wskazania konkretnej daty. Wiele zawiera instrukcje typu: „Wpisz datę w formacie
12.11.2014”, jednak zwyczajne poproszenie użytkownika o wpisanie daty w polu
tekstowym może dać bardzo różne efekty. Przede wszystkim w takim przypadku
zdajemy się na to, że użytkownik nie popełni błędu. Poza tym, ponieważ osoby
mieszkające w różnych krajach wpisują daty w odmienny sposób (na przykład
w USA daty są zapisywane w kolejności: miesiąc, dzień, rok, natomiast w wielu
innych krajach stosuje się zapis: dzień, miesiąc, rok), takie ręcznie wpisywane daty
mogą być mylące i niedokładne.

Na szczęście widżet Datepicker jQuery UI sprawia, że wybieranie dat staje się ba-
nalnie proste. Zamiast wpisywać je ręcznie, użytkownik klika pole formularza, co
powoduje wyświetlenie wizualnego kalendarza umożliwiającego wybór daty (patrz
rysunek 10.1). Widżet kalendarza jest łatwy w użyciu i zapewnia możliwości dosto-
sowywania jego wyglądu i działania do własnych potrzeb.

F

10
ROZDZIAŁ

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Wybieranie dat ze stylem

376

Rysunek 10.1. Widżet
kalendarza jQuery UI
zapewnia możliwość
prostego i wygodnego
wybierania dat
w formularzach

Podobnie jak wszystkie inne widżety jQuery UI, także widżet kalendarza jest
bardzo łatwy w użyciu.

1. Wykonaj czynności opisane na stronie 329, aby dołączyć do strony plik
CSS jQuery UI oraz niezbędne pliki JavaScript.

Do strony musisz także dołączyć plik JavaScript biblioteki jQuery. Zawsze
wtedy, gdy używasz widżetów jQuery UI, do strony muszą być dołączone na-
stępujące pliki: arkusz CSS jQuery UI, plik JavaScript biblioteki jQuery oraz
plik JavaScript jQuery UI (w podanej kolejności).

Uwaga: Wszystkie teksty wyświetlane w widżecie kalendarza — nazwy miesięcy oraz dni tygodnia — są

domyślnie zapisane w języku angielskim. Na szczęście polonizacja kalendarza jest, jak większość czynności

związanych ze stosowaniem widżetów jQuery UI, bardzo prosta. Sprowadza się do dołączenia do strony

jednego pliku JavaScript, datepicker-pl js, który można pobrać ze strony https://github.com/jquery/
jquery-ui/tree/master/ui/i18n (jest on także umieszczony w przykładach dołączonych do książki,

w katalogu R10). Plik ten musi zostać dołączony do strony za plikiem JavaScript jQuery UI.

2. Dodaj do strony formularz, a w nim pole tekstowe <input>, do którego
będzie wpisywana data.
Powinieneś także zapewnić prosty sposób odwołania się do tego pola przy uży-
ciu jQuery. Możesz na przykład podać jego identyfikator:

<input type="text" name="birthdate" id="birthday">

Ewentualnie, jeśli formularz zawiera kilka pól, w jakich trzeba będzie wpisać
daty (na przykład datę przyjazdu i wyjazdu), możesz użyć nazwy klasy, by
określić wszystkie pola, do których należy dodać widżet kalendarza:

<input type="text" name="arrival" class="date">
<input type="text" name="departure" class="date">

3. Dodaj do strony funkcję $(document).ready():
$(document).ready(function() {

}); // Koniec funkcji ready.

https://github.com/jquery/jquery-ui/tree/master/ui/i18n
https://github.com/jquery/jquery-ui/tree/master/ui/i18n

R O Z D Z I AŁ 1 0 . F O R M U L A R Z E R A Z J E S Z C Z E

Wybieranie dat ze stylem

377

 4. Zastosuj jQuery, by wybrać element (lub elementy), do którego chcesz do-
dać widżet kalendarza, a następnie wywołaj funkcję datepicker():

$(document).ready(function() {
 $('#birthdate').datepicker();
}); // Koniec funkcji ready.

Ewentualnie, jeśli zastosowałeś nazwę klasy, aby wyróżnić kilka pól, do któ-
rych mają być dodane kalendarze (jak w kroku 2. powyżej), użyj poniższego
wywołania:

$(document).ready(function() {
 $('.date').datepicker();
}); // Koniec funkcji ready.

To jedyne czynności niezbędne do utworzenia kalendarza do wyboru daty, takiego
jak przedstawiony na rysunku 10.1. I jeśli to już wszystko, co widżet ma robić, to
doskonale zda egzamin. Jednak widżet kalendarza jQuery UI udostępnia bardzo
wiele opcji służących do modyfikowania jego wyglądu i sposobu działania.

Uwaga: Język HTML5 oferuje specjalny typ pól formularzy, date, którego zadaniem jest udostępnia-

nie niektórych możliwości widżetu kalendarza jQuery UI, lecz bez stosowania kodu JavaScript. Niestety,

nie jest on obsługiwany przez wszystkie przeglądarki, ani nie zapewnia możliwości określania wyglądu

wyświetlanego kalendarza. Co więcej, widżet jQuery UI daje wiele dodatkowych możliwości, których nie

uzyskamy podczas korzystania ze standardowego pola date HTML5.

Określanie właściwości kalendarzy
Właściwości widżetu kalendarza — takie jak używany format zapisu dat, które
będą wstawiane do pola tekstowego — można określać za pomocą przekazania li-
terału obiektowego w wywołaniu funkcji datepicker(). Literał ten zawiera opcje
widżetu oraz ich wartości.

I tak opcja numberOfMonths pozwala określić, ile miesięcy ma być widocznych
w kalendarzu po wyświetleniu. Normalnie prezentowany jest tylko jeden, co po-
kazano na rysunku 10.1, jednak istnieje możliwość wyświetlenia do trzech miesięcy
(patrz rysunek 10.2). W tym celu należy opcji numerOfMonth przypisać wartość 3:

$('.date').datepicker({
 numberOfMonths : 3
});

Rysunek 10.2. Widżet kalenda-
rza jQuery UI zapewnia bardzo
duże możliwości dostosowywa-
nia. Można w nim zmienić liczbę
prezentowanych miesięcy, umie-
ścić numer roku przed nazwą
miesiąca oraz podać inne nazwy
miesięcy i dni tygodnia, dosto-
sowując go do użycia na stro-
nach napisanych w innym języku

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Wybieranie dat ze stylem

378

Poniżej przedstawionych zostało kilka najczęściej używanych opcji konfigura-
cyjnych widżetu kalendarza.

 changeMonth. Normalnie użytkownik może zmieniać miesiąc wyświetlony
w widżecie kalendarza, klikając strzałki umieszczone w jego górnej części,
przy lewej i prawej krawędzi (patrz rysunek 10.1). Przyciski te powodują od-
powiednio przejście do poprzedniego (lewy przycisk) oraz następnego (prawy
przycisk) miesiąca. Jeśli jednak trzeba się cofnąć o dziewięć miesięcy, takie
rozwiązanie może być uciążliwe i niewygodne. Przypisanie opcji changeMonth
wartości true pozwala wyświetlić w widżecie rozwijaną listę, z której użyt-
kownik może wygodnie wybrać miesiąc (patrz rysunek 10.2).

changeMonth : true

 changeYear. Ta opcja przypomina opcję changeMonth. Jeśli przypiszemy jej
wartość true, jQuery UI wyświetli w widżecie rozwijaną listę umożliwiającą
wybranie roku. Opcja ta jest zazwyczaj używana wraz z opcją yearRange (patrz
strona 370), pozwalającą na określenie zakresu lat, które zostaną wyświetlone
na liście.

changeYear : true

 dateFormat. Opcja pozwala na podanie łańcucha znaków, definiującego for-
mat, w jakim jQuery UI będzie zapisywać daty wybierane w widżecie w polu
tekstowym formularza. Format ten określa się przy użyciu predefiniowanych
kodów. I tak dd oznacza dzień miesiąca, mm miesiąc, a yy rok. W łańcuchu
formatującym można także umieszczać znaki, takie jak znaki odstępu, ukośniki
(/),minusy (-) bądź kropki (.). Na przykład załóżmy, że ktoś wybrał w widżecie
kalendarza datę 27 stycznia 2015 roku i chcemy ją wyświetlić w formacie
27.01.2015. W takim przypadku należałoby użyć następującej opcji dateFormat:

dateFormat : 'dd.mm.yy'

Biblioteka jQuery UI udostępnia wiele kodów służących do formatowania
dat. Kilka najczęściej stosowanych zostało przedstawionych w tabeli 10.1.
Pełna lista wszystkich kodów formatujących stosowanych w opcji dateFormat
widżetu kalendarza jQuery UI jest dostępna na stronie http://api.jqueryui.
com/datepicker/#utility-formatDate.

Uwaga: Widżet kalendarza jQuery UI udostępnia także wiele innych opcji, zdarzeń i metod. Informacje

o nich można znaleźć na stronie http://api.jqueryui.com/datepicker/.

 monthNames. Opcja zawiera tablicę składającą się z 12 łańcuchów znaków
określających nazwy miesięcy zapisane w innym języku niż angielski. Aby
na przykład widżet kalendarza wyświetlał polskie nazwy miesięcy, w literale
obiektowym przekazywanym w wywołaniu funkcji datepicker() należy po-
dać opcję monthNames o następującej postaci:

monthNames : ['Styczeń','Luty','Marzec','Kwiecień','Maj','Czerwiec',
'Lipiec','Sierpień','Wrzesień','Październik','Listopad','Grudzień']

 numberOfMonths. W tej opcji można podać liczbę miesięcy, które mają być
wyświetlone w widżecie kalendarza. Zazwyczaj prezentowany jest tylko je-
den miesiąc, jednak można zażądać, by było ich więcej. Jeśli zażądamy wy-
świetlenia więcej niż trzech miesięcy (patrz rysunek 10.2), prezentowany

http://api.jqueryui.com/datepicker/#utility-formatDate
http://api.jqueryui.com/datepicker/
http://api.jqueryui.com/datepicker/#utility-formatDate

R O Z D Z I AŁ 1 0 . F O R M U L A R Z E R A Z J E S Z C Z E

Wybieranie dat ze stylem

379

Tabela 10.1. Użyteczne łańcuchy formatujące, stosowane w opcji dateFormat

Przykład Znaczenie Przykładowa postać daty

'yy-mm-dd' Pełny numer roku, dwucyfrowa liczba
określająca numer miesiąca i dwucyfrowa
liczba określająca numer dnia. Ten format
zapisu dat jest używany na przykład w bazie
danych MySQL.

2015-02-05

'm/d/y' Jedno- lub dwucyfrowa liczba określająca
numer dnia, jedno- lub dwucyfrowa liczba
określająca numer miesiąca i dwucyfrowy
numer roku.

2/5/15

'D, d M, yy' Skrócona nazwa dnia tygodnia, przecinek,
odstęp, jedno- lub dwucyfrowy numer dnia,
odstęp, skrócona nazwa miesiąca, przecinek,
odstęp i pełny numer roku.

Wt, 5 Lu, 2015

'DD, dd MM, yy Pełna nazwa dnia tygodnia, przecinek, odstęp,
jedno- lub dwucyfrowy numer dnia, odstęp,
pełna nazwa miesiąca, przecinek, odstęp
i pełny numer roku.

Wtorek, 5 Luty, 2015

'@' Znacznik czasu systemu Unix. Określa liczbę
milisekund, które upłynęły do północy
1 stycznia 1970 roku (patrz strona 595).

1423123200000

widżet kalendarza stanie się nieco nieporęczny. Kolejne miesiące zawsze są
prezentowane jeden obok drugiego, a zatem, jeśli zażądamy pokazania wię-
cej niż 3, zapewne wyświetlenie któregoś ze skrajnych miesięcy będzie wy-
magało przewinięcia zawartości widżetu w prawo lub w lewo. Dlatego też
najlepiej przypisywać tej opcji jedynie wartości z zakresu od 1 do 3.

 maxDate. Określa najpóźniejszą datę, jaką użytkownik może wybrać w wi-
dżecie. Opcji tej można używać na przykład w hotelowym systemie rezerwa-
cji miejsc. Wiele hoteli nie pozwala na rezerwowanie pokoi z wyprzedzeniem
większym niż jeden rok; dlatego widżet kalendarza może ograniczyć zakres
wybieranych dat, tak by nie wyprzedzały daty bieżącej o więcej niż jeden rok.
Aby na przykład data wybierana w przyszłości nie była odległa o więcej niż
30 dni od daty bieżącej, należałoby użyć następującej opcji:

maxDate : 30

Innym rozwiązaniem jest podanie w tej opcji łańcucha znaków określającego
odległość tej maksymalnej daty do dnia dzisiejszego, wyrażoną jako ilość lat
(litera y), miesięcy (litera m), tygodni (litera w) oraz dni (litera d). By przykładowo
ograniczyć zakres dat do roku w przód, należałoby użyć następującej opcji:

maxDate : '+1y'

Poszczególne znaki należy od siebie oddzielać odstępami. Aby maksymalna
data nie była odległa od dnia dzisiejszego o więcej niż trzy miesiące, dwa ty-
godnie i pięć dni, należałoby użyć właściwości maxDate o postaci:

maxDate : '+3m +2w +5d'

Przykład zastosowania tej opcji można znaleźć w dalszej części rozdziału, na
stronie 382.

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Wybieranie dat ze stylem

380

 minDate. Opcja jest odwrotnością opcji maxDate. Określa najwcześniejszą
datę, którą będzie można wybrać z kalendarza. Jest szczególnie użyteczna we
wszelkiego typu formularzach rezerwacyjnych — w końcu nie ma większego
sensu rezerwowanie czegoś od dnia wczorajszego (chyba że od momentu
opublikowania tej książki udało się opanować podróże w czasie). Tę najwcze-
śniejszą datę określa się dokładnie tak samo jak wartości opisywanej wcze-
śniej opcji maxDate. Aby na przykład uniemożliwić użytkownikom wskazanie
jakiejkolwiek daty z przeszłości, należy przypisać opcji minDate wartość 0:

minDate : 0

W przypadku tej opcji zastosowanie wartości dodatnich oznacza, że użyt-
kownik będzie musiał wybierać daty z przyszłości. Jeśli przykładowo wszyst-
kie pokoje w hotelu zostały już zarezerwowane na najbliższe trzy tygodnie,
można uniemożliwić użytkownikom wybieranie dat z tego zakresu, używając
poniższej właściwości:

minDate : '+3w'

Zastosowanie wartości ujemnych pozwoli na wybieranie dat z przeszłości.
Załóżmy, że utworzyłeś formularz do przeszukiwania firmowej bazy archi-
walnych wiadomości poczty elektronicznej. Aby firmowa baza danych nie roz-
rosła się do zbyt dużych rozmiarów, przechowywane są w niej wiadomości wy-
łącznie z dwóch ostatnich lat, dlatego też nie ma sensu pozwalać użytkownikom
na wybieranie wcześniejszych dat — sprzed trzech, czterech lub nawet pięciu
lat — gdyż te e-maile i tak zostały już dawno usunięte. Poniżej pokazano, jak
można ograniczyć zakres wybieranych dat do dwóch lat wstecz:

minDate : '-2y'

Także w tym przypadku można łączyć liczby dni, miesięcy i lat. Oto sposób,
w jaki można ograniczyć zakres dat do jednego roku, dwóch miesięcy i trzech
dni wstecz:

minDate : '-1y -2m -3d'

Uwaga: W opcjach minDate oraz maxDate można także zapisywać obiekty dat JavaScript. Na przykład

załóżmy, że firma zaczęła działalność od 13 marca 2010 roku. W takim przypadku najwcześniejszą datę,

jaką można wybrać w widżecie kalendarza, można by określić w następujący sposób:

minDate : new Date(2010, 2, 13)

Informacje dotyczące tworzenia obiektów dat w języku JavaScript zostały podane na stronie 592.

 yearRange. Opcja jest stosowana wraz z opcją changeYear (patrz strona 378)
i określa liczbę lat wyświetlanych na rozwijanej liście. Załóżmy, że chcesz
pobrać datę urodzenia użytkownika. Możesz zatem przypisać opcji changeYear
wartość true, tak by użytkownicy mogli wyświetlić w kalendarzu daty sprzed
20, 30 lub 50 lat. Standardowo przypisanie opcji changeYear wartości true
sprawia, że w rozwijanej liście wyświetlanych jest dziesięć poprzednich i dzie-
sięć przyszłych lat. Jednak w naszym przypadku lepiej byłoby wyświetlić kil-
kadziesiąt lat wstecz i żadnego roku z przyszłości (chyba że wynaleziono sposób
podróży w czasie). W tym celu możesz przypisać opcji yearRange łańcuch
znaków zawierający liczbę ujemną, dwukropek i kolejną liczbę — dodatnią
lub ujemną. Pierwsza z liczb określa pierwszy rok prezentowany w rozwijanej
liście, a druga — ostatni.

R O Z D Z I AŁ 1 0 . F O R M U L A R Z E R A Z J E S Z C Z E

Wybieranie dat ze stylem

381

Wracając do przykładu z datami urodzenia, chciałbyś zapewne wyświetlić na
liście ostatnich 120 lat i żadnego roku z przyszłości. Oto jak to zrobić:

yearRange : '-120:+0'

Ta opcja nakazuje jQuery UI wyświetlić w widżecie rozwijaną listę do wyboru
roku, przy czym pierwszy z nich będzie sprzed 120 lat, a ostatni będzie bieżą-
cym rokiem. Jeśli wciąż nie do końca rozumiesz, o co w tym chodzi, zajrzyj do
przykładu zamieszczonego na stronie 382.

Przykład — pole do wyboru daty urodzenia
Nadszedł czas, żebyś spróbował zastosować widżet kalendarza. W tym przykładzie
przekształcisz zwyczajne pole tekstowe w inteligentny komponent ułatwiający
użytkownikowi określanie daty urodzenia.

Uwaga: Informacje o tym, jak pobrać przykłady prezentowane w książce, zostały zamieszczone na

stronie 46.

 1. W edytorze tekstów otwórz plik birthdate.html umieszczony w katalogu R10.
Plik zawiera już odwołania do wszystkich plików jQuery i jQuery UI (w tym do
pliku datepicker-pl.js, w którym zamieszczone zostały ustawienia pozwalające
na polonizację kalendarza) oraz wywołanie funkcji $(document).ready()
(patrz strona 190). Kolejnym krokiem będzie wybranie pola tekstowego.

 2. Wewnątrz wywołania funkcji $(document).ready() wpisz:
$('#dob')

Jeśli przyjrzysz się kodowi HTML edytowanej strony, zauważysz w nim pole
tekstowe, służące do podawania daty: <input type= text id= dob name=
birthdate >. Pole to ma identyfikator dob, a zatem podany wyżej selektor

pozwoli je pobrać. Kolejnym krokiem będzie utworzenie widżetu kalendarza.
 3. Wpisz kropkę oraz datepicker();, tak by kod wyglądał dokładnie tak, jak
na poniższym przykładzie:

$('#dob').datepicker();

I to już wszystko!
 4. Zapisz plik i wyświetl go w przeglądarce. Kliknij widoczne na stronie
pole tekstowe.
W magiczny sposób poniżej niego zostanie wyświetlony kalendarz. W tym
przypadku korzysta on z tematu graficznego jQuery UI o nazwie Lightness, lecz
już w następnym rozdziale dowiesz się, jak można zmieniać wygląd widżetów.
Jeśli teraz spróbujesz wybrać datę, przekonasz się, że jest to dosyć kłopotliwe.
Musisz aż 12 razy kliknąć strzałkę w lewo umieszczoną w górnej części ka-
lendarza, aby cofnąć się tylko o jeden rok! Dlatego ułatwisz użytkownikom
wybór dat, dodając do kalendarza rozwijane listy do wyboru miesięcy i lat.

 5. Wróć do edytora tekstów, wewnątrz wywołania funkcji datepicker() dodaj
literał obiektowy:

$('#dob').datepicker({

});

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Wybieranie dat ze stylem

382

Aby zmienić opcje kalendarza, musisz przekazać w wywołaniu funkcji
datepicker() literał obiektowy — { } — zawierający odpowiednie opcje — pary
nazwa – wartość. Najpierw zajmiesz się rozwijaną listą do wyboru miesiąca.

 6. Do literału obiektowego dodaj właściwość changeMonth : true:
$('#dob').datepicker({
 changeMonth : true
});

Jeśli teraz zapiszesz stronę, wyświetlisz ją w przeglądarce, a następnie klikniesz
widoczne na niej pole tekstowe, zostanie wyświetlony kalendarz, a w jego gór-
nej części będzie umieszczona rozwijana lista zawierająca nazwy 12 miesięcy.
Dzięki niej znacznie łatwiej będzie można wybrać datę sprzed 9 miesięcy.
W kolejnym kroku zajmiesz się podobną listą do wyboru lat.

 7. Na końcu wpisanego wcześniej wiersza kodu dodaj przecinek, naciśnij
klawisz Enter i wpisz changeYear : true:

$('#dob').datepicker({
 changeMonth : true,
 changeYear : true
});

Zastosowanie tej opcji spowoduje dodanie do kalendarza kolejnej rozwijanej li-
sty. Niestety, domyślna zawartość listy lat sięga jedynie 10 lat wstecz, czyli nie
jest dokładnie tym, o co chodziło. Jeśli docelową grupą użytkowników witrynie
nie są dzieci w wieku poniżej 10 lat bądź nie są to osoby posiadające wehikuł
czasu, lata prezentowane na tej liście nie na wiele się im przydadzą. Na szczę-
ście całkiem łatwo można zmienić zakres lat wyświetlanych na tej liście.

 8. Na końcu wpisanego wcześniej wiersza kodu dopisz przecinek, naciśnij
klawisz Enter i wpisz: yearRange : '-120:+0':

$('#dob').datepicker({
 changeMonth : true,
 changeYear : true,
 yearRange : '-120:+0'
});

Ta opcja zmienia zakres lat wyświetlanych na liście. Teraz zaczynają się one od
roku przypadającego 120 lat wstecz i kończą na bieżącym roku. I to jest to!
Gdybyś jednak przetestował teraz stronę, przekonałbyś się, że w kalendarzu
można wybrać datę z następnego tygodnia lub miesiąca. Powinieneś ograniczyć
użytkowników przynajmniej do noworodków urodzonych w bieżącym dniu.

 9. Ponownie na końcu wiersza wpisz przecinek, naciśnij Enter i wpisz:
maxDate : 0:

$('#dob').datepicker({
 changeMonth : true,
 changeYear : true,
 yearRange : '-120:+0',
 maxDate : 0
});

Teraz nie będzie już można wybierać dat późniejszych od bieżącej. W końcu
zmienisz format zapisu, by daty umieszczane w polu tekstowym były zapisy-
wane tak, jak w przykładzie, czyli 27.1.2015.

R O Z D Z I AŁ 1 0 . F O R M U L A R Z E R A Z J E S Z C Z E

Stylowe rozwijane listy

383

 10. Jeszcze raz wpisz przecinek, naciśnij Enter i wpisz: formatDate : 'dd-m-yy':
$('#dob').datepicker({
 changeMonth : true,
 changeYear : true,
 yearRange : '-120:+0',
 maxDate : 0,
 dateFormat : 'dd-m-yy'
});

Teraz dysponujesz już kalendarzem dostosowanym do własnych potrzeb, który
świetnie nadaje się do wybierania dat urodzin.

 11. Zapisz plik i wyświetl go w przeglądarce.
Kiedy klikniesz pole tekstowe widoczne na stronie, zostanie wyświetlony
widżet kalendarza w swojej ostatecznej, dostosowanej postaci (patrz rysunek
10.3). Kompletną wersję tego przykładu możesz znaleźć w pliku complete-
birthdate.html umieszczonym w katalogu R10.

Rysunek 10.3. Widżet kalenda-
rza jQuery UI jest koniecznym
dodatkiem do wszystkich stron
wymagających wybierania dat.
Można go dostosowywać na nie-
zliczoną lość sposobów, na przy-
kład pozwolić wyłącznie na wy-
bieranie przyszłych dat lub dat
z przeszłości. W tym przypadku
daty późniejsze od 11 czerwca
2014 roku są szare i niedostęp-
ne, jednak dwie rozwijane listy
u góry widżetu ułatwiają wybór
roku z odległej przeszłości
i dowolnego miesiąca

Stylowe rozwijane listy
Tematy graficzne jQuery UI umożliwiają zapewnienie jednolitego wyglądu róż-
nych elementów interfejsu użytkownika. Przykładowo widżet kalendarza bardzo
przypomina widżet zestawu kart. Rozwijane listy — te elementy formularzy po-
zwalające na wybranie jednej z opcji z listy wyświetlanej po kliknięciu pola — nie
dają dobrych możliwości określania wyglądu przy użyciu arkuszy stylów. Każda
przeglądarka wyświetla je w nieco inny sposób, który niejednokrotnie jest zależny
do używanego systemu operacyjnego (Windows, Mac, Linux), a co więcej, przeglą-
darki nie pozwalają na stosowanie w nich wszystkich dostępnych właściwości CSS.

Na szczęście jQuery UI udostępnia wygodny widżet Selectmenu, który prze-
kształca standardową listę rozwijaną HTML, nadając jej znacznie bardziej atrak-
cyjną postać, dostosowaną do wyglądu pozostałych widżetów jQuery UI (patrz
rysunek 10.4). Widżet ten dosłownie odtwarza listę rozwijaną, zapisując ją w postaci
listy wypunktowanej i grupy znaczników , których postać można znacznie
łatwiej określać przy użyciu arkuszy stylów. Korzystając ze sprytnego kodu JavaScript,

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Stylowe rozwijane listy

384

Rysunek 10.4. Stan-
dardowy wygląd roz-
wijanej listy zależy od
przeglądarki i systemu
operacyjnego (z lewej).
Jednak dzięki zastoso-
waniu jQuery UI można
przekształcić bezbarw-
ne listy na stylowe ele-
menty interfejsu użyt-
kownika, dopasowane
wyglądem do pozosta-
łych widżetów jQuery UI

widżet ukrywa początkową listę rozwijaną i pozwala użytkownikom na wybieranie
opcji z listy obsługiwanej przez kod JavaScript. Opcje wybierane przez użytkownika są
zaznaczane także w początkowym elemencie formularza, dzięki czemu w mo-
mencie przesyłania formularza informacje o wybranej opcji zostaną prawidłowo
przesłane na serwer.

Biblioteka jQuery UI, w całkowicie niezauważalny sposób, wykonuje tu całkiem
skomplikowaną programistyczną magię, a dla nas, użytkowników, tworzenie sty-
lowej listy wyboru nie może być prostsze.

 1. Wykonaj czynności opisane na stronie 329, aby dodać do strony plik CSS
jQuery UI oraz pliki JavaScript jQuery i jQuery UI.
Jak wcześniej, będziesz musiał dołączyć także plik JavaScript biblioteki jQuery,
więc w przypadku korzystania z widżetów jQuery UI do strony dołączone będą
następujące pliki: arkusz CSS jQuery UI, plik JavaScript biblioteki jQuery oraz
plik JavaScript jQuery UI (dokładnie w takiej kolejności).

 2. Do strony dodaj formularz, a wewnątrz niego rozwijaną listę — znacznik
<select> zawierający grupę znaczników <option>:

<select name="meal" id="meal">
 <option>brak</option>
 <option>wegański</option>
 <option>bezglutenowy</option>
 <option>wegetariański</option>
 <option>mięsny</option>
</select>

Przy okazji powinieneś zadbać o możliwość wygodnego pobrania znacznika
<select> przy użyciu jQuery. W tym celu bądź to określ jego identyfikator,
bądź też, jeśli na stronie chcesz umieścić kilka list rozwijanych, dodaj do każdej
z nich taką samą nazwę klasy, na przykład class= select .

 3. Umieść na stronie wywołanie funkcji $(document).ready():
$(document).ready(function() {

}); // Koniec funkcji ready.

Zgodnie z informacjami podanymi na stronie 191, stosowanie tego rozwiąza-
nia jest konieczne wyłącznie w przypadku, gdy chcesz umieścić kod JavaScript
w sekcji <head> strony.

R O Z D Z I AŁ 1 0 . F O R M U L A R Z E R A Z J E S Z C Z E

Stylowe rozwijane listy

385

 4. Skorzystaj z możliwości jQuery, by wybrać rozwijaną listę, a następnie
wywołaj funkcję selectmenu():

$(document).ready(function() {
 $('#meal').selectmenu();
}); // Koniec funkcji ready.

Jeśli zastosowałeś nazwę klasy, by za jej pomocą wyróżnić więcej niż jedną roz-
wijaną listę na stronie, użyj wywołania o następującej postaci:

$(document).ready(function() {
 $('.select').selectmenu();
}); // Koniec funkcji ready.

Jeżeli opcje umieszczone na liście nie są wyjątkowo krótkie, widżet Selectmenu
jQuery nie wyświetli pierwszej z nich w całości. Innymi słowy, może się okazać,
że widżet nie będzie dostatecznie szeroki, by w całości wyświetlić pierwszą
opcję. Będzie to wyglądać dosyć dziwnie, więc zawsze powinieneś określić sze-
rokość listy.

 5. W wywołaniu funkcji selectmenu() przekaż literał obiektowy określający
wartość właściwości width:

$(document).ready(function() {
 $('#meal').selectmenu({
 width: 200
 });
}); // Koniec funkcji ready.

Podobnie jak w przypadku pozostałych widżetów jQuery UI (takich jak ka-
lendarz przedstawiony na stronie 377), istnieje możliwość określania róż-
nych opcji listy rozwijanej za pomocą przekazywania literału obiektowego
zawierającego pary opcja – wartość. Opcja width jest wymagana niemal zaw-
sze i powinna zawierać wartość liczbową określającą szerokość listy wyrażoną
w pikselach (więcej informacji na temat tej opcji można znaleźć w następnym
punkcie rozdziału).

I to są wszystkie czynności konieczne do utworzenia listy rozwijanej, takiej
jak przedstawiona na rysunku 10.4.

Określanie właściwości list rozwijanych
W widżecie Selectmenu nie znajdziesz zbyt wielu opcji. Przede wszystkim jest
on narzędziem, które ma sprawić, by rozwijane listy wyglądały podobnie do po-
zostałych widżetów jQuery UI. Udostępnia on jednak kilka opcji, które mogą się
przydać.

 width. Opcja niemal zawsze jest wymagana. Zazwyczaj jQuery UI tworzy
rozwijaną listę, która nie jest na tyle szeroka, by były w niej w całości widoczne
nazwy opcji. Dlatego praktycznie zawsze trzeba poszerzyć listę, aby wyświetlić
całe nazwy. Co gorsza, jeśli lista nie jest na tyle szeroka, by można było na niej
w całości wyświetlić nazwę opcji składającą się z dwóch lub więcej wyrazów,
taka nazwa zostanie pokazana w dwóch wierszach. Jeśli szerokość listy ma
być określona w pikselach, opcji width możemy użyć w następujący sposób:

width : 300

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Stylowe rozwijane listy

386

Szerokość można także podać w formie wartości procentowej lub przy użyciu
jednostek em. W takich przypadkach wartość należy podać jako łańcuch zna-
ków, za liczbą trzeba dodać odpowiednio: znak procenta (%) lub litery em. Aby
na przykład dostosować menu do szerokości elementu rodzica (przykładowo
znacznika <div>, w którym zostało umieszczone), moglibyśmy zażądać, by
jego szerokość wynosiła 100%:

width : '100%'

Ewentualnie, jeśli ktoś woli jednostki em, poniższy przykład pokazuje, w jaki
sposób nadać rozwijanej liście szerokość 6 em:

width : '6em'

 icons. Istnieje także możliwość wyświetlenia z prawej strony menu jednej
z wielu ikon jQuery UI, takiej jak trójkąt widoczny na rysunku 10.4. Każdy
temat graficzny jQuery UI udostępnia obszerny zestaw ikon (ich pełna lista
jest podana na stronie http://api.jqueryui.com/theming/icons/). Ikonę, którą
chcemy wyświetlić w widżecie listy, można określić, używając opcji icons
i przypisując jej literał obiektowy o następującej postaci:

icons : {
 button: "ui-icon-circle-triangle-s"
}

Uwaga: Można się zastanawiać, dlaczego opcja icons wymaga podania kolejnego literału obiektowego

zawierającego parę nazwa – wartość. W końcu byłoby znacznie łatwiej przypisać nazwę ikony bezpo-

średnio właściwości icons. Byłoby to całkiem sensowne rozwiązanie, gdyby Selectmenu był jedynym

widżetem jQuery UI, w którym można określać używaną ikonę. Jednak ikony są wyświetlane także

w innych widżetach, a niektóre z nich, takie jak widżet akordeonu (patrz strona 363), pozwalają na

określanie więcej niż jednej ikony. W tym przypadku do widżetu należy przekazać literał obiektowy

zawierający więcej par nazwa – wartość określających każdą z używanych ikon. Właśnie w celu za-

chowania spójności z innymi widżetami jQuery UI także w widżecie rozwijanej listy wartością opcji

icons musi być literał obiektowy.

 position. Opcja pozwala na określanie położenia listy opcji. Domyślnie jest
ona wyświetlana bezpośrednio poniżej widocznego pola z wybraną opcją —
tak standardowo działają rozwijane listy. Jednak można zażądać, by lista
opcji była wyświetlana z prawej lub z lewej strony pola. W tym celu należy
określić położenie tej listy przy użyciu obiektu position jQuery UI. Ponie-
waż umieszczanie listy opcji gdziekolwiek indziej niż poniżej pola powodują-
cego jej wyświetlenie jest rozwiązaniem niestandardowym, zatem stosując je,
należy zachować ostrożność, gdyż może być mylące dla użytkowników strony.
(Obiekt position oraz sposób jego stosowania został opisany w poprzednim
rozdziale, w ramce na stronie 343).

Wykonywanie operacji po wybraniu opcji z listy
Zazwyczaj, kiedy użytkownik wybierze jedną z opcji dostępnych na liście, coś
powinno się zdarzyć. Załóżmy na przykład, że tworzymy formularz do zamawia-
nia ubrań, zawierający rozwijaną listę dostępnych kolorów. Kiedy użytkownik
wybierze kolor z tej listy, chcemy zmienić wyświetlany na stronie obrazek, tak by
prezentował dany artykuł w wybranym kolorze. Innymi słowy chcemy, by wybranie

http://api.jqueryui.com/theming/icons/

R O Z D Z I AŁ 1 0 . F O R M U L A R Z E R A Z J E S Z C Z E

Stylowe rozwijane listy

387

opcji z listy spowodowało zmianę obrazka prezentowanego na stronie. Biblioteka
jQuery UI zapewnia możliwość wywoływania określonej funkcji po każdej
zmianie opcji wybranej na liście.

W tym celu należy skorzystać z opcji change. Jest ona wybierana dokładnie tak
samo jak wszystkie inne opcje widżetów jQuery UI opisane w tym rozdziale,
czyli należy ją podać w literale obiektowym przekazywanym w wywołaniu funk-
cji selectmenu(). Wartością tej opcji powinna być funkcja. Załóżmy, że na stronie
znajduje się rozwijana lista o identyfikatorze colors. Chcemy przekształcić ją
w widżet jQuery UI, określić szerokość i opcję change; a tak możemy to zrobić:

$('#colors').selectmenu({
 width : 300,
 change : function(event, ui) {
 // Tutaj umieść kod obsługujący zmianę wybranej opcji.
 }
});

Za każdym razem, gdy użytkownik wybierze z listy nową opcję (czyli zmieni ją),
zostanie wywołana funkcja określona w opcji change. Funkcja ta ma dwa para-
metry — event oraz ui. Pierwszy z nich, event, zawiera obiekt event jQuery UI
(opisany na stronie 194). Zazwyczaj nie trzeba stosować tego parametru w ko-
dzie funkcji — zawiera ona jedynie informacje o zdarzeniu, takie jak współrzędne
wskaźnika myszy w momencie kliknięcia oraz inne, które raczej nie są przydatne
podczas obsługi wyboru opcji z listy.

Jednak drugi parametr, ui, zawiera kilka użytecznych informacji na temat listy.
Można z niego odczytać indeks wybranej opcji — czyli jej położenie na liście, li-
czone od zera. Z parametru tego można także odczytać etykietę oraz wartość wy-
branej opcji menu. Parametr ui jest obiektem zawierającym kilka różnych wła-
ściwości, do których można się odwoływać przy użyciu zapisu z kropką (patrz
strona 86).

 ui.item.index: Właściwość zawiera wartość indeksu wybranej opcji listy.
Opcje list są numerowane tak samo jak elementy tablic, czyli pierwsza opcja
ma indeks 0, druga — indeks 1 i tak dalej.

 ui.item.label: Właściwość zawiera etykietę wybranej opcji listy. Jest to słowo
lub kilka słów, które użytkownik widzi na liście. W kodzie HTML strony sta-
nowią one treść znacznika <option>. Gdyby na stronie była umieszczona lista
o następującej postaci:

<select id="colors">
 <option>Czerwony</option>
 <option>Zielony</option>
 <option>Niebieski</option>
</select>

to etykietami poszczególnych opcji listy byłyby odpowiednio słowa: Czerwony ,
Zielony i Niebieski .

 ui.item.value: Właściwość zawiera wartość wybranej opcji listy. Wartości
te są określane przy użyciu atrybutu value znacznika <option>. Bardzo czę-
sto etykieta opcji oraz jej wartość są takie same. W takim przypadku okre-
ślanie wartości w kodzie HTML strony nie jest konieczne. Jednak czasami
zdarza się także, że do skryptu przetwarzającego dane na serwerze będziemy
chcieli przesłać inną wartość. Przykładowo firma może używać specjalnych

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Stylowe rozwijane listy

388

kodów, które precyzyjnie identyfikują używane kolory. Użytkownik może
wybrać „czerwoną” (ang. red) koszulę, lecz dla firmy odzieżowej, która korzy-
sta z różnych odcieni tego koloru zależnie od typu produktu, kolor czerwony
na koszulkach z krótkim rękawkiem może mieć kod „R785”.

W takim przypadku poprzedni, przykładowy formularz musiałby mieć na-
stępującą postać:

<select id="colors">
 <option value="R785">Czerwony</option>
 <option value="G101">Zielony</option>
 <option value="B498">Niebieski</option>
</select>

Dla takiej listy wartościami kolejnych opcji będą odpowiednio łańcuchy
znaków R785 , G101 oraz B498 , a jej etykietami: Czerwony , Zielony
i Niebieski .

A teraz zastanówmy się, w jaki sposób można by zmienić obrazek wyświetlony na
stronie po zmianie opcji wybranej na liście. Załóżmy, że na stronie znajduje się
przedstawiona powyżej lista z trzema opcjami: Czerwony, Zielony oraz Niebieski.
Kiedy użytkownik wybierze jedną z nich, przeglądarka powinna wczytać obrazek
koszulki w wybranym kolorze. Załóżmy, że w momencie wczytywania strony
znajduje się w niej następujący znacznik:

Zgodnie z informacjami podanymi na stronie 239, zmieniając wartość atrybutu img
obrazka, można kazać przeglądarce, by wczytała i wyświetliła na jego miejscu nowy
obrazek. A zatem, aby wyświetlić na przykład obrazek niebieskiej koszulki, wy-
starczyłoby wybrać obrazek i zmienić jego atrybut src, używając następującego
wywołania:

$('#shirt').attr('src', 'blue_shirt.jpg');

Jeśli złożymy wszystkie te fragmenty kodu w całość, wywołanie pozwalające
utworzyć widżet rozwijanej listy i zmieniać wyświetlany obrazek po wybraniu
jednej z opcji będzie mieć następującą postać:

$('#colors').selectmenu({
 width : 300,
 change : function (event, ui) {
 var newImage;
 if (ui.item.label === 'Czerwony') {
 newImage = 'red_shirt.jpg';
 } else if (ui.item.label === 'Zielony') {
 newImage = 'green_shirt.jpg';
 } else {
 newImage = 'blue_shirt.jpg';
 }
 $('#shirt').attr('src', newImage);
 }
});

Opcja change pozwala na wykonywanie przeróżnych operacji, takich jak aktuali-
zowanie kodu HTML, dodawanie drugiego widżetu listy zawierającego zestaw
opcji powiązanych z aktualnie wybraną opcją i tak dalej.

Uwaga: Widżet Selectmenu udostępnia także inne opcje, zdarzenia oraz metody. Ich kompletna lista

jest dostępna na stronie http://api.jqueryui.com/selectmenu/.

http://api.jqueryui.com/selectmenu/

R O Z D Z I AŁ 1 0 . F O R M U L A R Z E R A Z J E S Z C Z E

Stylowe przyciski

389

Stylowe przyciski
Biblioteka jQuery UI udostępnia także widżet, który pozwala nadać spójny wygląd
i sposób działania różnym rodzajom przycisków dostępnych w języku HTML.
Widżet przycisku służy do określania wyglądu przycisków przesyłających for-
mularz (submit), przycisków przywracających początkową wartość pól formularza
(reset) oraz elementów <input> typu button: <input type= button >. Oprócz
tego, można go także używać do określania postaci elementu <button>, tak by był
dopasowany do wyglądu pozostałych widżetów jQuery UI (patrz rysunek 10.5).

 1. Dołącz do strony plik CSS jQuery UI oraz pliki JavaScript jQuery i jQuery
UI, zgodnie z informacjami podanymi na stronie 329.

Jak wcześniej, będziesz musiał dołączyć także plik JavaScript biblioteki jQu-
ery, więc w przypadku korzystania z widżetów jQuery UI do strony dołączo-
ne będą następujące pliki: arkusz CSS jQuery UI, plik JavaScript biblioteki
jQuery oraz plik JavaScript jQuery UI (dokładnie w takiej kolejności).

 2. Dodaj do strony jakiś przycisk. Może to być przycisk typu reset, submit,
button lub element <button>. Oto przykład:

<input type="submit" id="submit" value="Wyślij formularz!">
<input type="reset" id="reset" value="Wyczyść formularz.">
<input type="button" id="inputButton" value="Zwyczajny przycisk.">
<button id="button">Element Button</button>

Nie zapomnij o zapewnieniu sobie możliwości łatwego wybrania tego przycisku
przy użyciu jQuery. Możesz określić jego identyfikator bądź też, jeśli formu-
larz ma zawierać więcej takich przycisków, możesz użyć w nich wszystkich tej
samej klasy, na przykład class= button .

 3. Dodaj do strony wywołanie funkcji $(document).ready():
$(document).ready(function() {

}); // Koniec funkcji ready.

Użycie tego wywołania jest konieczne wyłącznie w przypadku, gdy kod Java-
Script jest umieszczany w sekcji <head> strony, zgodnie z informacjami poda-
nymi na stronie 190.

Rysunek 10.5. Widżet przycisku jQuery
UI zapewnia prosty i szybki sposób prze-
kształcania bezbarwnych elementów
formularzy, takich jak przyciski opcji, pola
wyboru i różne przyciski HTML (pokazane
u góry), w stylowo wyglądające elementy
interfejsu użytkownika cechujące się
spójnym sposobem prezentacji (u dołu)

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Stylowe przyciski

390

 4. Skorzystaj z możliwości jQuery, by wybrać element przycisku, a następnie
wywołaj funkcję button():

$(document).ready(function() {
 $('#submit').button();
}); // Koniec funkcji ready.

Bądź też, jeśli przyciski są identyfikowane przy użyciu nazwy klasy, użyj wy-
wołania o następującej postaci:

$(document).ready(function() {
 $('.button').button();
}); // Koniec funkcji ready.

Po wywołaniu tej funkcji widżet nada wybranym elementom strony wygląd
pasujący do używanego tematu graficznego jQuery UI (patrz rysunek 10.5).

Dostosowywanie przycisków
Widżet przycisku jQuery UI nie zapewnia zbyt szerokich możliwości dostoso-
wywania. W elementach <input> tekst widoczny na przycisku jest określany
przez atrybut value. Natomiast w elementach <button> tekstem prezentowa-
nym na przycisku jest zawartość umieszczona pomiędzy znacznikami otwierającym
i zamykającym, na przykład <button>Jestem przyciskiem</button>. Jednak i tak
można dostosowywać postać tych widżetów na kilka różnych sposobów, wystarczy
przekazać opcje w wywołaniu funkcji button(). Oto te opcje.

 icons: Przyciski jQuery UI pozwalają na wyświetlanie jednej ikony z lewej
strony przycisku, a drugiej — z jego prawej strony. (Przykładem może być
element <button> przedstawiony na rysunku 10.5). Każdy temat graficzny
jQuery UI udostępnia obszerny zestaw ikon (ich pełna lista jest podana na
stronie http://api.jqueryui.com/theming/icons/). Ikony można dodawać do
przycisków przy użyciu opcji icons, której wartością powinien być literał obiek-
towy, taki jak przedstawiony poniżej:

icons : {
 primary : "ui-icon-gear",
 secondary : "ui-icon-trinagle-1-s"
}

Ikona określana jako główna (ang. primary) jest wyświetlana z lewej strony
przycisku, natomiast pomocnicza (ang. secondary) z prawej strony. Nie trzeba
opisywać obu ikon jednocześnie — zazwyczaj wygląda to dosyć dziwnie. Prze-
ważnie określana jest tylko jedna z dwóch możliwych ikon. Aby na przykład
wyświetlić strzałkę w prawo we wszystkich elementach <button> umiesz-
czonych na stronie, należałoby użyć poniższego fragmentu kodu:

$('button').button({
 icons : { secondary : 'ui-icon-circle-arrow-e' }
});

Uwaga: Tych ikon nie można wyświetlać w przyciskach jQuery UI tworzonych przy użyciu elementów

<input> — czyli w przyciskach przesyłających formularz i czyszczących jego pola. Jest to możliwe wy-

łącznie w przyciskach budowanych za pomocą elementów <button>.

http://api.jqueryui.com/theming/icons/

R O Z D Z I AŁ 1 0 . F O R M U L A R Z E R A Z J E S Z C Z E

Poprawianie wyglądu
przycisków opcji

391

 text: Podczas stosowania elementów <button> i wyświetlania na nich ikon
można całkowicie ukryć tekst umieszczony na przycisku i wyświetlić wyłącznie
ikonę. Aby to zrobić, należy użyć opcji text i przypisać jej wartość false. Przy-
kładowo załóżmy, że na stronie znajduje się przycisk z napisem Dalej :

<button id="next">Dalej</button>

Aby przekształcić ten element w widżet jQuery UI i zamiast tekstu wyświetlić
na nim ikonę strzałki w prawo, należałoby użyć następującego fragmentu kodu:

$('#next').button({
 icons : { secondary : 'ui-icon-arrowthick-1-e' },
 text : false
});

Uwaga: Widżet Button udostępnia także inne opcje, zdarzenia oraz metody. Ich kompletna lista jest

dostępna na stronie http://api.jqueryui.com/button/.

Poprawianie wyglądu przycisków opcji
i pól wyboru

Przyciski opcji oraz pola wyboru są kolejnymi elementami formularzy HTML,
które w swojej standardowej postaci nie wyglądają najlepiej (patrz rysunek 10.5
u góry). Przeglądarki wyświetlają przyciski i pola wyboru w sposób zależny od
używanego systemu operacyjnego i nie pozwalają na dostosowywanie ich wyglądu
przy użyciu arkuszy stylów w równie szerokim zakresie, jak innych elementów
HTML.

Na szczęście biblioteka jQuery UI udostępnia widżet, który pozwala upodabniać
przyciski opcji i pola wyboru do pozostałych widżetów (patrz rysunek 10.5, u dołu).
Bardzo dobrą wiadomością jest to, że skorzystanie z tego widżetu w celu upiększe-
nia elementów formularzy wymaga jedynie minimalnego nakładu pracy — wszyst-
ko załatwia wywołanie funkcji buttonset(). Co ciekawe, działanie tej funkcji
sprowadza się do wywołania funkcji .button() na rzecz każdego przycisku opcji
lub pola wyboru we wskazanej grupie.

Nasze zadanie polega jedynie na prostym przygotowaniu odpowiedniego kodu
HTML: wystarczy umieścić wszystkie przyciski w jakimś kontenerze, takim jak
znacznik <div>, i zapewnić możliwość jego łatwego wybrania przy użyciu jQu-
ery. Załóżmy na przykład, że tworzymy formularz do rezerwowania przelotów,
na którym klienci mogą zaznaczyć, ile będą mieli toreb lub walizek — 0, 1 lub 2.
Załóżmy, że kod HTML formularza ma następującą postać:

<div id="bags">
 <p class="label">Liczba bagaży</p>

 <input type="radio" id="none" name="bags" checked="checked">
 <label for="none">0</label>

 <input type="radio" id="one" name="bags">
 <label for="one">1</label>

 <input type="radio" id="two" name="bags">
 <label for="two">2</label>
</div>

http://api.jqueryui.com/button/

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Poprawianie wyglądu
przycisków opcji

392

W powyższym kodzie znajdują się trzy przyciski opcji — <input type= radio >
— umieszczone wewnątrz elementu div o identyfikatorze radio. Aby prze-
kształcić je w grupy przycisków jQuery UI, wystarczy wykonać kroki od 1. do 3.
ze strony 329, by dołączyć do strony niezbędne pliki CSS i JavaScript bibliotek
jQuery i jQuery UI, a następnie wywołać funkcję $(document).ready(). Wewnątrz
tego wywołania należy umieścić poniższy wiersz kodu:

$('#radio').buttonset();

I to już wszystko. Wywołanie $('#radio') wybiera element div zawierający
przyciski opcji, a wywołanie .buttonset() odnajduje każdy przycisk opcji lub
pole wyboru i przekształca je w widżet przycisku jQuery UI. Unikalną cechą funkcji
buttonset() jest to, że umieszcza wszystkie elementy w taki sposób, jakby sta-
nowiły jedną całość (patrz rysunek 10.6).

Rysunek 10.6. Z grupy przycisków opcji można wybrać tylko jeden przycisk (u góry). W tym przykładzie wy-
brany (i wyróżniony kolorem) jest środkowy przycisk, ten z cyfrą „1”. Natomiast w grupie pól wyboru można
zaznaczyć dowolnie wiele pól (u dołu). W tym przykładzie zaznaczono pola pierwsze („przy przejściu”) oraz
trzecie („rząd przy wyjściu”)

Uwaga: Biblioteka jQuery UI domyślnie formatuje grupę przycisków opcji oraz pól wyboru, nadając im

postać jednego elementu (patrz rysunek 10.6). Oznacza to, poszczególne pola lub przyciski są wyświe-

tlane w poziomie, jedne za drugimi. Gdybyśmy jednak chcieli, by przyciski nie stykały się ze sobą i były

umieszczone obok siebie, wystarczyłoby wywołać funkcję button() na rzecz każdego z nich osobno.

Jeśli przykładowo wrócimy do poprzedniego przykładu i grupy przycisków opcji, poniższe wywołanie

JavaScript pozwoli przekształcić je w grupę niezależnych przycisków:

$('#radio input').button();

Powyższa instrukcja sprawia, że funkcja button() zostanie wywołana niezależnie dla każdego przycisku

opcji umieszczonego w elemencie div.

Dokładnie to samo dotyczy pól wyboru. Wystarczy umieścić je w jakimś konte-
nerze, na przykład <div id= check >, wybrać go przy użyciu jQuery, a następ-
nie wywołać funkcję buttonset(). Niezależnie od tego, czy operujemy na grupie
pól wyboru, czy też przycisków opcji, jQuery UI sformatuje je w taki sam sposób
— przedstawiony na rysunku 10.6. Jednak te dwa rodzaje elementów sterujących
działają w inny sposób. W przypadku przycisków opcji w danej chwili może być
wybrany tylko jeden przycisk w grupie. W odróżnieniu od nich, w grupie pól wyboru
zawsze można zaznaczyć dowolnie wiele z nich (może to także oznaczać, że żadne
pole wyboru nie będzie zaznaczone). jQuery UI wyróżnia wybrane pola i przyciski
innym kolorem.

Funkcja buttonset() nie pobiera żadnych argumentów. Jej działanie w niezau-
ważalny dla nas sposób sprowadza się do wywołania funkcji button() na rzecz
każdego z elementów — pól wyboru lub przycisków opcji — w grupie. A to oznacza,
że postać przycisków można dodatkowo modyfikować, zgodnie z informacjami
podanymi na stronie 389.

R O Z D Z I AŁ 1 0 . F O R M U L A R Z E R A Z J E S Z C Z E

Dostarczanie podpowiedzi

393

Dostarczanie podpowiedzi
przy użyciu automatycznego uzupełniania

Wiele witryn zawierających pola do przeszukiwania zawartości udostępnia także
bardzo przydatną możliwość, polegającą na wyświetlaniu sugestii pasujących do
tekstu, który użytkownik zaczął wpisywać w polu. Wystarczy wejść na stronę
Amazon.com i wpisać light, a poniżej zostanie wyświetlona lista sugerowanych
kategorii i produktów zawierających wpisane słowo: light bulbs (żarówki), led lights
(oświetlenie ledowe) i tak dalej (patrz rysunek 10.7). Zamiast ręcznie wpisywać
resztę słowa, wystarczy kliknąć jedną z podpowiedzi albo nawet skorzystać z kla-
wiatury i zaznaczyć ją przy użyciu strzałek w górę i w dół.

Rysunek 10.7. Czy nie bolą Cię palce od tego ciągłego wpisywania? Wiele witryn stara się pomóc użytkownikom
i oszczędzić wpisywania poprzez sugerowanie wyszukiwanych słów, pasujących do liter, które użytkownik
zaczął wpisywać w polu

Takie rozwiązanie jest nazywane automatycznym uzupełnianiem, a jQuery UI
udostępnia wygodny widżet, który pozwoli zaimplementować je na własnej wi-
trynie. Możliwość automatycznego uzupełniania można dodać do dowolnego
pola tekstowego w formularzu. Załóżmy na przykład, że tworzymy stronę do re-
zerwacji biletów lotniczych, na której użytkownik musi określić początkowy port
lotniczy. Kiedy zacznie wpisywać jego nazwę, poniżej pola zostanie wyświetlona

http://Amazon.com

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Dostarczanie
podpowiedzi

394

rozwijana lista, zawierająca sugerowane lotniska pasujące do pierwszych wpisanych
liter. Dzięki temu użytkownik będzie mógł kliknąć jedną z opcji na liście, a nazwa
portu lotniczego zostanie umieszczona w polu bez konieczności wpisywania pełnej
nazwy.

Jeszcze ciekawsza jest możliwość zastosowania widżetu automatycznego uzu-
pełniania do umieszczania w polu tekstowym innej zawartości. Kontynuujmy
zatem poprzedni przykład formularza do rezerwacji biletów lotniczych: użytkownik
mógłby wpisywać nazwę początkowego portu lotniczego, a po wybraniu lotniska
w polu formularza byłby umieszczany jego kod. Przykładowo wpisanie Portland
mogłoby powodować wyświetlenie listy portów lotniczych zawierającej między
innymi „Portland International Airport”. Gdyby użytkownik wybrał tę opcję, w polu
zostałby wpisany odpowiedni kod portu lotniczego, w tym przypadku PDX. Do-
kładnie tego samego rozwiązania można by użyć do odszukania produktu z ka-
talogu. Kiedy użytkownik wpisze nazwę produktu i wybierze go z listy podpowiedzi,
w polu zostanie zapisany jego numer.

Aby korzystać z widżetu Autocomplete, należy dostarczyć danych, których jQuery
UI będzie mogła użyć do odnalezienia podpowiedzi pasujących do tego, co użyt-
kownik wpisał w polu, i wyświetlenia ich w liście. W naszym przykładzie powinna
to być lista nazw portów lotniczych, z którą jQuery UI będzie mogła porównać na-
zwę wpisaną przez użytkownika w polu tekstowym. Te dane można określić na
dwa sposoby. Pierwszym z nich jest przekazanie tablicy JavaScript zawierającej
niezbędne informacje, a drugim — wykorzystanie technologii AJAX w celu prze-
słania na serwer poszukiwanej frazy, na podstawie której serwer odszuka pasują-
ce podpowiedzi i prześle je z powrotem do przeglądarki. W tym rozdziale zostaną
przedstawione oba rozwiązania, jednak na początku musisz poznać podstawy sto-
sowania widżetu Autocomplete.

 1. Dołącz do strony plik CSS jQuery UI oraz pliki JavaScript jQuery i jQuery UI,
zgodnie z informacjami podanymi na stronie 329.
Jak wcześniej, będziesz musiał dołączyć także plik JavaScript biblioteki jQuery,
więc w przypadku korzystania z widżetów jQuery UI do strony dołączone będą
następujące pliki: arkusz CSS jQuery UI, plik JavaScript biblioteki jQuery oraz
plik JavaScript jQuery UI (dokładnie w takiej kolejności).

 2. Dodaj do strony formularz zawierający pole tekstowe:
<input type="text" id="airport" name="airport">

Powinieneś także pamiętać o zapewnieniu wygodnego sposobu wybrania tego
pola tekstowego przy użyciu jQuery. Możesz na przykład dodać do niego identy-
fikator.

 3. Dodaj do strony wywołanie funkcji $(document).ready():
$(document).ready(function() {

} // Koniec funkcji ready.

Użycie tego wywołania jest konieczne wyłącznie w przypadku, gdy kod JavaScript
zostanie umieszczony w sekcji <head> strony, zgodnie z informacjami podanymi
na stronie 190.

R O Z D Z I AŁ 1 0 . F O R M U L A R Z E R A Z J E S Z C Z E

Dostarczanie podpowiedzi

395

 4. Skorzystaj z możliwości jQuery, by pobrać pole tekstowe, a następnie
wywołaj funkcję autocomplete():

$(document).ready(function() {
 $('#airport').autocomplete();
} // Koniec funkcji ready.

W najprostszym przypadku w wywołaniu funkcji autocomplete() musisz
przekazać obiekt zawierający właściwość source, której wartością będzie
bądź to tablica danych, bądź też adres URL programu działającego na serwe-
rze, który będzie zwracał listę podpowiedzi pasujących do liter wpisanych
przez użytkownika w polu tekstowym. W dwóch kolejnych punktach zostały
opisane oba rozwiązania — zastosowanie tablicy z danymi bądź skryptu dzia-
łającego na serwerze.

Generowanie podpowiedzi przy użyciu tablicy danych
Widżet Autocomplete wymaga listy danych, których jQuery UI będzie używać
w celu odszukania podpowiedzi pasujących do znaków wpisanych przez użyt-
kownika. Najprostszym sposobem dostarczenia tych danych jest przekazanie ta-
blicy, której jQuery UI będzie używać do odnajdywania pasujących podpowiedzi.
Przykładowo załóżmy, że na stronie zostało umieszczone pytanie: „Jaki jest Twój
ulubiony odcień czerwonego?”. W takim przypadku moglibyśmy podać nazwy
kolorów w tablicy i przekazać ją w wywołaniu funkcji autocomplete():

var colors = ['szkarłat', 'czerwień biskupia', 'bordowy', 'wiśniowy',
 'rodopsyna', 'cynober', 'ciemnoczerwony',
 'czerwonopomarańczowy'];
$('#redInput').autocomplete({ source : colors });

Innymi słowy, zaczęliśmy od utworzenia tablicy — colors. Następnie w wywo-
łaniu funkcji autocomplete() przekazaliśmy literał obiektowy zawierający jedną wła-
ściwość, source, której wartością była tablica colors: { source : colors }.

Po wykonaniu takiego kodu, kiedy użytkownik wpisze w polu tekstowym literę
w, poniżej pola zostanie wyświetlona lista zawierająca podpowiedzi: czerwień
biskupia, bordowy, wiśniowy, ciemnoczerwony oraz czerwonopomarańczowy
(patrz rysunek 10.8, u góry). Jednak kiedy użytkownik dopisze literkę i, tak że
w polu tekstowym znajdzie się łańcuch wi, lista dostępnych podpowiedzi zostanie
ograniczona do dwóch: czerwień biskupia i wiśniowy (patrz rysunek 10.8, u dołu).

Jednak tablica zawierająca kilka elementów nie będzie bardzo pomocna. W końcu,
gdyby dostępnych opcji było naprawdę tylko tyle, można by je umieścić na nor-
malnej liście rozwijanej. Mechanizm automatycznego uzupełniania sprawdza się
najlepiej w tych przypadkach, gdy możemy wyświetlać użytkownikowi wiele pod-
powiedzi — znacznie więcej niż można by, w wygodny sposób, umieścić na liście
rozwijanej. W takim przypadku dobrym rozwiązaniem jest utworzenie odrębne-
go pliku JavaScript zawierającego wyłącznie dane, które mają być przekazane jako
wartość właściwości source widżetu. Przykładowo załóżmy, że chcemy wyświe-
tlać podpowiedzi zawierające nazwy portów lotniczych. Moglibyśmy utworzyć od-
rębny plik JavaScript, airports.js, zawierający odpowiednią tablicę z danymi, taką
jak przedstawiona poniżej:

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Dostarczanie
podpowiedzi

396

Rysunek 10.8. Widżet Autocomplete
jQuery UI ułatwia wpisywanie często
używanych haseł poprzez wyświetlanie
podpowiedzi, pasujących do słów
wpisywanych przez użytkownika
w polu tekstowym

var airports = [
 'Aberdeen Regional Airport, Aberdeen, Dakota Południowa',
 'Abilene Regional Airport, Abilene, Teksas',
 'Abraham Lincoln Capital Airport, Springfield, Illinois',
 'Adak Airport, Adak Island, Alaska',
 'Adirondack Regional Airport, Saranca Lake, Nowy York'
]; // Wiele, wiele innych portów lotniczych.

Uwaga: To tylko początek listy wszystkich portów lotniczych na terenie USA. W rzeczywistości ta lista

byłaby bardzo długa — a zatem musielibyśmy używać bardzo długiej tablicy z nazwami lotnisk.

Ten plik byłby całkiem duży, lecz nie trzeba by go używać na wszystkich stronach
witryny; dlatego też takie dane najlepiej umieszczać w odrębnych plikach i dołą-
czać jedynie do tych stron, na których jest wykorzystywany widżet Autocomplete.
Taki plik należałoby dołączyć do strony dokładnie w taki sam sposób, w jaki są
dołączane wszystkie inne pliki JavaScript (patrz strona 49):

<script src="ariports.js"></script>

Trzeba się jednak upewnić, że ten plik zostanie dołączony do strony przed utwo-
rzeniem widżetu, gdyż tablica z danymi musi być dostępna przed wywołaniem
funkcji autocomplete(). Przykładowo kod dołączający pliki JavaScript, umieszczony
w sekcji <head> strony, mógłby wyglądać tak:

<link href="css/jquery-ui.min.css" rel="stylesheet">
<link href="css/site.css" rel="stylesheet">
<script src="js/jquery.min.js"></script>
<script src="js/jquery-ui.min.js"></script>
<script src="js/airports.js"></script>
<script>
$(document).ready(function() {
 $('#airport').autocomplete({ source : airports});
}); // Koniec funkcji ready.
</script>

Warto zwrócić uwagę, że plik airports.js będzie wczytany przed wywołaniem
funkcji autocomplete(), dzięki czemu mamy pewność, że tablica airports zostanie
utworzona i będzie można ją przekazać do widżetu.

R O Z D Z I AŁ 1 0 . F O R M U L A R Z E R A Z J E S Z C Z E

Dostarczanie podpowiedzi

397

Stosowanie osobnych etykiet i wartości
Wybór jednej opcji z listy podpowiedzi nakazuje jQuery UI zapisanie tego ele-
mentu w polu tekstowym. Jeśli w formularzu pokazanym na rysunku 10.8 po
wpisaniu litery w użytkownik kliknie opcję wiśniowy, jQuery UI wpisze to słowo
w polu tekstowym.

Jednak można poinstruować jQuery UI, by zapisywała w polu coś innego, a nie
tekst widoczny na liście podpowiedzi. W ramach przykładu wróćmy do formula-
rza z listą portów lotniczych i załóżmy, że użytkownik wpisał w polu tekstowym
litery Ab. W takim przypadku widżet Autocomplete wyświetli listę z trzema pod-
powiedziami: Aberdeen Regional Airport, Abilene Regional Airport oraz
Abraham Lincoln Capital Airport. Można nakazać, by zamiast nazwy portu
lotniczego jQuery UI umieściła w polu tekstowym jego kod, a zatem, jeśli użyt-
kownik wybierze opcję Abilane Regional Airport, w polu tekstowym zostanie
zapisany kod ABI.

W tym celu należy przekazać tablicę obiektów. Każdy z tych obiektów musi za-
wierać dwie właściwości: label oraz value. Pierwsza z nich, label, określa treść
podpowiedzi wyświetlanej na rozwijanej liście, natomiast druga, value, wartość,
jaka zostanie wpisana do pola formularza po dokonaniu wyboru. W naszym przy-
kładzie z portami lotniczymi wartością właściwości label będzie nazwa lotniska,
natomiast wartością właściwości value — jego kod. Zatem obiekt reprezentujący
lotnisko w Abilane będzie mieć następującą postać:

{
 label : 'Abilene Regional Airport, Abilene, Teksas',
 value : 'ABI'
}

W takim przypadku tablica z danymi o portach lotniczych zaczynałaby się nastę-
pująco:

var airports = [
 {
 label : 'Aberdeen Regional Airport, Aberdeen, Dakota Południowa',
 value : 'ABR'
 },
 {
 label : 'Abilene Regional Airport, Abilene, Teksas',
 value : 'ABI'
 },
 {
 label : 'Abraham Lincoln Capital Airport, Springfield, Illinois',
 value : 'SPI'
 },
 {
 label : 'Adak Airport, Adak Island, Alaska',
 value : 'ADK'
 },
 {
 label : 'Adirondack Regional Airport, Saranca Lake, Nowy York'
 value : 'SLK'
 }
]; // Wiele, wiele innych portów lotniczych.

Uwaga: Teraz też lista portów lotniczych na terenie USA nie jest kompletna. Rzeczywisty plik airports.js

byłby ogromny.

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Dostarczanie
podpowiedzi

398

Każdy z obiektów zapisanych w tej tablicy ma dwie właściwości. Taką tablicę
należy przekazać w wywołaniu funkcji autocomplete() dokładnie w taki sam
sposób jak wcześniej — biblioteka jQuery UI została napisana tak, by wiedzieć,
co zrobić, gdy zostanie przekazana tablica takich obiektów.

$('#airport').autocomplete({ source : airports });

W przypadku przekazania tablicy obiektów widżet Autocomplete stara się dopa-
sować tekst wpisany przez użytkownika do wartości właściwości label tych
obiektów. Kiedy użytkownik wybierze jedną z sugerowanych podpowiedzi wyświe-
tlonych na liście, w polu formularza zostanie zapisana wartość właściwości value
wybranego obiektu. Działanie takiego rozwiązania znajdziesz w przykładzie prezen-
towanym w dalszej części rozdziału, a konkretnie w kroku 12., na stronie 405.

Pobieranie danych automatycznego uzupełniania z serwera
Widżet Autocomplete jest najbardziej użyteczny w tych sytuacjach, gdy danych,
które mogą być przeszukiwane i wyświetlane jako podpowiedzi, jest bardzo dużo.
Czy pamiętasz przykład zamieszczony na stronie 395, w którym podano jedynie
osiem odcieni czerwieni? Niewielka liczba dostępnych opcji nie będzie stanowiła
dla użytkownika dużego ułatwienia. Jednak tworzenie pliku zawierającego bar-
dzo dużą tablicę nie jest łatwe, a w wielu przypadkach nawet niewykonalne.
Przykładowo mechanizm automatycznego sugerowania używany na stronach
sklepu Amazon.com na pewno nie korzysta z jednego pliku JavaScript zawiera-
jącego listę wszystkich kategorii produktów wraz z ich opisami: taki plik byłyby
ogromny, a jego wczytywanie trwałoby zbyt długo.

Wiele witryny korzystających z tego mechanizmu (takich jak Google lub Amazon)
stosuje skrypty wykonywane na serwerze, by przesyłać do przeglądarki znacznie
mniejszą listę podpowiedzi. Oto sposób działania takiego rozwiązania.

 1. Użytkownik zaczyna wpisywać coś w polu tekstowym.

 2. Znaki wpisane przez użytkownika są przesyłane na serwer.

Używając technologii AJAX, przeglądarka przesyła dane na serwer i oczekuje na
odpowiedź. W tym przypadku przesyłane są znaki wpisane przez użytkownika.

 3. Serwer przesyła w odpowiedzi tablicę haseł pasujących do znaków wpisanych
do tej pory przez użytkownika.

Serwer przygotowuje i przesyła listę pasujących haseł. Zazwyczaj do tego celu
używany jest jakiś program, który przeszukuje bazę danych, pobiera wyniki
i zapisuje je w formie tablicy, która następnie jest przesyłana z powrotem do
przeglądarki.

 4. Pasujące hasła są wyświetlane na liście podpowiedzi.

Jak widać, znaczna część tej magii dzieje się przy użyciu technologii AJAX, która
umożliwia skorzystanie z kodu JavaScript do przesyłania i odbierania informacji
między przeglądarką i serwerem, bez konieczności wyświetlania zupełnie nowej
strony (technologię AJAX poznasz w rozdziale 13.). Prezentacja kodu działającego
po stronie serwera i obsługującego takie rozwiązania wykracza poza ramy tematyczne

http://Amazon.com

R O Z D Z I AŁ 1 0 . F O R M U L A R Z E R A Z J E S Z C Z E

Dostarczanie podpowiedzi

399

tej książki — aby dowiedzieć się, jak napisać taki program w językach PHP, Ruby,
Python lub nawet JavaScript (używając Node.js), będziesz musiał skorzystać z inne-
go źródła informacji. Jednak poniżej opisany został sposób przygotowania widżetu
Autocomplete jQuery UI tak, by pobierał dane z serwera: zamiast przekazywać
we właściwości source tablice potencjalnych podpowiedzi, należy w niej podać
adres URL skryptu na serwerze.

Załóżmy, że na stronie jest umieszczone pole tekstowe używane do przeszuki-
wania firmowej bazy danych zawierającej informacje o 250 tysiącach produktów.
Aby ułatwić użytkownikom poszukiwania, chcemy wzbogacić to pole i dodać
mechanizm automatycznego uzupełniania. Niestety katalog produktów jest zbyt
duży, by można go było zapisać w jednym pliku JavaScript. Zamiast tego możemy
przygotować program działający na serwerze; jest to plik products.php umiesz-
czony w głównym katalogu serwera. Możemy zapisać ścieżkę dostępu do tego pliku
we właściwości source. Załóżmy, że pole tekstowe ma identyfikator productSearch:

<input type="text" id="productSearch" name="productSearch">

Następnie w kodzie JavaScript strony moglibyśmy użyć poniższego wywołania,
które utworzy widżet Autocomplete i doda go do pola tekstowego, nakazując
jednocześnie, by pobierał dane z serwera:

$('#productSearch').autocomplete({ source : '/products.php'});

Można także podać pełny adres URL, zawierający określenie protokołu oraz nazwę
domeny:

$('#productSearch').autocomplete({ source :
'http://myCompany.com/products.php'});

Po przekazaniu we właściwości source tablicy elementów (w sposób opisany na
stronie 395) jQuery UI filtruje tę tablicę, odnajdując w niej elementy pasujące do
znaków, które użytkownik wpisał w polu tekstowym. Następnie jQuery UI wy-
świetla tylko pasujące elementy. Kiedy jednak we właściwości source zostanie
podany adres URL do skryptu na serwerze, widżet Autocomplete zachowuje się
w nieco inny sposób. Otóż w tym przypadku wyświetlane są wszystkie przesłane
z serwera podpowiedzi, a widżet w żaden sposób ich nie filtruje. Gdyby na przy-
kład użytkownik wpisał słowo lampa, a serwer zwrócił tablicę zawierającą łańcu-
chy ciemny , karczoch i struś , jQuery UI wyświetliłaby na liście podpo-
wiedzi wszystkie trzy łańcuchy.

Innymi słowy, zwrócenie prawidłowych danych leży wyłącznie w gestii serwera.
Oznacza to, że my musimy napisać całą logikę generującą prawidłową listę pod-
powiedzi i wysłać tę listę do przeglądarki. Aby ułatwić to zadanie, jQuery UI do-
daje do adresu URL parametr, który informuje serwer, czego właściwie ma szukać.
Parametr ten nosi nazwę term, a jego wartością jest łańcuch znaków wpisany
przez użytkownika w polu tekstowym. Gdyby w naszym wcześniejszym przy-
kładzie przeszukiwania produktów użytkownik wpisał słowo lampa, jQuery UI
przesłałaby żądanie pod następujący adres:

http://myCompany.com/products.php?term=lampa

Sposób wykorzystania tych danych zależy wyłącznie od strony products.php; na
przykład może ich użyć do przeszukania bazy danych i znalezienia w niej pro-
duktów związanych z oświetleniem. Mogłoby to być poszukiwanie wystąpień

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Dostarczanie
podpowiedzi

400

konkretnego łańcucha znaków, w takim przypadku zwróconymi wynikami mo-
głyby być: „lampa jarzeniowa”, „lampa stojąca” i tak dalej. Jednak równie dobrze
program mógłby wykonywać poszukiwanie kontekstowe i zwrócić takie hasła jak
„oświetlenie studyjne” czy „żarówki dekoracyjne”. Innymi słowy, wyłącznie od pro-
gramisty zależy, w jaki sposób zostanie przetworzony poszukiwany termin i jakie
dane zostaną przesłane z powrotem do przeglądarki.

Uwaga: Widżet Autocomplete umożliwia także przesyłanie danych do innej domeny i na inny serwer.

Jednak ze względu na ograniczenia technologii AJAX związane z zapewnieniem bezpieczeństwa serwer

docelowy musi być skonfigurowany w taki sposób, by generowane odpowiedzi były zapisane w spe-

cjalnym formacie JSONP. Więcej informacji na temat technologii AJAX i formatu JSONP można znaleźć

na stronie 506.

Program działający na serwerze musi zwrócić listę podpowiedzi w formie tablicy
łańcuchów znaków:

[
 "lampa jarzeniowa",
 "lampa błyskowa",
 "lampa stojąca"
]

Ewentualnie program mógłby też zwrócić dane w formie tablicy obiektów zawie-
rających etykiety i wartości, opisanej dokładniej na stronie 397. Jednak takie dane
musiałyby być zapisane zgodnie z regułami formatu JSON, opisanymi na stronie
500; oznacza to, że zarówno nazwy właściwości, jak i wartości musiałyby być zapi-
sane w cudzysłowach, co pokazano na poniższym przykładzie:

var airports = [
 {
 "label" : "Aberdeen Regional Airport, Aberdeen, Dakota Południowa",
 "value" : "ABR"
 },
 {
 "label" : "Abilene Regional Airport, Abilene, Teksas",
 "value" : "ABI"
 },
 {
 "label" : "Abraham Lincoln Capital Airport, Springfield, Illinois",
 "value" : "SPI"
 },
 {
 "label" : "Adak Airport, Adak Island, Alaska",
 "value" : "ADK"
 },
 {
 "label" : "Adirondack Regional Airport, Saranca Lake, Nowy York"
 "value" : "SLK"
 }
];

Opcje widżetu Autocomplete
Nie ma zbyt wielu opcji kontrolujących sposób działania widżetu Autocomplete.
Najważniejszą z nich (i jednocześnie wymaganą) jest opcja source opisana na
stronach od 395 do 400. Jednak istnieje także kilka innych opcji, które mogą się

R O Z D Z I AŁ 1 0 . F O R M U L A R Z E R A Z J E S Z C Z E

Przykład — widżety UI
usprawniające formularze

401

przydać. Podobnie jak w przypadku wszystkich innych widżetów jQuery UI, opcje
należy zapisywać w obiekcie przekazywanym w wywołaniu funkcji autocomplete().
Oto przykład takiego wywołania:

$('#airport').autocomplete({
 source : '/airportSearch.php',
 delay : 500,
 minLength : 2
});

Poniżej przedstawione zostały najbardziej użyteczne opcje widżetu Autocomplete.

 source. To najważniejsza i jedyna wymagana opcja widżetu. Służy do prze-
kazywania bądź to tablicy danych, bądź adresu URL programu działającego
na serwerze. W pierwszym przypadku może to być tablica wartości lub tabli-
ca obiektów zawierających właściwości label oraz value (patrz strona 397).
Kiedy przekazywany jest adres URL, musi wskazywać program, który zwraca
dane zapisane w formie tablicy (patrz strona 395).

 delay. Podczas pobierania danych z programu działającego na serwerze jQu-
ery UI przesyła żądanie za każdym razem, gdy użytkownik wpisze coś w polu
tekstowym. Jednak częste przesyłanie wielu żądań może spowolnić działanie
serwera, a tym samym także widżetu Autocomplete. Z tego względu można
zastosować niewielkie opóźnienie, dzięki któremu na serwer nie będzie trafiać
tak wiele żądań. Wielkość tego opóźnienia podaje się przy użyciu właściwości
delay, której wartością jest liczba, określająca długość opóźnienia w milise-
kundach. Aby na przykład przed wysłaniem żądania odczekać pół sekundy,
należy użyć poniższej właściwości:

delay : 500

 minLength. Opcja określa minimalną liczbę znaków, które użytkownik musi
wpisać w polu, zanim jQuery UI zacznie wyświetlać listę podpowiedzi. Jeśli
źródłem danych dla podpowiedzi są setki lub tysiące rekordów, być może
warto będzie zażądać, by ta minimalna liczba znaków wynosiła 3. W końcu,
gdyby użytkownik wpisał literę a, to w przypadku korzystania z bardzo dużego
źródła danych mogłyby zostać wygenerowane tysiące podpowiedzi.

Uwaga: Widżet Autocomplete udostępnia także inne opcje, zdarzenia oraz metody. Ich kompletna

lista jest dostępna na stronie http://api.jqueryui.com/autocomplete/.

Przykład — widżety UI usprawniające formularze
W tym przykładzie punktem wyjścia będzie formularz do rezerwacji biletów lot-
niczych; znajdują się na nim pola tekstowe, przyciski opcji oraz element <button>
(patrz rysunek 10.9, u góry). Kiedy wykorzystasz jQuery oraz widżety jQuery UI,
nie tylko poprawisz wizualną atrakcyjność tego formularza, lecz także wzbogacisz
możliwości interakcji użytkownika ze stroną oraz jej funkcjonalność (patrz ry-
sunek 10.9, u dołu).

http://api.jqueryui.com/autocomplete/

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Przykład — widżety UI
usprawniające formularze

402

Rysunek 10.9. Biblioteka
jQuery UI ułatwia uatrak-
cyjnienie wyglądu bez-
barwnego formularza i do-
stosowanie go do reszty
aplikacji. Pozwala przekształ-
cać takie elementy jak listy
rozwijane, przyciski opcji
oraz pola wyboru (których
postać zazwyczaj jest za-
leżna od używanej przeglą-
darki) w interaktywne i przy-
ciągające uwagę elementy
interfejsu użytkownika

Uwaga: Informacje o tym, jak pobrać przykłady prezentowane w książce, zostały zamieszczone na

stronie 46.

 1. W edytorze tekstów otwórz plik form.html umieszczony w katalogu R10.

Do pliku zostały już dołączone wszystkie niezbędne pliki bibliotek jQuery
i jQuery UI, jak również znacznik <script> zawierający wywołanie funkcji
$(document).ready() (patrz strona 190). Poniżej przedstawiono kod HTML
formularza umieszczonego na stronie:

<form>
 <div>
 <label for="departure" class="label">Wybierz datę wylotu</label>
 <input type="text" id="departure" name="departure">
 </div>
 <div>
 <label for="airport" class="label">Znajdź port lotniczy</label>
 <input type="text" id="airport" name="airport">
 </div>
 <div>
 <label for="meal" class="label">Posiłek</label>
 <select name="meal" id="meal">
 <option>brak posiłku</option>
 <option>wegański</option>
 <option>bezglutenowy</option>
 <option>wegetariański</option>
 <option>mięsny</option>
 </select>
 </div>
 <div id="bags">
 <p class="label">Liczba bagaży</p>
 <input type="radio" id="none" name="bags" checked="checked">
 <label for="none">0</label>

 <input type="radio" id="one" name="bags">
 <label for="one">1</label>

R O Z D Z I AŁ 1 0 . F O R M U L A R Z E R A Z J E S Z C Z E

Przykład — widżety UI
usprawniające formularze

403

 <input type="radio" id="two" name="bags">
 <label for="two">2</label>
 </div>
 <div id="seatTypes">
 <p class="label">Preferowany rodzaj miejsca</p>
 <input type="checkbox" id="aisle" name="aisle">
 <label for="aisle">przy przejściu</label>

 <input type="checkbox" id="window" name="window">
 <label for="window">przy oknie</label>

 <input type="checkbox" id="exit" name="exit">
 <label for="exit">rząd przy wyjściu</label>

 <input type="checkbox" id="any" name="any">
 <label for="any">dowolne</label>
 </div>
 <div>
 <button id="next">Kontynuuj proces rezerwacji</button>
 </div>
</form>

Ważne elementy formularza, w których zastosujesz widżety jQuery UI, zo-
stały wyróżnione pogrubioną czcionką. Zaczniesz od dodania do pierwszego
z nich widżetu kalendarza. Zwróć uwagę, że to pole tekstowe ma identyfikator
departure.

 2. W wywołaniu funkcji $(document).ready() wpisz:
$('#departure')

Teraz musisz utworzyć widżet kalendarza.
 3. Wpisz kropkę, a za nią datepicker();, tak by kod wyglądał w następujący
sposób:

$('#departure').datepicker();

To już wszystko, co musisz zrobić, by dodać do strony wyskakujący kalendarz
do wybierania daty. Jeśli jednak zapiszesz stronę i wyświetlisz ją w przeglądar-
ce, przekonasz się, że kalendarz pozwala na wybieranie dat, które już minęły.
Oczywiście trochę trudno byłoby dostać się na lot, który miał miejsce w ze-
szłym tygodniu, dlatego będziesz musiał zadbać, by nie można było wybrać daty
wcześniejszej niż dzisiejsza.

 4. Kliknij wewnątrz wywołania funkcji datepicker() i wpisz {. Dwukrotnie
naciśnij klawisz Enter i wpisz }, tak by kod wyglądał w następujący sposób:

$('#departure').datepicker({

});

Para nawiasów klamrowych — { } — to pusty literał obiektowy. W następnym
kroku przekażesz do widżetu opcję, dodając do tego literału właściwości.

 5. W pustym wierszu wewnątrz literału obiektowego wpisz minDate : 0.
Wartość opcji minDate określa liczbę dni, licząc od dziś: 0 oznacza dzień dzi-
siejszy, –7 — dzień wypadający tydzień temu, a 7 — dzień dokładnie za tydzień.
Możesz także określić maksymalną dopuszczalną datę, którą użytkownik
będzie mógł wybrać w kalendarzu. W naszym przykładzie linie lotnicze nie
gromadzą informacji o lotach, które odbędą się za więcej niż jeden rok; dla-
tego zadbasz o to, by użytkownik nie mógł wybrać daty z tak dużym wyprze-
dzeniem.

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Przykład — widżety UI
usprawniające formularze

404

 6. Na końcu wiersza wpisanego w poprzednim punkcie dodaj przecinek, naci-
śnij klawisz Enter, po czm wpisz: maxDate : '+1y', tak by kod wyglądał
w poniższy sposób:

$('#departure').datepicker({
 minDate : 0,
 maxDate : '+1y'
});

W obu właściwościach, minDate i maxDate, można podać wartość liczbową
określającą liczbę dni. Jednak oprócz tego można w nich także zapisać łańcuch
znaków zawierający liczby i litery ustalające długość okresu czasu; na przykład:
'+1y' oznacza „za jeden rok”, '-2w' oznacza „dwa tygodnie temu”, a '+1m
+10d' oznacza „za miesiąc i dziesięć dni”.

 7. Zapisz stronę i wyświetl ją w przeglądarce. Kliknij pole „Wybierz datę
wylotu”.
Na stronie zostanie wyświetlony kalendarz. Zauważ, że z kalendarza nie moż-
na wybrać żadnej daty z przeszłości ani daty z wyprzedzeniem większym niż
jeden rok od daty dzisiejszej (jeśli chcesz się o tym przekonać, użyj przycisku
strzałki w prawo, aby przejść o 12 miesięcy do przodu).
Teraz użyjesz widżetu Autocomplete, by ułatwić użytkownikowi wybór lot-
niska. Jednak zanim to zrobisz, przyjrzyj się danym, których będziesz używał.
Zgodnie z informacjami podanymi na stronie 395, funkcja autocomplete()
wymaga przekazania bądź to tablicy danych, bądź też adresu URL skryptu
działającego na serwerze. Aby uprościć ten przykład, dane zapiszemy w od-
rębnym pliku JavaScript.

 8. W edytorze tekstów otwórz plik airports.js.
To prosty plik JavaScript zawierający instrukcję przypisania — tworzymy w nim
tablicę, którą zapisujemy w zmiennej airports. Tablica ta zawiera obiekty
składające się z dwóch właściwości: label oraz value. Etykieta (wartość wła-
ściwości label) będzie wyświetlana na rozwijanej liście podpowiedzi, nato-
miast wartość (wartość właściwości value) zostanie zapisana w polu teksto-
wym po wybraniu jednej z opcji wyświetlonych na liście.

Oczywiście ten plik nie zawiera kompletnej listy portów lotniczych, a jedy-
nie niewielką liczbę danych pozwalającą na wypróbowanie działania widże-
tu. Aby skorzystać z danych zapisanych w tym pliku, będziesz musiał dołą-
czyć go do strony.

 9. W edytorze tekstów otwórz plik form.html. Poniżej ostatniego wiersza ze
znacznikiem <script> — <script src="datepicker-pl.js"></script> —
dodaj jeszcze jeden znacznik <script>, który dołączy do strony plik z danymi:

<script src="airports.js"></script>

Ten wiersz dołącza do strony zewnętrzny plik JavaScript, a kiedy przeglądarka
już go pobierze, wykona umieszczony w nim kod. W tym przypadku działanie
kodu sprowadza się do utworzenia tablicy z danymi, których użyjesz w widżecie
Autocomplete.

 10. Poniżej kodu widżetu kalendarza dodaj pusty wiersz i wpisz w nim:
$('#airport').autocomplete({ source : airports });

R O Z D Z I AŁ 1 0 . F O R M U L A R Z E R A Z J E S Z C Z E

Przykład — widżety UI
usprawniające formularze

405

Pole tekstowe, w którym użytkownik ma wybrać port lotniczy, ma identyfika-
tor airport. A zatem wywołanie $('#airport') wybiera to pole, a wywołanie
.autocomplete() dodaje do niego widżet Autocomplete.

 11. Zapisz stronę i wyświetl ją w przeglądarce. Kliknij pole „Znajdź port lot-
niczy” i wpisz w nim Port.
Poniżej pola pojawi się lista podpowiedzi, która być może będzie zawierać ten
port lotniczy, o który Ci chodzi. Zwróć uwagę, że widżet odnajduje porty lotni-
cze, w których nazwie słowo „port” występuje w dowolnym miejscu, na przy-
kład „La Guardia Airport”.

 12. Kliknij opcję „Portland International Airport, Portland, OR”.
Zwróć uwagę, że w polu pojawiła się wartość „PDX”. Wynika to z faktu, że źró-
dłem danych dla widżetu jest tablica obiektów zawierających etykiety i wartości.
Etykietą wyświetloną na liście była nazwa „Portland International Airport,
Portland, OR”, jednak wartością, którą jQuery UI zapisze w polu, będzie kod
lotniska — „PDX”.
Teraz zajmiesz się przekształceniem listy rozwijanej w piękny, interaktywny
widżet.

 13. Wróć do edytora tekstów i kodu strony form.html. Poniżej kodu dodanego
w kroku 10. wpisz następny wiersz:

$('#meal').selectmenu();

Być może chciałbyś wpisać więcej kodu, ale to już wszystko, czego potrzebujesz,
by przekształcić listę rozwijaną. Jeśli jednak zapiszesz stronę i wyświetlisz
ją w przeglądarce, zobaczysz, że lista wygląda dosyć dziwnie. Jej pierwszy ele-
ment nie będzie widoczny w całości! Jeśli opcje prezentowane na liście nie są
naprawdę krótkie, będziesz musiał określić jej szerokość.

 14. Wewnątrz nawiasów funkcji selectmenu() wpisz: { width : 200 }, tak by
kod wyglądał w następujący sposób:

$('#meal').selectmenu({ width : 200 });

Opcja width widżetu Selectmenu (patrz strona 385) pozwala określić szero-
kość listy widocznej na stronie. W tym przypadku liczba 200 oznacza, że lista
będzie mieć 200 pikseli szerokości. Zgodnie z informacjami podanymi na
stronie 386, możesz także używać innych sposobów określania długości, takich
jak wartości procentowe lub jednostki em. Zapisz stronę i wyświetl ją w prze-
glądarce. Kto powiedział, że programowanie jest trudne?
Teraz przekształcisz grupę przycisków opcji i pól wyboru w coś, co jest znacznie
lepiej dopasowane wyglądem do powstającego formularza.

 15. Poniżej kodu wpisanego w poprzednim kroku dodaj dwa nowe wiersze:
$('#bags').buttonset();
$('#seatTypes').buttonset();

Funkcja buttonset() operuje zarówno na przyciskach opcji, jak i polach
wyboru. Ostatnim krokiem jest przekształcenie znacznika <button> na
przycisk jQuery UI.

 16. Do kodu programu dodaj jeszcze jeden wiersz:
$('#next').button();

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Przykład — widżety UI
usprawniające formularze

406

To wywołanie przekształca bezbarwny przycisk HTML w coś, co znacznie
lepiej pasuje wyglądem do formularza i umieszczonych na nim pól wyboru
i przycisków opcji. Do elementów <button> można także dodawać ikony;
informacje na ten temat znajdziesz na stronie 390. Właśnie tym zajmiesz się
w kolejnym kroku.

 17. Wewnątrz nawiasów funkcji button() wpisz poniższy fragment kodu:
{
 icons : {
 secondary : 'ui-icon-circle-arrow-e'
 }
}

A tak powinna wyglądać ostateczna wersja kodu:
$(document).ready(function() {
 $('#departure').datepicker({
 minDate : 0,
 maxDate : '+1y'
 });
 $('#airport').autocomplete({ source : airports});
 $('#meal').selectmenu({width : 200});
 $('#bags').buttonset();
 $('#seatTypes').buttonset();
 $('#next').button({
 icons : {
 secondary : 'ui-icon-circle-arrow-e'
 }
 });
}); // Koniec funkcji ready.

Tych kilka wierszy kodu pozwoliło całkowicie zmienić wygląd i funkcjonal-
ność formularza.

 18. Zapisz stronę i wyświetl ją w przeglądarce.

Obecnie strona powinna wyglądać tak, jak ta z rysunku 10.9. Jeśli jest inaczej,
upewnij się, że Twój kod JavaScript wygląda dokładnie tak samo jak przedsta-
wiony powyżej, w kroku 17. Możesz także wyświetlić konsolę JavaScript
(patrz strona 51) i sprawdzić, czy są w niej pokazane jakieś błędy. Musisz jed-
nak pamiętać, że jQuery niejednokrotnie ukrywa błędy i nie wyświetla ich
w oknie konsoli, co nieco utrudnia diagnozowanie problemów w kodzie ko-
rzystającym z tej biblioteki.
Pełną wersję tego przykładu możesz znaleźć w pliku complete_form.html,
umieszczonym w katalogu R10.

Dostosowywanie wyglądu
jQuery UI

Widżety jQuery UI mają ujednolicony wygląd — kalendarz do wyboru dat wyglą-
da podobnie jak karty, które z kolei wyglądają podobnie jak okno dialogowe oraz
etykietki ekranowe. Jeśli zgromadzisz kolekcję odrębnych wtyczek jQuery imple-
mentujących te same widżety, lecz napisanych przez różnych autorów, stracisz bar-
dzo dużo czasu na modyfikowanie arkuszy stylów po to, by zapewnić ich spójny
wygląd. Jednolity sposób prezentacji, jaki zapewniają wszystkie widżety jQuery UI,
oznacza, że można tworzyć aplikacje o spójnym wyglądzie bez konieczności po-
święcania niezliczonych godzin na samodzielne modyfikowanie kodu CSS.

Co jednak zrobić, gdy już dysponujemy witryną o własnym, charakterystycznym
wyglądzie i chcemy dostosować wygląd jQuery UI do jej projektu? Z myślą o takich
sytuacjach zespół twórców jQuery UI przygotował wiele praktycznych porad, a na-
wet opracował bardzo pomocne narzędzie. W tym rozdziale znajdziesz informa-
cje, w jaki sposób można nadpisywać lub modyfikować istniejące style jQuery UI
oraz jak tworzyć nowe.

Prezentacja narzędzia ThemeRoller
Biblioteka jQuery UI zawiera wiele elementów, zatem utworzenie arkuszy CSS
zapewniających wspaniały (i jednocześnie spójny) wygląd wszystkich jej widżetów
jest naprawdę dużym zadaniem. Na szczęście zespół twórców biblioteki udostępnił
w internecie narzędzie o nazwie ThemeRoller. Pozwala ono na wybór jednego
z 24 gotowych tematów graficznych, określających wygląd biblioteki jQuery UI.
Dodatkowo ThemeRoller oferuje także specjalne narzędzie pozwalające na mo-
dyfikowanie istniejących tematów — wybierane czcionek, zmienianie kolorów tak,
by pasowały do projektu witryny.

11
ROZDZIAŁ

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Prezentacja narzędzia
ThemeRoller

408

Aby skorzystać z narzędzia ThemeRoller, należy wejść na stronę http://jqueryui.
com/themeroller/ (patrz rysunek 11.1). Kolekcję gotowych tematów graficznych
można wyświetlić, klikając kartę Gallery (zaznaczoną kółkiem). Główna część
strony prezentuje wygląd różnych widżetów jQuery UI: wybór jednego z tematów
graficznych, których miniaturki są przedstawione w lewej kolumnie, powoduje
jego natychmiastowe zastosowanie i możliwość oglądnięcia sposobu prezentacji
widżetów w wybranym temacie.

Rysunek 11.1. Ze strony ThemeRoller biblioteki jQuery UI pobierzesz przygotowane tematy graficzne. Można
wybierać spośród 24 gotowych projektów. Aby pobrać wybrany temat, wystarczy kliknąć przycisk Download.
Te gotowe tematy mogą także stanowić punkt wyjścia podczas prób tworzenia własnych projektów. W tym
celu należy kliknąć przycisk Edit umieszczony poniżej miniaturki tematu. W efekcie ThemeRoller wczyta wybra-
ny temat; teraz można modyfikować używane w nim czcionki i kolory przy użyciu opcji dostępnych na karcie
Roll Your Own

Jeśli podoba Ci się wygląd jakiegoś tematu widocznego na karcie Gallery, wystarczy
kliknąć przycisk Download umieszczony poniżej miniaturki tematu; spowoduje to
wyświetlenie strony jQuery Download Builder, opisanej na stronie 327. Na niej
można wybrać widżety, metody interakcji oraz efekty, których planujesz używać,
a następnie kliknąć przycisk Download umieszczony u dołu, aby pobrać pliki.

http://jqueryui.com/themeroller/
http://jqueryui.com/themeroller/

R O Z D Z I AŁ 1 1 . D O S T O S O W Y W A N I E W Y G LĄD U J Q U E R Y U I

Prezentacja narzędzia
ThemeRoller

409

Uwaga: Zajrzyj na stronę 327, aby dowiedzieć się, w jaki sposób można pobrać oraz zorganizować pliki

jQuery, byś mógł z nich korzystać na swojej witrynie.

Jeśli chcesz dodać jQuery UI do już istniejącej witryny, skorzystaj z narzędzia
ThemeRoller w celu opracowania własnego tematu graficznego, dostosowanego
do jej projektu. Kliknij kartę Roll Your Own umieszczoną w kolumnie z lewej
strony (zakreśloną na rysunku 11.2). Narzędzie to zapewnia dostęp do ustawień
związanych między innymi z czcionkami oraz kolorami. Ustawienia są podzie-
lone na kategorie, które można wyświetlać i ukrywać, klikając strzałkę widoczną
z lewej strony nazwy kategorii. Poniżej przedstawiona została lista dostępnych
kategorii ustawień.

 Font settings: Ta kategoria pozwala na określanie używanych czcionek, ich
wielkości oraz wagi. Nazwy czcionek, których chcemy używać, należy wpi-
sać w polu Family. Zazwyczaj podawane są trzy wersje używanych czcionek:
właściwa czcionka, z której chcielibyśmy skorzystać, czcionka awaryjna oraz
ogólny typ czcionki awaryjnej. Jeśli właściwa czcionka nie będzie dostępna
na komputerze użytkownika, zostanie zastosowana czcionka awaryjna; jeśli
także i ona nie będzie osiągalna, przeglądarka wybierze jedną z dostępnych
czcionek należących do tego samego typu ogólnego (serif, sans-serif,
monospace lub fantasy).

Rysunek 11.2. Aby wyświetlić kategorię ustawień, kliknij strzałkę umieszczoną z lewej strony nazwy wybranej
kategorii. Domyślnie wszystkie kategorie są ukryte, jednak tutaj pokazano, jak wyglądają po wyświetleniu (aby
wszystkie zmieśc ły się na obrazku, rozmieszczono je jedna obok drugiej). Na stronie ThemeRoller wszystkie te
kategorie są wyświetlone jedna nad drugą, w kolumnie po lewej stronie

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Prezentacja narzędzia
ThemeRoller

410

Należy tu podać tę samą listę czcionek, które są używane na witrynie. Jeśli
na przykład na Twojej witrynie główną używaną czcionką jest Helvetica Neue,
powinieneś tu wpisać: Helvetica Neue , Arial, sans-serif. (Kiedy na-
zwa używanej czcionki składa się z więcej niż jednego wyrazu, na przykład
Helvetica Neue, powinieneś ją zapisywać w cudzysłowach). jQuery UI zasto-
suje tę samą czcionkę we wszystkich widżetach oraz ich elementach, dotyczy to
także kart oraz paneli. Można także określać odrębne czcionki, które będą sto-
sowane w różnych komponentach; informacje na ten temat zostały podane
na stronie 415.

Uwaga: Jeśli używasz czcionki, która jest dostępna na Twoim serwerze lub jest dostarczana przez

serwisy, takie jak TypeKit lub Google Fonts, bądź też dowolnej innej czcionki niezainstalowanej na

Twoim komputerze, nie będzie ona widoczna w podglądzie prezentowanym na stronie ThemeRoller.

Wagę czcionki można określić jako normal lub bold . Zastosowanie war-
tości bold nie sprawi, że wszystkie teksty prezentowane w widżetach jQuery
UI będą pogrubione — ustawienie to odnosi się wyłącznie do niektórych ele-
mentów, takich jak teksty prezentowane na kartach lub przyciskach, wybrana
opcja menu czy też nagłówki w widżecie accordion. Wszystkie pozostałe teksty
prezentowane są zwyczajną czcionką.

Wielkość czcionki określa bazową wielkość czcionki dla wszystkich widżetów
jQuery UI. Jednak teksty prezentowane w niektórych widżetach mogą być
większe. Przykładami takich elementów, w których tekst prezentowany jest
większą czcionką, są tytuły okien dialogowych oraz teksty prezentowane w ety-
kietkach ekranowych.

 Corner Radius. Większość widgetów jQuery UI ma wierzchołki, a promień
tych wierzchołków określany w tej kategorii, sprawia, że będą one bardziej lub
mniej okrągłe. Zastosowanie wartości 0 sprawi, że wierzchołki będą prostokątne,
a im wyższa wartość zostanie podana, tym będą bardziej okrągłe. Warto wpi-
sywać różne wartości i sprawdzić, które ustawienie najbardziej Ci odpowiada.

 Header/Toolbar. Ta kategoria ustawień pozwala na określanie kolorów oraz
tła nagłówka w kalendarzach lub oknach dialogowych, a także koloru pasków
postępu i suwaków. Udostępnia ona sześć ustawień.

 Kolor tła. Kliknięcie tego pola spowoduje wyświetlenie okna do wyboru ko-
loru. Można w nim wybrać odcień (w tym celu należy kliknąć zewnętrzny
okrąg), a następnie konkretny kolor (klikając obszar pośrodku okna). Ta grupa
opcji została przedstawiona na rysunku 11.3.

 Tekstura tła. Biblioteka jQuery UI daje możliwość wyboru tekstur (takich
jak poziome lub skośne paski), które będą wyświetlane w tle elementów.
Wystarczy kliknąć to pole, aby wyświetlić paletę dostępnych tekstur. Na-
stępnie można kliknąć jedną z tekstur lub jednolity kolor (w lewym górnym ro-
gu palety), aby zrezygnować ze stosowania tekstury tła. Tekstura ta jest two-
rzona poprzez wyświetlanie w tle elementu określonego, małego obrazka (patrz
rysunek 11.3).

R O Z D Z I AŁ 1 1 . D O S T O S O W Y W A N I E W Y G LĄD U J Q U E R Y U I

Prezentacja narzędzia
ThemeRoller

411

Rysunek 11.3. Wiele kategorii
narzędzia ThemeRoller pozwala
na określanie tych samych
trzech ustawień: koloru tła, tek-
stury oraz nieprzezroczystości
tekstury. Kiedy przyzwyczaisz
się do tych ustawień, będziesz
w stanie określać postać tła
wszystkich widżetów jQuery UI

 Nieprzezroczystość tekstury tła. Opcja określa, w jakim stopniu będzie wi-
doczna tekstura tła. Jeśli przypiszesz jej wartość 0, tekstura w ogóle nie będzie
widoczna. Wartość 10% sprawi, że wzorek będzie bardzo delikatny, a wartość
75%, że będzie wyraźnie widoczny (patrz rysunek 11.3).

 Kolor obramowania. Opcja pozwala określić kolor obramowania wyświetla-
nego wokół nagłówka lub paska narzędzi. Kliknięcie pola spowoduje wyświe-
tlenie okna do wyboru koloru. Jeśli nie chcesz, by widżet miał obramowanie,
nadaj mu taki sam kolor, jaki ma tło — dzięki temu tło i obramowanie nie
będą się odróżniać. (Na rysunku 11.3 przedstawiono to samo okno do wybo-
ru koloru, które jest używane do określania wszystkich ustawień związanych
z kolorami).

 Kolor tekstu. Kliknij to pole, by wyświetlić okno wyboru koluru, w jakim będą
prezentowane teksty w nagłówkach i paskach narzędzi.

 Kolor ikon. W niektórych widżetach są prezentowane ikony. Przykładem może
być kalendarz, w którym są wyświetlane ikony poprzedniego i następnego mie-
siąca. Aby określić ich kolor, wystarczy kliknąć to pole i w wyświetlonym oknie
dialogowym wybrać kolor pasujący do projektu witryny.

Uwaga: Określając wartości wszystkich opcji związanych z kolorami, można także kliknąć pole tekstowe

i wpisać szesnastkową wartość wybranego koloru, na przykład #e53c4c.

 Content. Ta kategoria pozwala na określanie tła, obramowania oraz koloru
tekstu obszaru zawartości widżetów. Dotyczy to paneli widżetu accordion,
paneli treści na kartach, elementów menu w widżecie Selectmenu oraz cyfr
widocznych w widżecie kalendarza. Dostępne tu opcje są takie same jak w ka-
tegorii Header/Toolbar — pozwalają na określanie koloru tła, jego tekstury
i nieprzezroczystości oraz koloru obramowania, tekstu i ikon.

 Clickable items. Narzędzie ThemeRoller udostępnia trzy kategorie elementów,
które można klikać, czyli tych fragmentów widżetów, które klikasz, by zapew-
nić ich działanie; mogą to być nagłówki w widżecie accordion, karty, przyciski

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Prezentacja narzędzia
ThemeRoller

412

numerów w kalendarzu, ikony, przyciski w oknach dialogowych i opcje menu.
Trzy dostępne kategorie odpowiadają trzem stanom, w których mogą się znaj-
dować takie elementy; są to stan domyślny (ang. default state, który określa
wygląd elementu bezpośrednio po wyświetleniu strony), stan po wskazaniu
myszą (ang. hover state, który występuje, gdy użytkownik umieści wskaźnik
myszy w obszarze elementu) oraz stan aktywny (ang. active state). Ten ostatni
stan występuje, gdy użytkownik wybrał jakąś kartę, zaznaczył datę w kalen-
darzu bądź przycisk (na przykład przycisk opcji). Każda z tych kategorii udo-
stępnia grupę tych samych sześciu opcji, które zostały opisane w kategorii
Header/Toolbar, na stronie 410, czyli kolor tła, teksturę tła, nieprzezroczystość
tła oraz kolory obramowania, tekstu i ikon.

 Kategorie Highlight oraz Error. Ustawienia dostępne w tych kategoriach nie
określają wyglądu żadnych gotowych komponentów. Dotyczą one dwóch
klas CSS — .ui-state-highlight oraz .ui-state-error — których można
używać w widżetach bądź dowolnych innych elementach strony. Przykładowo
widżet okna dialogowego (przedstawiony na stronie 330) pozwala na zasto-
sowanie w oknie dialogowym klasy o podanej nazwie. A zatem, jeśli zależy Ci
na wyświetleniu wyróżnionego okna dialogowego, wystarczy przekazać odpo-
wiednią nazwę klasy (bez kropki z przodu) podczas tworzenia okna, w sposób
przedstawiony na poniższym przykładzie:

$('#dialogDiv').dialog({ dialogClass : 'ui-state-highlight' });

W podobny sposób możesz zastosować klasę .ui-state-error w dowolnym
elemencie strony, który chcesz wyróżnić. Jeśli na przykład w jakimś polu
formularza użytkownik wpisał nieprawidłową wartość, możesz pobrać etykietę
tego pola i dynamicznie dodać do niej klasę reprezentującą błąd:

$('#userNameLabel').addClass('ui-state-error');

W tym przypadku nie używasz żadnego widżetu jQuery UI, a jedynie klasy
CSS utworzonej przez narzędzie ThemeRoller. Okazuje się, że w taki sam
sposób, w dowolnych elementach strony możesz stosować wszystkie klasy
dostępne w arkuszu stylów jQuery UI (więcej informacji na ten temat można
znaleźć na stronie 415).

 Modal Screen for overlays. Widżet Dialog (patrz strona 330) można stoso-
wać do tworzenia modalnych okien dialogowych — czyli okien, które aż do
momentu zamknięcia uniemożliwiają użytkownikom interakcję z wszelki-
mi innymi elementami strony. Ten typ okien dialogowych jest stosowany do
prezentowania ważnych komunikatów oraz wykonywania istotnych czyn-
ności, takich jak „Czy jesteś pewny, że chcesz całkowicie usunąć swój profil
na Facebooku?”. Wyświetlając takie okno dialogowe, biblioteka jQuery UI
zaciemnia całą pozostałą zawartość strony, wyświetlając nad nią (a jednocześnie
pod oknem dialogowym) specjalną „nakładkę”. Wygląd tej nakładki można
określać, dobierając jej kolor tła, teksturę oraz nieprzezroczystość tekstury
(czyli korzystając z tych samych ustawień, które zostały opisane w kategorii
Header/Toolbar na stronie 410).

 Drop shadows. Tę kategorię można zignorować, gdyż dostępne w niej usta-
wienia nie są używane w żadnym z widżetów jQuery UI — nawet w widżecie
Tooltip, który ma cień. To dziwne, ale prawdziwe.

R O Z D Z I AŁ 1 1 . D O S T O S O W Y W A N I E W Y G LĄD U J Q U E R Y U I

Pobieranie i stosowanie
nowego tematu

413

Wskazówka: Kiedy korzystasz z narzędzia ThemeRoller w celu przygotowania własnego tematu gra-

ficznego dla widżetów jQuery UI, zmienia się także adres URL strony: każda zmiana ustawień powoduje

modyfikację tego adresu. Dlaczego tak się dzieje? Wynika to z faktu, że ThemeRoller w bardzo inteli-

gentny sposób tworzy adres URL, który dokładnie odwzorowuje ustawienia budowanego tematu. A to

oznacza, że można ten adres URL zapisać i w bardzo prosty sposób wrócić na stronę ThemeRoller, na

której zostaną odtworzone wybrane wcześniej ustawienia. Można także skopiować ten adres i przesłać

go znajomemu lub koledze, żeby mogli błyskawicznie skopiować przygotowany temat.

Pobieranie i stosowanie nowego tematu
Po przygotowaniu nowego tematu jQuery UI wystarczy kliknąć przycisk Download
Theme umieszczony z lewej strony, u góry karty Roll Your Own. Spowoduje to
wyświetlenie strony Download Builder (patrz rysunek 11.4). Aby pobrać wszyst-
kie widżety oraz wszystkie możliwości funkcjonalne biblioteki, należy po prostu
kliknąć przycisk Download umieszczony u dołu strony. Jeśli jednak chcesz pobrać
tylko część możliwości — na przykład tylko widżet okna dialogowego (Dialog),
kalendarz (Datepicker) oraz karty (Tabs) — usuń zaznaczenie z pól wyboru przy
wszystkich pozostałych widżetach, metodach interakcji (Interactions) i efektach
animacji (Effects) i dopiero potem kliknij przycisk Download.

Rysunek 11.4. Strona
Download Builder po-
zwalająca na pobranie
wersji biblioteki jQuery
dostosowanej do na-
szych potrzeb. Pozwala
ona na wybranie nume-
ru wersji biblioteki,
widżetów, sposobów
interakcji oraz efektów
animacji, których bę-
dziemy używać i które
chcemy pobrać. Dzięki
temu możemy wyelimi-
nować te możliwości bi-
blioteki, które nie są po-
trzebne, zmniejszając
tym samym jej wielkość
i czas konieczny
do pobrania

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Pobieranie i stosowanie
nowego tematu

414

Dodawanie własnego tematu do istniejących stron WWW
Jeśli już używałeś jQuery UI na swojej witrynie i jedynie chcesz zaktualizować wy-
gląd widżetów, korzystając z nowego tematu graficznego, będziesz potrzebował
jedynie nowych stylów. Możesz wykonać ten sam proces, który został opisany
w poprzednim punkcie rozdziału, aby przygotować i pobrać nowy schemat gra-
ficzny. Pamiętaj jednak, aby na stronie Download Builder (przedstawionej na ry-
sunku 11.4) zaznaczyć te same opcje — widżety, sposoby interakcji oraz efekty —
których aktualnie używasz. W przeciwnym razie pobierzesz arkuszy stylów, który
jest zbyt mały lub niepotrzebnie duży.

Jeśli na przykład na swojej witrynie używasz wszystkich widżetów jQuery UI,
lecz podczas pobierania biblioteki nie zaznaczysz widżetu Dialog, nie pobierzesz
arkuszy stylów niezbędnych do określania wyglądu okien dialogowych. I podobnie,
jeśli używasz wyłącznie widżetu okna dialogowego, ale pobierzesz cały zestaw
możliwości biblioteki jQuery UI, to pobrany arkusz stylów będzie większy, niż to
konieczne, a to z kolei oznacza, że użytkownicy będą marnowali czas na pobie-
ranie niepotrzebnych stylów CSS.

Kiedy już pobierzesz nową kopię jQuery UI, pojawią się także pliki, których już
nie będziesz potrzebował (jeśli na przykład już używasz jQuery UI, nie będziesz
musiał zastępować istniejących plików JavaScript). Jedynymi elementami biblioteki,
które będziesz musiał zastąpić, są katalog images oraz pliki CSS.

 1. Zastąp wcześniejszy plik lub pliki CSS biblioteki jQuery UI plikami no-
wego tematu graficznego.

Zgodnie z informacjami podanymi na stronie 329, w skład biblioteki jQuery
UI wchodzi sześć plików CSS. Większość z nich stanowią powtarzające się
style, zapisane w różnych formatach. Mówiąc krótko, jedynym plikiem, którego
naprawdę potrzebujesz, jest arkusz jquery-ui.min.css. Zawiera on wszystkie
style CSS wymagane przez bibliotekę i zajmuje mało miejsca, gdyż jest zmi-
nimalizowany. Ogólnie rzecz biorąc, powinieneś używać tych plików, w których
nazwie znajduje się człon .min, gdyż są zazwyczaj najmniejsze. Ten nowy plik
CSS powinieneś umieścić dokładnie w tym samym miejscu, w którym znaj-
dował się poprzedni — na przykład w katalogu css umieszczonym w głównym
katalogu witryny.

 2. Zastąp dotychczasowy katalog images nowym katalogiem o tej samej
nazwie.
W różnych tematach używane są ikony o odmiennej kolorystyce oraz różnych
teksturach tła. Ikony i grafika nowego tematu zapewne nie będą odpowiadały
tym, które były stosowane w dotychczas używanym temacie graficznym, dlatego
też powinieneś je zastąpić. Katalog images powinien znaleźć się w tym samym
katalogu, w którym przechowywane są arkusze stylów jQuery UI; na przykład
może to być katalog css, umieszczony w głównym katalogu witryny, bądź też
katalog jquery-ui. Innymi słowy, niezależnie od tego, gdzie konkretnie zostanie
umieszczony plik CSS biblioteki, w tym samym katalogu musisz umieścić
katalog images.

R O Z D Z I AŁ 1 1 . D O S T O S O W Y W A N I E W Y G LĄD U J Q U E R Y U I

Przesłanianie stylów
jQuery UI

415

Uwaga: Podczas pobierania nowego tematu graficznego upewnij się, że nie uległa zmianie wersja bi-

blioteki jQuery UI. Biblioteka ta zmienia się dosyć często, dlatego, jeśli zdecydujesz się na aktualizację

tematu graficznego, może się okazać, że w międzyczasie zmienił się także sam kod biblioteki. W takim

przypadku powinieneś zastąpić style CSS, katalog images oraz plik JavaScript biblioteki jQuery UI

(jquery-ui.min.js).

Więcej informacji o arkuszach stylów jQuery UI
W skład jQuery UI wchodzi sześć plików CSS. Konkretnie rzecz biorąc, są to
dwie grupy po trzy pliki: pierwszą grupę tworzą pliki zminimalizowane lub spa-
kowane (na przykład jquery-ui.min.css), a drugą pliki CSS, których zawartość
można bez trudu przejrzeć i przeanalizować (na przykład jquery-ui.css).

Zgodnie z informacjami podanymi wcześniej, do używania na produkcyjnych
witrynach najlepiej nadają się zminimalizowane wersje kodów JavaScript, gdyż
ich pobieranie zajmuje najmniej czasu. Pozostałe pliki doskonale nadają się do wy-
świetlania w edytorze tekstów i umożliwiają sprawdzenie, jak są utworzone style
określające wygląd biblioteki.

Największy z tych plików — jquery-ui.css — jest połączeniem dwóch pozostałych
(jquery-ui.structure.css oraz jquery-ui.theme.css). Zespół pracujący nad jQuery
rozdzielił ten główny plik na dwie części, gdyż istnieją pewne style, które zawsze są
stosowane we wszystkich elementach, niezależnie od używanych w nich czcionek
i kolorów. Style te stanowią „strukturę” widżetów oraz interakcji jQuery UI i za-
wierają takie właściwości jak wartość z-index okien dialogowych oraz położenie
etykietek ekranowych. Wszystkie te style znajdują się w pliku o nazwie jquery-ui.
structure.css.

Jednak pozostałe style zmieniają się w zależności od wybranego schematu gra-
ficznego. Przykładowo rodziny czcionek używanych do wyświetlenia tekstu w wi-
dżetach czy też koloru tła nagłówków w widżetach accordion są ustawieniami cha-
rakterystycznymi dla konkretnego tematu graficznego. Wszystkie takie style zostały
umieszczone w pliku jquery-ui-theme.css. Możesz go otworzyć, by przeanalizować
style mające wpływ na teksty i tła elementów.

Dlatego też do swoich stron powinieneś dołączyć arkusz jquery-ui.min.css, na-
tomiast pliku jquery-ui-theme.css używać jako źródła informacji o nazwach stylów
i właściwościach różnych widżetów jQuery UI.

Przesłanianie stylów jQuery UI
Tematy graficzne jQuery UI wyglądają całkiem dobrze, jednak w naszym przy-
padku wcale nie muszą nadawać się do użycia. Przykładowo korzystając z usta-
wień określonych na stronie ThemeRoller (patrz strona 407), mamy do dyspozycji
tylko jedno ustawienie opisujące czcionki używane w oknach dialogowych, widże-
cie do wyboru daty, kartach i tak dalej. A co zrobić, gdybyśmy chcieli skorzystać
z innych czcionek w kartach, a innych w panelach zawierających treści stron?

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Przesłanianie stylów
jQuery UI

416

Taki problem można rozwiązać na kilka różnych sposobów, choć jest jedna rzecz,
której definitywnie nie należy robić — nie należy samodzielnie modyfikować arku-
szy stylów jQuery UI. Arkusze te zmieniają się wraz z kolejnymi wersjami bi-
blioteki; jeśli zatem wprowadzisz jakieś zmiany w pliku jquery-ui.css, a następnie
zaktualizujesz jQuery UI, narazisz się na trudne zadanie odtworzenia wszystkich
zmian, które kiedyś do tego pliku wprowadziłeś.

A jeśli nawet nie aktualizujesz biblioteki jQuery UI, nie będziesz mógł używać
strony ThemeRoller do tworzenia nowych projektów, bez narażania się na ko-
nieczność uciążliwego powielania wprowadzonych wcześniej zmian.

Zamiast tego nowe style powinieneś tworzyć w odrębnym pliku CSS. Może to
być osobny plik przeznaczony specjalnie na nowe style związane z jQuery UI
bądź też może to być główny arkusz stylów witryny. Jak się niebawem przekonasz,
istnieje kilka technik przesłaniania stylów jQuery UI, jednak wszystkie bazują
na stosowanym w kaskadowych arkuszach stylów pojęciu szczegółowości. Już
niedługo dowiesz się znacznie więcej na ten temat, jednak na razie wystarczy, że
zapamiętasz jedno: arkuszy stylów przesłaniający domyślne style jQuery UI należy
dołączyć po arkuszu stylów biblioteki:

<link href="css/jquery-ui.min.css" rel="stylesheet">
<link href="css/site.css" rel="stylesheet">

Dołączając arkusz stylów witryny za arkuszem jQuery UI, możesz tworzyć style
zawierające dokładnie te same nazwy, co domyślne style biblioteki. W takim
przypadku style opracowane przez Ciebie będą miały wyższy priorytet, gdyż zostaną
dołączone później niż style jQuery UI.

Zasada szczegółowości
Style CSS często współdziałają ze sobą lub wywołują konflikty. Może istnieć
wiele stylów określających postać tego samego elementu strony, a przeglądarka
określa, która właściwość z którego stylu zostanie ostatecznie użyta. To właśnie
stąd wzięło się słowo „kaskadowe” w nazwie „kaskadowe arkusze stylów”. Ta cecha
stylów wiąże się z bardzo ważnym pojęciem — ze szczegółowością (ang. specificity).
W CSS bardziej szczegółowe reguły zawsze są ważniejsze od mniej szczegółowych.
Oto kilka najważniejszych zasad związanych ze szczegółowością.

 Selektory identyfikatorów są bardziej szczegółowe od selektorów klas, a te
z kolei od selektorów elementów. Oto przykład:

<p id="susan" class="person">Zuzanna Mazur: bohaterka CSS</p>

W tym przykładzie, w znaczniku <p> został umieszczony zarówno atrybut id
określający identyfikator, jak i atrybut class określający klasę. Teraz załóż,
że dysponujesz następującym arkuszem stylów:

#susan {
 color: green;
 font-size: 24px;
}
.person {
 color: blue;
 text-align: center;
 font-weight: bold;

R O Z D Z I AŁ 1 1 . D O S T O S O W Y W A N I E W Y G LĄD U J Q U E R Y U I

Przesłanianie stylów
jQuery UI

417

}
p {
 color: orange;
 font-weight: normal;
 font-family: Arial, sans-serif;
}

Wszystkie trzy powyższe style opisują postać akapitu i w każdym z nich zo-
stała określona wartość właściwości color. Ponieważ selektory identyfikatorów
są najbardziej szczegółowe, zatem tekst w akapicie zostanie wyświetlony na
zielono, gdyż selektor identyfikatora przesłania dwa pozostałe. Jeśli jednak
pomiędzy stylami nie występują żadne konflikty — na przykład właściwość
text-align została określona wyłącznie w regule z selektorem .person — to taka
właściwość zostanie zastosowana niezależnie od tego, z której reguły pochodzi.

W tym przykładzie tekst w akapicie będzie mieć wielkość 24 pikseli i zielony
kolor (pochodzący z reguły z selektorem #susan), oprócz tego będzie pogru-
biony i wyśrodkowany (z reguły z selektorem .person), a dodatkowo zostanie
wyświetlony czcionką Arial (z reguły z selektorem p).

Ponieważ style biblioteki jQuery UI są określane w oparciu o klasy, znajomość
zasady szczegółowości i jej działania w przypadku selektorów innych typów
ma duże znaczenie.

 Wygrywają reguły zdefiniowane później. Jeśli ta sama reguła pojawi się
w dwóch różnych arkuszach stylów (bądź nawet w dwóch miejscach tego same-
go arkusza), wygra ostatnia z nich. To właśnie dlatego arkusz stylów biblioteki
jQuery UI należy dołączać jako pierwszy. Jeśli w takim przypadku do drugiego
arkusza dodasz nowy styl używający takiej samej nazwy, co klasa jQuery UI,
ta domyślna klasa zostanie nadpisana. Przykładowo w arkuszu stylów jQuery
UI można znaleźć następujący styl:

/* in jquery-ui stylesheet */
 .ui-widget-content a {
 color: #222222;
}

Jeśli dołączysz arkusz stylów swojej witryny za arkuszem stylów jQuery UI,
będziesz mógł do niego dodać style charakterystyczne dla swojej witryny i cał-
kowicie nadpisać style jQuery UI dla wybranego elementu:

/* in jquery-ui stylesheet */
 .ui-widget-content a {
 color: #FF0;
}

 Szczegółowość się sumuje. Stosowanie selektorów elementów potomnych
jest doskonałym sposobem tworzenia bardzo szczegółowych stylów. Przeglądarka
dodaje wszystkie fragmenty takiego selektora, wyznaczając w ten sposób
sumaryczną wartość jego szczegółowości. Prosty sposób określenia tej warto-
ści polega na przyjęciu, że selektor identyfikatora ma wartość 100 punktów,
selektor klasy — 10 punktów, a selektor elementu — 1 punkt. Przykładowo styl
z selektorem #main a przesłoni styl z selektorem .ui-state-default a,
gdyż ma wartość 101 punktów (jeden selektor identyfikatora i jeden elementu),
natomiast ten drugi tylko 11 (jeden selektor klasy i jeden elementu). Innymi
słowy, możesz także przesłaniać style jQuery UI, podając selektory elementów
potomnych, których szczegółowość ma wyższą wartość punktową.

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Przesłanianie stylów
jQuery UI

418

 W trudnych okolicznościach można zastosować deklarację !important.
Kaskadowe arkusze stylów udostępniają rozwiązanie, które można by określić
jako „opcję nuklearną”. Jest nim deklaracja !important. Jeśli dodasz !important
za deklaracją stylu, jego wartość przesłoni wszystkie inne style, niezależnie
od tego, jak bardzo będą szczegółowe. Załóżmy na przykład, że arkusz podany
w pierwszym punkcie tej listy zawiera styl określający wygląd znaczników <p>
o następującej postaci:

p {
 color: orange !important;
 font-weight: normal !important;
 font-family: Arial, sans-serif !important;
}

Ponieważ każda z właściwości podanych w tym stylu zawiera deklarację
!important, zatem przesłonią one wartości w bardziej szczegółowych stylach
#susan oraz .person. Jednak deklarację !important naprawdę należy stosować
jako ostatnią deskę ratunku. Gdybyś zaczął korzystać z niej naprawdę często,
szybko doprowadziłoby to do powstania wielu stylów z tymi deklaracjami, a to
z kolei znacząco utrudniłoby określanie szczegółowości konkretnych reguł sty-
lów. (Gdyby każda właściwość w każdym stylu zawierała deklarację !important,
byłyby stosowane zwyczajne reguły szczegółowości, czyli selektor identyfika-
tora miałby wyższy priorytet od selektora klasy, a ten miałby wyższy priorytet
od selektora elementu).

Jak są określane style widżetów jQuery UI?
Biblioteka jQuery UI wykorzystuje modularne podejście do określania postaci
swoich widżetów: zamiast definiować jeden styl ui-dialog, określający wszystkie
aspekty wyglądu okna dialogowego, jego ostateczny wygląd jest ustalany przy użyciu
wielu różnych stylów. Przykładowo poniżej przedstawiony został styl .ui-widget,
stosowany we wszystkich widżetach:

.ui-widget {
 font-family: Verdana,Arial,sans-serif;
 font-size: 1.1em;
}

Ponieważ ta klasa jest wykorzystywana we wszystkich widżetach, zatem wszystkie
używają tych samych czcionek, tej samej wielkości. Jednak postać okien dialogowych
określa także wiele innych stylów. W samych tylko oknach dialogowych, w ich
zewnętrznym kontenerze stosowane są następujące style:

class="ui-dialog ui-widget ui-widget-content
ui-corner-all ui-front ui-draggable ui-resizable"

Każda z tych klas określa jakieś drobne aspekty ostatecznego wyglądu okna dia-
logowego. Poprzez takie połączenie wielu klas jQuery UI może ich wielokrotnie
używać do określania postaci różnych widżetów. Przykładowo poniżej przedsta-
wione zostały klasy używane w zewnętrznym kontenerze menu jQuery UI (patrz
strona 368):

class="ui-menu ui-widget ui-widget-content"

R O Z D Z I AŁ 1 1 . D O S T O S O W Y W A N I E W Y G LĄD U J Q U E R Y U I

Przesłanianie stylów
jQuery UI

419

Zauważ, że dwie spośród tych klas — ui-widget oraz ui-widget-content —
były także zastosowane w widżecie okna dialogowego. Klasy te zawierają aspekty
wyglądu używane w obu tych widżetach.

Mogłeś już się przekonać, że zwyczajny element <div> całkiem łatwo można
zamienić w złożone okno dialogowe (patrz strona 330), a listę zagnieżdżoną —
w rozwijane menu (patrz strona 368). Biblioteka jQuery UI za kulisami modyfikuje
nasz prosty kod HTML, dodając do niego nowe warstwy elementów div, span
oraz różnych innych obiektów HTML i uzyskując w ten sposób ostateczny wy-
gląd widżetu. W efekcie, patrząc na tworzony przez nas kod i na style jQuery UI,
nie jesteśmy w stanie określić, w jaki sposób uzyskiwany jest ten ostateczny efekt.
Aby dowiedzieć się, jak są formatowane widżety biblioteki jQuery UI, trzeba zajrzeć
do wygenerowanego kodu HTML (czyli faktycznego kodu HTML utworzonego
z pomocą magicznych sztuczek biblioteki).

Najlepszym sposobem przeanalizowania sposobu, w jaki style CSS określają wy-
gląd widżetów jQuery UI, jest skorzystanie z narzędzi inspekcji kodu, wbudowa-
nych w przeglądarkę. Większość przeglądarek udostępnia narzędzia pozwalające
na sprawdzanie wygenerowanego kodu HTML strony. W przeglądarce Chrome
wystarczy kliknąć widoczny na stronie widżet i z menu podręcznego wybrać opcję
Inspect Element. U dołu okna przeglądarki zostanie wyświetlone dodatkowe okno,
a w nim na karcie Elements kod HTML (patrz rysunek 11.5).

Rysunek 11.5. Kiedy
w oknie konsoli zostanie
już wyświetlona karta
Elements, będzie moż-
na wskazać myszą in-
teresujący nas frag-
ment kodu HTML.
Elementy widoczne
w oknie przeglądarki
i odpowiadające temu
fragmentowi zostaną
wyróżnione, tak jakby
zostały wskazane my-
szą. Bez najmniejszego
problemu można do-
pasować kod HTML do
jego wizualnej repre-
zentacji w przeglądarce

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Przesłanianie stylów
jQuery UI

420

Kliknięcie ikony szkła powiększającego (zakreślonej na rysunku 11.5) aktywuje
narzędzie inspekcji kodu. Po wybraniu tej ikony można kliknąć dowolny element
na stronie, a na karcie Elements zostanie wyświetlony odpowiadający mu kod
HTML. To doskonały sposób, by odszukać na przykład nagłówek okna dialogowego
i przekonać się, jakie style zostały w nim użyte.

Kiedy już uda Ci się zidentyfikować style, będziesz mógł we własnym arkuszu
utworzyć style o takich samych nazwach. Przykładowo używając narzędzi prze-
glądarki Chrome, możesz się przekonać, że w kodzie HTML tworzącym tytuł
okna dialogowego zastosowano klasę o nazwie .ui-dialog-title (patrz rysunek
11.6). Aby zmienić kolor nagłówków okien dialogowych na czerwony, możesz dodać
do swojego arkusza stylów następującą regułę:

.ui-dialog-title {
 color: red;
}

Rysunek 11.6. Korzystając z narzędzia inspektora (szkła powiększającego), można błyskawicznie zlokalizować
wygenerowany kod HTML odpowiadający elementom widocznym w oknie przeglądarki. Na tym rysunku pokazany
został kod HTML wygenerowany przez jQuery UI w celu utworzenia paska tytułu okna dialogowego

Interakcje i efekty
jQuery UI

Biblioteka jQuery UI ma do zaoferowania znacznie więcej, nie tylko widżety in-
terfejsu użytkownika. Udostępnia także kilka użytecznych możliwości służących
do wzbogacania interaktywności tworzonych stron WWW oraz aplikacji interne-
towych. Te interakcje (ang. interactions) jQuery UI pozwalają na przesuwanie
elementów stron. Niektóre widżety można przeciągać i upuszczać, co oznacza,
że użytkownik może przeciągnąć jeden element i umieścić go w obszarze innego
elementu — w ramach przykładu można sobie wyobrazić przeciągnięcie pliku do
kosza lub produktu do koszyka z zakupami. jQuery UI pozwala także na tworze-
nie list, w których kolejność elementów można zmieniać przy użyciu ich prze-
ciągania — z tego rozwiązania można skorzystać przykładowo podczas tworzenia
listy zadań do zrobienia lub listy odtwarzanych utworów muzycznych.

Dodatkowo jQuery UI udostępnia zestaw efektów, które można zastosować, by
dodać do witryny atrakcyjne wizualnie animacje. Można ich użyć i przyciągnąć
uwagę użytkownika poprzez wyróżnienie koloru tła jakiegoś elementu. Można
zastosować animację odbicia podczas przeciągania elementu, czy też sprawić, by
wybrany element zatrząsł się lub zmienił wielkość. Więcej informacji o tych efek-
tach można znaleźć na stronie 461.

Widżet Draggable
Dla osób korzystających z komputerów przeciąganie jest czymś naturalnym —
wszyscy przeciągają pliki z jednego katalogu do drugiego, usuwają je, przeciągając
ich ikony do kosza, przeciągają okna, by zrobić więcej miejsca na pulpicie i tak dalej.
Te interakcje są czymś całkowicie naturalnym dla generacji osób, która wychowała
się na komputerach osobistych i myszach. Biblioteka jQuery UI za pomocą swo-
ich dwóch widżetów — Draggable oraz Droppable (patrz strona 434) — przenosi
te same interakcje do świata stron WWW.

12
ROZDZIAŁ

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Widżet Draggable

422

Widżet Draggable zapewnia możliwość przesuwania wybranego elementu stro-
ny. Działanie tego widżetu poznałeś już na przykładzie okna dialogowego jQuery
UI (patrz strona 330): okna dialogowe są wyświetlane dokładnie pośrodku ekranu,
lecz można je przeciągnąć i umieścić w dowolnym innym miejscu. Oba widżety
— Draggable oraz Droppable — można zastosować jednocześnie, by utworzyć inte-
raktywne koszyki z zakupami. Kupujący mogą przeciągać obrazki produktów do
koszyka umieszczonego na stronie, produkty te zostaną do niego dodane.

Dodawanie widżetu Draggable do strony
Każdy element strony można zmodyfikować w taki sposób, by można go było prze-
ciągać. Oczywiście trzeba pamiętać o tym, że możliwość przeciągania wybranego
elementu powinna mieć sens. Przykładowo zapewnienie możliwości przeciągania
akapitów tekstu nie poprawi czytelności strony i nie będzie żadną zaletą dla czy-
telników. Z drugiej strony, zapewnienie możliwości przeciągania wyskakującego
okna dialogowego jest bardzo sensowne, a w przypadku tworzenia internetowej
wersji gry w warcaby jest wręcz niezbędne.

Podstawowy sposób wykorzystania widżetu Draggable jest bardzo prosty.
 1. Wykonaj czynności opisane na stronie 329, by dołączyć do strony nie-
zbędne pliki CSS i JavaScript.
Pamiętaj, że biblioteka jQuery UI ma własne pliki CSS oraz JavaScript; należy je
dołączyć do strony za plikiem JavaScript biblioteki jQuery.

 2. Umieść na stronie bądź w kolejnym zewnętrznym pliku JavaScript wy-
wołanie funkcji $(document).ready():

$(document).ready(function() {

}); // Koniec funkcji ready.

Zgodnie z informacjami podanymi na stronie 190, krok ten jest niezbędny
wyłącznie wtedy, gdy kod JavaScript jest umieszczany w sekcji <head> strony,
przed właściwym kodem HTML stanowiącym jej treść. Niektórzy programiści
umieszczają swój kod JavaScript na końcu strony, bezpośrednio przed zamy-
kającym znacznikiem </body>; w takim przypadku umieszczanie kodu w wy-
wołaniu funkcji $(document).ready() nie jest konieczne.

 3. Użyj jQuery, żeby wybrać element strony i zastosować w nim widżet
Draggable:

$(document).ready(function() {
 $('#dialog').draggable();
}); // Koniec funkcji ready.

W tym przykładzie wybraliśmy jeden element, używając selektora identyfi-
katora. Gdybyśmy jednak chcieli zapewnić możliwość przeciągania większej
liczby elementów strony, moglibyśmy dodać do ich znaczników określoną
klasę, na przykład <div class= draggable >, a następnie podać ją w selek-
torze, by za jednym zamachem użyć widżetu Draggable we wszystkich tych
znacznikach:

$('.draggable').draggable();

R O Z D Z I AŁ 1 2 . INTERAKCJE I EFEKTY JQUERY UI

Widżet Draggable

423

 4. Zapisz plik i wyświetl go w przeglądarce.
I to już wszystko. Jednak można sądzić, że będziemy chcieli dodatkowo skonfi-
gurować możliwości przeciągania. Na szczęście jQuery UI udostępnia wiele
opcji pozwalających na dostosowanie działania tego widżetu. Informacje na ich
temat zostały podane na stronie 424.

Miniprzykład — zastosowanie widżetu Draggable
Nadszedł czas, by przetestować widżet Draggable i przekonać się, jak łatwo można
zapewnić możliwość przeciągania elementu strony.

Uwaga: Więcej informacji o tym, jak pobrać przykłady prezentowane w książce, można znaleźć na

stronie 46.

 1. W edytorze tekstów otwórz plik draggable.html umieszczony w katalogu R12.
Strona ta zawiera już odwołania do wymaganych plików bibliotek jQuery i jQuery
UI, jak również wywołanie funkcji $(document).ready() (patrz strona 190).
Przejrzyj kod strony i odszukaj w nim znacznik <div> o identyfikatorze note,
zawierający nagłówek i krótki akapit tekstu. Zaraz przekształcisz ją w element,
który można przeciągać.

 2. W pustym wierszu umieszczonym wewnątrz wywołania funkcji
$(document).ready() wpisz wiersz kodu wyróżniony poniżej pogrubioną
czcionką:

$(document).ready(function() {
 $('#note').draggable();
}); // Koniec funkcji ready.

To wywołanie wybiera znacznik <div> i zapewnia możliwość jego przeciągania
na stronie.

 3. Zapisz stronę i wyświetl ją w przeglądarce (patrz rysunek 12.1).
Kliknij gdziekolwiek w obszarze nagłówka wewnątrz elementu div „Możesz
mnie przeciągać” i przeciągnij go w inne miejsce strony. Działanie widżetu
Draggable można konfigurować na wiele różnych sposobów, o czym przekonasz
się w następnym punkcie rozdziału.

Rysunek 12.1. Przy użyciu tylko
jednego wiersza kodu można
zmienić statyczny znacznik <div>
w interaktywny komponent,
który można przeciągać. Widżet
Draggable jest także używany
przez okna dialogowe
(widżet Dialog) jQuery UI
(patrz strona 330)

Uwaga: Kompletna wersja tego przykładu jest dostępna w pliku complete_draggable.html.

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Widżet Draggable

424

Opcje widżetu Draggable
Widżet jQuery UI Draggable ma bardzo duże możliwości i udostępnia wiele opcji.
Można określać dozwolony kierunek przeciągania elementu oraz odległość, spo-
sób zachowania elementu podczas przeciągania, a nawet fragment elementu słu-
żący do przeciągania. Podobnie jak wszystkie inne widżety jQuery UI, także i ten
jest konfigurowany za pomocą przekazania odpowiedniego obiektu w wywołaniu
funkcji, w tym przypadku jest to funkcja draggable(). Aby na przykład zmienić
kształt wskaźnika myszy na dłoń z wyciągniętym palcem wskazującym i wskazać,
że „uchwytem” (ang. handle) służącym do przeciągania elementu będzie umiesz-
czony w nim znacznik <h2>, należy przekazać w wywołaniu funkcji draggable()
przedstawiony poniżej literał obiektowy z dwoma właściwościami:

$('#controls').draggable({
 cursor : 'pointer',
 handle : 'h2'
});

Poniżej przedstawione zostały najczęściej używane opcje.

 axis. Właściwość pozwala ograniczyć możliwości ruchu elementu do przecią-
gania w prawo i w lewo bądź w górę i w dół. Przykładowo załóżmy, że chcemy
przeciągać jakiś element na osi czasu. Element ten musi być cały czas wy-
świetlony przy linii, zatem nie będziemy chcieli, by ktoś mógł przeciągnąć go
na dół strony. Właściwości tej można przypisać wartość 'x' (by ograniczyć moż-
liwości przeciągania elementu do ruchu w poziomie) lub wartość 'y' (by można
go było przeciągać tylko w pionie).

axis : 'x'

 cancel. Za pomocą tej opcji można uniemożliwić przeciąganie, kiedy zosta-
nie kliknięty podany element. Załóżmy, że utworzyliśmy ramkę na komu-
nikaty, którą użytkownik może przeciągać w oknie przeglądarki. Komunikat
ma nagłówek, lecz także kilka akapitów tekstu zawierających ważne infor-
macje, takie jak adres lub numer telefonu. Domyślnie, gdyby użytkownik
chciał zaznaczyć taki adres (na przykład po to, by skopiować go i wkleić
w Google Maps), okazałoby się, że przeciąga całą ramkę z komunikatami. Aby
wyłączyć możliwość przeciągania po kliknięciu akapitu, należy użyć nastę-
pującej opcji:

cancel : 'p'

Jeśli teraz użytkownik kliknie akapit w ogłoszeniu, nie spowoduje to rozpo-
częcia przeciągania ramki i będzie można zaznaczyć interesujący fragment
tekstu. Podobne działanie widżetu można zapewnić, używając opcji handle
opisanej na stronie 427.

 connectToSortable. Opcja pozwala wskazać kolekcję „sortowalnych” ele-
mentów, do której będzie można dodać element. Biblioteka jQuery UI udo-
stępnia widżet Sortable, który zapewnia możliwość określania kolejności grupy
elementów; z powodzeniem można go zastosować do utworzenia listy zadań
do zrobienia (więcej informacji na temat widżetów Sortable można znaleźć
na stronie 449). Aby skorzystać z tej opcji, należy podać identyfikator elementu
stanowiącego kolekcję „sortowalnych” elementów (patrz strona 449.):

connectToSortable : '#toDoList'

R O Z D Z I AŁ 1 2 . INTERAKCJE I EFEKTY JQUERY UI

Widżet Draggable

425

 containment. Korzystając z tej opcji, można uniemożliwić przeciągnięcie
elementu poza obszar kontenera, w którym jest umieszczony. Na przykład
załóżmy, że tworzymy stronę, której fragment będzie działał jak lodówka, na
której można przyczepiać magnesiki ze słowami, aby utworzyć z nich jakieś
zdanie. W tym celu możemy opracować grupę elementów div ze słowami
i umieścić je w wybranym obszarze strony. Nie chcemy jednak, by użytkownik
mógł przeciągać magnesiki po całej stronie, na przykład po części nawigacyjnej,
nagłówku czy też stopce. Opcja containment pozwala ograniczyć możliwości
przeciągania elementu do mniejszego obszaru strony. Może ona przyjmować
kilka różnych wartości. Oto one.

 Selektor. Jeśli zostanie podana nazwa selektora, jQuery UI ograniczy możli-
wości przeciągania wyłącznie do wnętrza elementu wskazanego przez ten
selektor. Gdyby na stronie znajdował się znacznik <div> o identyfikatorze
refrigerator, to aby ograniczyć możliwość przeciągania wyłącznie do je-
go obszaru, należy użyć opcji containment w następujący sposób:
containment : '#refrigerator'

 parent, document lub window. Aby ograniczyć możliwości przeciągania
wyłącznie do obszaru elementu rodzica, należy użyć wartości parent. Jeśli
chcemy przeciągać znacznik <div> umieszczony wewnątrz innego znacz-
nika <div> i jednocześnie chcemy ograniczyć obszar, w którym może znaleźć
się element przeciągany do zewnętrznego znacznika <div>, powinniśmy
przypisać opcji containment wartość parent w następujący sposób:
containment : 'parent'

Wartości document oraz window działają podobnie, przy czym pierwsza z nich
sprawia, że przeciągany element będzie mógł znaleźć się gdziekolwiek w ob-
szarze dokumentu, a druga, window, że będzie on mógł częściowo wychodzić
poza obszar okna przeglądarki.

 Tablica współrzędnych. Można także podać tablicę współrzędnych, repre-
zentujących odpowiednio górny lewy oraz prawy dolny wierzchołek obszaru,
w którym będzie można przeciągać element. Współrzędne te są podawane
w pikselach, względem lewego, górnego wierzchołka okna przeglądarki.
Załóżmy, że chcemy ograniczyć obszar, w którym będzie można przeciągać
element, do prostokąta rozpoczynającego się 50 pikseli na prawo od lewej
krawędzi okna i 100 pikseli poniżej górnej krawędzi okna, a kończącego
500 pikseli od lewej krawędzi i 600 pikseli poniżej górnej krawędzi. Można
to zrobić, używając następującej opcji containment:
containment : [50, 100, 500, 600]

Ponieważ ten sposób określania obszaru, w którym będzie można przeciągać
element, wymaga podania precyzyjnych współrzędnych, zatem nie nadaje
się on do użycia w przypadku stosowania elastycznych projektów stron.
W takich sytuacjach lepiej skorzystać z elementu zawierającego i podać jego
selektor.

 cursor. Istnieje możliwość zmiany postaci wskaźnika myszy podczas przecią-
gania. Normalnie wskaźnik myszy ma postać strzałki (jeśli klikniemy w pu-
stym miejscu elementu) bądź też charakterystycznej kreski do zaznaczania

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Widżet Draggable

426

tekstu (jeśli klikniemy na przykład tekst nagłówka). Jednak można za pomocą
jQuery UI zmienić postać wskaźnika myszy podczas przeciągania — wystarczy
podać odpowiednią wartość w opcji cursor. Listę wszystkich dostępnych war-
tości można znaleźć na stronie https://developer.mozilla.org/en-US/docs/Web/
CSS/cursor, jednak najczęściej używane są wartości pointer, crosshair oraz
default (czyli strzałka):

cursor : 'pointer'

 cursorAt. Można także określać miejsce, w którym, będzie umieszczony
wskaźnik myszy podczas przeciągania. Zazwyczaj jest on umieszczony w miej-
scu, w którym znajdował się, gdy użytkownik wcisnął przycisk myszy. Jeśli na
przykład wskaźnik myszy znajdował się u dołu elementu div, kiedy zaczęliśmy
go przeciągać, pozostanie u dołu tego elementu, aż do momentu zwolnienia
przycisku myszy. Może się jednak zdarzyć, że będziemy chcieli, by wskaźnik
myszy był widoczny w konkretnym miejscu — na przykład w obszarze wizu-
alnego uchwytu używanego do przeciągania elementu. Aby to zrobić, wystarczy
określić ten obszar przy użyciu opcji cursorAt. Jej właściwością powinien
być obiekt zawierający wybrane właściwości left, right, top oraz bottom.
Aby na przykład umieścić wskaźnik myszy w lewym, górnym wierzchołku
przeciąganego elementu, należy użyć właściwości left oraz top:

cursorAt : {
 left : 5,
 top : 5
}

Nie można wykorzystać jednocześnie właściwości left i right, gdyż wyzna-
czają one dwa miejsca na tej samej osi; z tego samego powodu nie można
jednocześnie użyć właściwości top i bottom. Jednak można skorzystać z do-
wolnej właściwości określającej położenie na danej osi (left lub right oraz
top lub bottom). Można także użyć tylko jednej właściwości. Jeśli będzie nas
interesować tylko to, by wskaźnik znajdował się wewnątrz paska u góry prze-
ciąganego elementu, wystarczy określić wartość właściwości top. W takim
przypadku położenie wskaźnika w poziomie będzie takie samo, jakie było w mo-
mencie rozpoczynania przeciągania:

cursorAt : { top : 5 }

 disabled. Właściwość określa, czy będzie można przeciągać element. Jeśli tej
właściwości zostanie przypisana wartość true, przeciąganie nie będzie możliwe.
Można uznać, że gdyby ktoś nie chciał przeciągać elementu, najprościej byłoby
w ogóle nie wywoływać funkcji draggable(). To prawda, zapewne mało kto
używa tej opcji bezpośrednio podczas tworzenia widżetu Draggable.

Jednak może się ona przydać potem, kiedy element został już przeciągnięty.
Przykładowo możemy chcieć, by użytkownik mógł przeciągnąć produkt do
koszyka zakupów, lecz nie mógł go z niego wyciągnąć. W takim przypadku
wystarczyłoby zastosować tę opcję po zakończeniu operacji przeciągania (patrz
strona 440).

 grid. Normalnie element podczas przeciągania może się dowolnie przesuwać
w dopuszczalnym obszarze. Jednak może się zdarzyć, że będziemy chcieli wy-
musić, by był on przesuwany o określoną liczbę pikseli w poziomie i pionie.

https://developer.mozilla.org/en-US/docs/Web/CSS/cursor
https://developer.mozilla.org/en-US/docs/Web/CSS/cursor

R O Z D Z I AŁ 1 2 . INTERAKCJE I EFEKTY JQUERY UI

Widżet Draggable

427

Wyobraźmy sobie, że tworzymy internetową wersję gry w warcaby. Siatka
pól ma wymiary 8 na 8 pikseli. Pionek może być przeciągany przez krawędzie
pól, lecz plansza byłaby niechlujna, gdyby można go było umieszczać zupełnie
dowolnie. Dlatego też gra będzie wyglądała lepiej, jeśli pionki będzie można
przesuwać o odcinki odpowiadające wymiarom pól planszy.

jQuery UI zapewnia możliwość określenia przyrostów, poziomego i piono-
wego, o jakie będzie przesuwany element. W opcji grid należy podać tablicę
zawierającą dwie liczby. Pierwszą z nich jest przyrost w poziomie, a drugą —
w pionie. Załóżmy, że chcemy, by przeciągany element był przesuwany w po-
ziomie na odległość 50 pikseli. Oprócz tego chcemy, by podczas przeciągania
w pionie był przesuwamy o 100 pikseli. Moglibyśmy to zrobić, używając opcji
grid:

grid : [50, 100]

 handle. Opcja pozwala ograniczyć obszar, który użytkownik musi kliknąć,
by rozpocząć przeciąganie elementu. Normalnie element można przeciągać,
klikając go w dowolnym miejscu. Jednak może się zdarzyć, że będziemy
chcieli ograniczyć ten obszar wyłącznie do nagłówka lub jakiegoś wizualnego
fragmentu elementu. W takim przypadku w opcji handle można podać selektor
określający element wewnątrz przeciąganego elementu, który posłuży jako
„uchwyt” do przeciągania. Przykładowo poniższa opcja określa, że element moż-
na przeciągać wyłącznie za pomocą umieszczonego w nim nagłówka <h2>:

handle : 'h2'

 helper. Może się zdarzyć, że nie będziemy chcieli, by podczas przeciągania
przesuwany był sam wybrany element. Załóżmy, że tworzymy stronę koszyka
z zakupami. Na stronie są wyświetlane produkty, a użytkownik może je do-
dawać do koszyka, przeciągając zdjęcie produktu i upuszczając je na ikonie
koszyka. Jednak nie chcemy przy tym, by użytkownik przeciągał faktyczne
zdjęcie produktu, gdyż spowodowałoby to jego zniknięcie ze strony. Lepszym
rozwiązaniem byłoby przeciąganie kopii tego zdjęcia i pozostawienie jego orygi-
nału w początkowym miejscu. Taki efekt można łatwo uzyskać, przypisując
opcji helper wartość 'clone':

helper : 'colone'

Nieco bardziej złożonym rozwiązaniem jest przekazanie w tej opcji funkcji
generującej kod HTML, który następnie jQuery UI wyświetli podczas prze-
ciągania elementu. Aby na przykład wyświetlić pomocniczy znacznik <div>
o ogólnym charakterze (a nie przeciągać elementu umieszczonego na stronie),
można użyć opcji helper o następującej postaci:

helper : function(event) {
 return $("<div class='ui-widget-header'>Jestem elementem
pomocniczym</div>");
}

Cokolwiek zwróci ta funkcja, przekazana jako wartość opcji helper, zostanie
wyświetlone przez jQuery UI i użyte podczas przeciągania wskaźnika myszy.
Trzeba jednak pamiętać, że musi to być obiekt jQuery — czyli konieczne jest
wywołanie funkcji $(). Zwrócenie zwykłego łańcucha znaków z kodem HTML
nie da zamierzonego efektu.

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Widżet Draggable

428

 opacity. Podczas przeciągania elementu można zmienić jego nieprzezroczystość.
Można ją zmniejszyć do 50%, sprawiając wrażenie, jakby po stronie był prze-
suwany jego półprzezroczysty duch. Technika jest często stosowana w celu za-
sygnalizowania, że element zostanie przeniesiony z jednego miejsca w drugie.
Tej opcji należy przypisywać wartości z zakresu od 0 (przeciągany element
będzie całkowicie niewidoczny) do 1 (element będzie całkowicie nieprzezro-
czysty). Opcja opacity działa dokładnie tak samo jak właściwość CSS o tej
samej nazwie. Aby na przykład przeciągany element był w 50% przezroczysty,
należy przypisać jej wartość 0.5:

opacity : 0.5

 revert. Opcja określa, czy po zakończeniu operacji przeciągany element ma
wrócić w miejsce, w którym się początkowo znajdował. Domyślną wartością
tej opcji jest false, co oznacza, że element pozostanie w miejscu, w którym
został upuszczony. W przypadku przeciągania okien i okienek dialogowych
jest to właściwe rozwiązanie — przeciągamy je zazwyczaj po to, by odsłonić jakieś
inne elementy strony.

Jednak zdarzają się także przypadki, kiedy przeciągany element powinien
wrócić do swojej początkowej lokalizacji. Jeśli na przykład używamy widżetu
Droppable (opisanego na stronie 434) i przeciągany element nie zostanie
upuszczony w odpowiednim miejscu, będziemy chcieli, by wrócił w miejsce,
w którym się początkowo znajdował. Załóżmy, że tworzymy aplikację do or-
ganizowania zdjęć. Jej użytkownik może przeciągać miniaturki zdjęć do róż-
nych katalogów widocznych na stronie bądź też upuszczać je na ikonie kosza
na śmieci. Może się jednak zdarzyć, że użytkownik przeciągnie miniaturkę
na nagłówek strony, na jej stopkę lub w inne nieodpowiednie miejsce. W takim
przypadku będziemy chcieli, by miniaturka wróciła w miejsce, w którym się
wcześniej znajdowała, i nie przesłaniała nagłówka bądź stopki strony.

W opcji revert można podawać kilka różnych wartości. Wartość true po-
woduje, że przeciągany element zawsze wróci w początkowe położenie (wi-
tamy kolejną stronę, która żartuje sobie z użytkowników); wartość 'invalid'
sprawia, że element wraca w początkowe położenie wyłącznie w przypadku,
gdy nie zostanie upuszczony w obszarze prawidłowego widżetu Droppable
(patrz strona 434). W hipotetycznej aplikacji do organizowania zdjęć można
by użyć wartości invalid:

revert : 'invalid'

I w końcu, wartością opcji revert może być także funkcja. Jeśli ta funkcja
zwróci wartość true, element wróci na swoje początkowe położenie. Tego
rozwiązania można użyć podczas tworzenia internetowej wersji gry w warca-
by: kiedy użytkownik zrobi ruch i upuści pionek na innym polu planszy,
funkcja mogłaby sprawdzić, czy ruch jest prawidłowy (czy pionek nie został
upuszczony na zajęte pole lub został przesunięty zbyt daleko). Gdyby się
okazało, że ruch nie jest prawidłowy, funkcja zwróciłaby wartość true, a pionek
powróciłby w swoje początkowe położenie.

revert : function() {
 // Ta funkcja powinna wykonywać jakiś test i na jego podstawie zwracać
 // wartość true, aby element wrócił na swoje początkowe położenie, bądź
 // wartość false, by pozostał w miejscu, w którym został upuszczony.
}

R O Z D Z I AŁ 1 2 . INTERAKCJE I EFEKTY JQUERY UI

Widżet Draggable

429

 revertDuration. Kiedy jQuery UI przenosi przeciągany element w miejsce,
w którym się początkowo znajdował, jego ruch jest animowany. Domyślny
czas trwania tej animacji wynosi 500 milisekund, czyli pół sekundy. Wygląda
to świetnie, lecz nic nie stoi na przeszkodzie, by animacja trwała krócej (liczba
milisekund była mniejsza od 500) lub dłużej (liczba milisekund była większa
od 500). Efekt ten można uzyskać, korzystając z opcji revertDuration, której
wartością jest liczba określająca czas trwania animacji wyrażony w milisekun-
dach. Aby animacja powrotu trwała ćwierć sekundy (czyli 250 milisekund),
należy użyć następującej opcji:

revertDuration : 250

 scope. Opcja scope pozwala grupować elementy, w których zastosowano wi-
dżety Draggable i Droppable. Przykładowo załóżmy, że nasza strona prezen-
tuje kalendarz. Użytkownik może przeciągać zdarzenia z obszaru reprezen-
tującego jeden dzień i upuszczać na innym dniu. Wszystkie takie zdarzenia
należą do kalendarza, zatem podczas ich tworzenia w wywołaniu funkcji
draggable() można przypisać opcji scope wartość calendar:

scope : 'calendar'

W tym przypadku łańcuch znaków 'calendar' nie jest ani selektorem, ani
żadnym elementem strony. Jest jedynie nazwą używaną do grupowania ele-
mentów, które mogą być przeciągane (widżetów Draggable) oraz elementów
wyznaczających miejsca, gdzie można je upuszczać (widżetów Droppable). Ta
nazwa może być całkowicie dowolna; trzeba tylko pamiętać, by tej samej nazwy
użyć w tworzonych widżetach Droppable (patrz strona 434).

Opcja scope jest potrzebna wyłącznie wtedy, gdy na stronie mogą być uży-
wane różne typy elementów przeciąganych i elementów, w których można je
upuszczać. Gdyby na stronie z kalendarzem znajdowała się także internetowa
układanka, zapewne nie chcielibyśmy, by użytkownik mógł przeciągać zdarze-
nia z kalendarza na układankę ani elementy układanki na kalendarz. Dzięki
zastosowaniu innej wartości opcji scope w każdej z tych grup elementów
można kontrolować, gdzie będzie można upuszczać konkretne przeciągane
elementy (więcej informacji na temat widżetu Droppable podano na stronie 434).

Uwaga: Opcje te możesz wypróbować na stronie testowej — draggable.html — którą utworzyłeś na

stronie 423. Jeśli nie wykonałeś tego przykładu, otwórz teraz plik complete_draggable.html i dodaj

kilka z tych opcji do literału obiektowego przekazywanego w wywołaniu funkcji draggable().

 snap. Można nakazać, by przeciągany element był przyciągany do innego ele-
mentu strony lub innego przeciąganego elementu. Przykładowo załóżmy, że
tworzymy internetową układankę: kilkanaście prostokątnych fragmentów
należy poukładać tak, by odtworzyć początkowe zdjęcie. W takim przypadku za-
stosowanie opcji snap pozwoliłoby uzyskać efekt, w którym jeden element ukła-
danki byłby przyciągany do innego. Opcja ta może przyjmować dwie wartości.

 true. Wartość sprawia, że dany element będzie przyciągany do każdego
innego elementu strony, w którym zastosowano widżet Draggable. Zasto-
sowanie tej opcji będzie preferowane w przypadku internetowej układanki,
gdyż na takiej stronie znajduje się wiele elementów, które można przeciągać.

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Widżet Draggable

430

 Nazwa selektora. Może to być nazwa dowolnego selektora. Aby przeciągany
element był przyciągany do elementu div o identyfikatorze photoholder,
należałoby użyć poniższej opcji snap:
snap : '#photoholder'

Sposób działania tego mechanizmu przyciągania jest określany przez dwie
inne opcje, snapMode oraz snapTolerance, które zostały opisane poniżej.

 snapMode. Opcja działa wyłącznie wtedy, gdy została zastosowana także opcja
snap. Można jej przypisać jedną z trzech dopuszczalnych wartości: inner,
outer oraz both. Jeśli chcemy, by przeciągany element był przyciągany do in-
nego elementu tylko wtedy, gdy będzie się znajdował wewnątrz niego, należy
użyć wartości inner. W tym przypadku przeciągany element będzie przycią-
gany do dowolnej krawędzi elementu określonego przez opcję snap.

Jeśli chcemy, by przeciągany element był przyciągany do zewnętrznych kra-
wędzi innego elementu strony, należy zastosować wartość outer. Ta wartość
doskonale nadaje się do zastosowania w internetowej układance, gdyż bę-
dziemy chcieli, by jeden jej kawałek był przyciągany do innych.

I w końcu, użycie ostatniej z dostępnych wartości, czyli both, sprawia, że prze-
ciągany element będzie przyciągany zarówno do wewnętrznych, jak i do ze-
wnętrznych krawędzi elementu wybranego w opcji snap:

snapMode : 'both'

 snapTolerance. Opcja określa, jak blisko musi się znaleźć przeciągany ele-
ment, by został przyciągnięty do krawędzi. Im większa wartość, tym większa ta
odległość. Wartość tej właściwości określa odległość wyrażoną w pikselach:

snapTolerance : 30

 zIndex. Opcja pozwala określić wartość z-index przeciąganego elementu.
W kaskadowych arkuszach stylów właściwość z-index określa kolejność,
w jakiej będą wyświetlane elementy zajmujące ten sam obszar strony (na-
chodzące na siebie). Elementy posiadające wyższą wartość właściwości z-index
będą wyświetlane ponad elementami, w których wartość tej właściwości jest
mniejsza. Opcja ta jest przydatna, kiedy chcemy mieć pewność, że przeciągany
element będzie wyświetlany ponad pozostałą treścią strony. (Została ona za-
stosowana w przykładzie przedstawionym na stronie 446).

zIndex : 100

Uwaga: Jeszcze więcej opcji służących do konfigurowania działania tego widżetu można znaleźć na

stronie http://api.jqueryui.com/draggable/ (patrz rysunek 12 2).

Zdarzenia widżetu Draggable
Widżet Draggable obsługuje kilka różnych zdarzeń, z których każde jest zgłaszane
w innym momencie realizacji procesu przeciągania. Aby program zrobił coś w od-
powiedzi na zdarzenie, należy dodać do niego funkcję.

http://api.jqueryui.com/draggable/

R O Z D Z I AŁ 1 2 . INTERAKCJE I EFEKTY JQUERY UI

Widżet Draggable

431

Rysunek 12.2. Dokumentacja
jQuery UI jest bardzo obszerna.
Na stronie poświęconej widże-
towi Draggable można znaleźć
informacje o bardzo wielu
opcjach, metodach i zdarze-
niach, z których można korzy-
stać w celu dostosowywania
działania tego widżetu
do własnych potrzeb

Załóżmy, że napisaliśmy grę, która wymaga, by użytkownik szybko przeciągnął
element do celu. Im szybciej to zrobi, tym wyższy będzie jego wynik. W takiej apli-
kacji możemy sprawdzać czas najpierw w momencie rozpoczynania przeciągania,
a następnie robić to ponownie po zakończeniu przeciągania.

Dostępne są trzy zdarzenia odpowiadające trzem różnym etapom procesu prze-
ciągania.

Zdarzenie create

Zdarzenie jest zgłaszane za każdym razem, gdy wywołana zostanie funkcja dra-
ggable() tworząca nowy, przeciągany element. Można je wykorzystać na przy-
kład do wyświetlenia okna dialogowego z instrukcjami, takimi jak „Przeciągnij
ten produkt do koszyka”. Jest ono zgłaszane tylko jeden raz — podczas tworzenia
widżetu Draggable. Aby obsłużyć to zdarzenie, w obiekcie przekazywanym w wy-
wołaniu funkcji draggble() należy dodać właściwość create, której wartością
będzie funkcja:

$('.product').draggable({
 create : function (event){
 // To znajdzie się kod funkcji.
 }
});

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Widżet Draggable

432

Zdarzenie start

To zdarzenie jest zgłaszane natychmiast po rozpoczęciu przeciągania elementu.
Aby je obsługiwać, należy podać odpowiednią właściwość w obiekcie opcji, prze-
kazywanym w wywołaniu funkcji draggable(). Należy w tym celu użyć właści-
wości start, której wartością będzie funkcja — jQuery UI wywoła tę funkcję, gdy
użytkownik zacznie przeciągać element.

Załóżmy, że na stronie znajduje się znacznik <div> o identyfikatorze raceCar.
Aby przekształcić go w przeciągany element i jednocześnie określić funkcję, która
będzie obsługiwać zdarzenie start, należy użyć następującego fragmentu kodu:

$('#raceCar').draggable({
 start : function (event, ui) {
 // Tu znajdzie się kod funkcji.
 }
});

Funkcja przypisywana właściwości start ma dwa parametry, event oraz ui.
Pierwszy z nich jest obiektem event jQuery i udostępnia wiele informacji na te-
mat elementu, do którego zostało skierowane zdarzenie, współrzędnych położe-
nia wskaźnika myszy i tak dalej. (Więcej informacji na temat obiektu event
można znaleźć na stronie 194). Z kolei parametr ui jest obiektem zawierającym
cztery właściwości.
 Właściwość ui.helper to obiekt jQuery zawierający odwołanie do elementu,

który jQuery UI przeciąga na stronie. Zazwyczaj jest to ten sam element, na
rzecz którego została wywołana funkcja draggable(), jednak nie zawsze
musi tak być. Jeśli podczas tworzenia widżetu Draggable została użyta właści-
wość helper o wartości 'clone' lub przekazana funkcja generująca pomocni-
czy element HTML (patrz strona 427), właściwość ui.helper będzie zawierać
odwołanie do elementu innego niż utworzony wcześniej element przeciągany,
a konkretnie — do jego kopii bądź do pomocniczego obiektu jQuery (patrz
strona 427). To rozwiązanie może się przydać na przykład na stronie sklepu
internetowego, gdy przeciąganie widocznego na stronie produktu do koszyka
mogłoby zaburzyć początkowy układ strony. W takich sytuacjach użytkownik
nie powinien przeciągać samego elementu, lecz jego kopię.
Właściwości ui.helper należy używać zawsze, gdy chcemy wykonać jakąś
operację na tym elemencie strony, który jest wizualnie przeciągany. Przykła-
dowo załóżmy, że chcemy, by po rozpoczęciu przeciągania wielkość elementu
została podwojona. Można to zrobić, odpowiednio modyfikując właściwość CSS
w obiekcie ui.helper:

$('#photo').draggable({
 start : function (event, ui) {
 ui.helper.css('transform', 'scale(2)');
 }
});

W tym przykładzie użyta została metoda css() jQuery (patrz strona 163) i za
pomocą właściwości CSS o nazwie transform zażądano przeskalowania
elementu o współczynnik 2 (co spowoduje dwukrotne powiększenie elementu).
Można by także użyć metody addClass() jQuery, by dodać do elementu jakąś
klasę w momencie, gdy użytkownik zacznie go przeciągać. Taka klasa mogłaby
na przykład wyróżnić element, zmieniając jego kolor. Później, kiedy użyt-

R O Z D Z I AŁ 1 2 . INTERAKCJE I EFEKTY JQUERY UI

Widżet Draggable

433

kownik skończy przeciągać element (czyli w ramach obsługi zdarzenia stop
opisanego na stronie 434), dodaną do niego wcześniej nazwę klasy można usu-
nąć, wywołując w tym celu metodę jQuery removeClass().

Uwaga: Więcej informacji na temat przekształceń CSS można znaleźć na stronie https://developer.

moz lla.org/en-US/docs/Web/Guide/CSS/Using_CSS_transforms.

 Właściwość ui.position zawiera współrzędne określające położenie lewego
górnego wierzchołka elementu pomocniczego (czyli elementu, który jest wi-
zualnie przeciągany na stronie). Informacje o położeniu określone są na pod-
stawie arkusza stylów i mogą być zależne od elementu rodzica (bądź też in-
nego umiejscowionego przodka). Jeśli na przykład przeciągany jest element
umieszczony wewnątrz znacznika <div>, a znacznik ten został umiejscowiony
na stronie w sposób bezwzględny, właściwości left i top obiektu position
będą zawierały współrzędne określone względem lewego, górnego wierzchołka
umiejscowionego znacznika <div>.

Wartością właściwości ui.position jest obiekt JavaScript składający się z dwóch
właściwości, top oraz left. Właściwość top określa współrzędną pionową,
czyli wyrażoną w pikselach odległość od górnej krawędzi najbliższego umiej-
scowionego przodka (znacznika umiejscowionego w sposób względny bądź
bezwzględny, wewnątrz którego znajduje się przeciągany element). Właści-
wość left określa współrzędną poziomą, czyli odległość od lewej krawędzi
najbliższego umiejscowionego przodka. Właściwości tej można używać do
określania położenia elementu pomocniczego w momencie, gdy użytkownik
zakończy operację przeciągania bądź też w jej trakcie (patrz opisane poniżej
zdarzenia drag i stop).

Do wartości tych dwóch właściwości można się odwoływać w następujący
sposób: ui.position.left oraz ui.position.top.

 Właściwość ui.offset także udostępnia obiekt zawierający dwie właściwości,
top i left. Jednak to położenie jest wyznaczane względem lewego górnego
wierzchołka okna przeglądarki. Jeśli przeciągany element nie będzie znajdował
się wewnątrz żadnego innego elementu strony, w którym użyto właściwości
position: absolute lub position: relative, wartości ui.offset oraz
ui.position będą takie same. Właściwość ui.offset.top określa odległość
elementu od górnej krawędzi okna przeglądarki, a właściwość ui.offset.left
— odległość od lewej krawędzi okna. Obie te odległości są wyrażone w pikselach.

 Właściwość ui.originalPosition zawiera te same dwie właściwości — top
oraz left — co właściwości ui.position oraz ui.offset. Jednak właści-
wość ui.originalPosition określa współrzędne początkowego położenia
przeciąganego elementu, czyli miejsce, w którym się znajdował w momencie
rozpoczynania przeciągania. Jej wartość, podobnie jak wartość właściwości
ui.position, jest wyznaczana względem umiejscowionego elementu przodka.

Zdarzenie drag

Kolejnym zdarzeniem udostępnianym przez elementy przeciągane jest drag —
zdarzenie generowane podczas przeciągania elementu na stronie. Można zatem
utworzyć funkcję, która będzie wielokrotnie wywoływana podczas przeciągania

https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Using_CSS_transforms
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Using_CSS_transforms

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Widżet Droppable

434

elementu. Można by jej użyć, by wyświetlać iskierki wyznaczające ślad przecią-
ganego elementu. Ponieważ zdarzenie to jest generowane wielokrotnie, należy
ograniczać ilość operacji wykonywanych w ramach jego obsługi. Jeśli podczas ob-
sługi zdarzenia będziemy wykonywać wiele skomplikowanych operacji, może to
doprowadzić do spadku wydajności działania przeglądarki.

Funkcja obsługująca zdarzenia drag akceptuje dwa parametry — event oraz ui —
te same, które zostały opisane na stronie 432 w opisie zdarzenia start.

Załóżmy, że chcemy wyświetlać bieżące położenie przeciąganego elementu, a na
stronie znajdują się dwa znaczniki o identyfikatorach left i top, służące
do prezentowania tych współrzędnych. Poniższy fragment kodu pokazuje, w jaki
sposób można utworzyć widżet Draggable, którego położenie będzie na bieżąco
aktualizowane podczas przeciągania:

$('#raceCar').draggable({
 drag : function (event, ui) {
 $('#left').text(ui.position.left);
 $('#top').text(ui.position.top);
 }
});

Zdarzenie stop
Zdarzenie stop widżetu Draggable działa tak samo jak zdarzenie start, przy
czym jest zgłaszane w momencie, gdy użytkownik zwolni przycisk myszy. Nie
oznacza to wcale, że przeciągany element został upuszczony w obszarze któregoś
z istniejących na stronie widżetów Droppable (opisanych w następnym podroz-
dziale). Nie oznacza to nawet, że użytkownik zakończył operację przeciągania.
Przykładowo użytkownik mógł kliknąć element i zaczął go przeciągać (co spowo-
dowało zgłoszenie zdarzenia start), przeciągał przez chwilę (generując sekwencję
zdarzeń drag), następnie skończył przeciąganie (generując zdarzenie stop), po
czym ponownie kliknął element i rozpoczął cały ten proces od początku.

Zdarzenie stop obsługuje się dokładnie w tak samo jak zdarzenie start. Załóżmy,
że użyliśmy przedstawionego wcześniej fragmentu kodu do utworzenia elementu,
który jest dwukrotnie powiększany po rozpoczęciu przeciągania. W takim przy-
padku poniższa funkcja pozwoli przywrócić jego początkowe wymiary po zakoń-
czeniu przeciągania:

$('#photo').draggable({
 stop : function (event, ui) {
 ui.helper.css('transform', 'scale(1)');
 }
});

Widżet Droppable
Sam widżet Draggable może być przydatny do tworzenia okien dialogowych oraz
innych elementów stron, których położenie można zmieniać (takich jak na przy-
kład przybornik z narzędziami). Kiedy jednak uzupełnimy go o kolejny widżet jQu-
ery UI — Droppable — uzyskamy możliwość tworzenia wysoce interaktywnych
aplikacji, w których przeciągnięcie elementu i upuszczenie go na innym może
spowodować wykonanie jakiejś akcji.

R O Z D Z I AŁ 1 2 . INTERAKCJE I EFEKTY JQUERY UI

Widżet Droppable

435

Przykładowo aplikacja do udostępniania zdjęć może pozwalać użytkownikom na
usuwanie zdjęcia po przeciągnięciu jego miniaturki i upuszczeniu jej na ikonie
kosza na śmieci. Witryna do nauki języka mogłaby sprawdzać poziom znajomości
słownictwa użytkowników, prosząc o przeciągnięcie słowa na odpowiedni obrazek.

Stosowanie widżetu Droppable
Widżety Droppable nie są przydatne bez widżetów Draggable. Widżet Droppable
pełni rolę „obszaru, w którym można upuścić” przeciągany widżet Draggable.
W momencie upuszczenia elementu widżet Droppable może dodatkowo wykonać
określoną funkcję. Wszystkie elementy strony można przekształcić na widżety
Droppable. Oczywiście możliwość przeciągnięcia jednego elementu i upuszczenia
go na innym powinna mieć sens; na przykład ikona koszyka z zakupami oraz kosza
na śmieci są jedynie wizualnymi metaforami, które w zrozumiały sposób informują
o możliwości upuszczenia elementu. Jednak widżetami Draggable mogą także
być zwyczajne znaczniki <div>, o ile tylko jesteśmy w stanie w zrozumiały sposób
pokazać użytkownikom, że coś można przeciągnąć i upuścić w ich obszarze.

Stosowanie widżetu Droppable jest bardzo proste.

 1. Dołącz do strony niezbędne pliki CSS i JavaScript, zgodnie z informacjami
podanymi na stronie 329.
Pamiętaj, że biblioteka jQuery UI ma własne pliki CSS oraz JavaScript i należy je
dołączyć do strony za plikiem JavaScript biblioteki jQuery.

 2. Umieść na stronie bądź w kolejnym zewnętrznym pliku JavaScript wy-
wołanie funkcji $(document).ready():

$(document).ready(function() {

}); // Koniec funkcji ready.

Zgodnie z informacjami podanymi na stronie 190, krok ten jest niezbędny
wyłącznie w przypadku, gdy kod JavaScript umieszczamy w sekcji <head>
strony, przed właściwym kodem HTML stanowiącym jej treść. Niektórzy
programiści umieszczają swój kod JavaScript na końcu strony, bezpośrednio
przed zamykającym znacznikiem </body>; w takim przypadku umieszcza-
nie kodu w wywołaniu funkcji $(document).ready() nie jest konieczne.
Stosowanie widżetów Droppable nie ma większego sensu, jeśli na stronie nie
zostaną umieszczone elementy, które można przeciągać. Dlatego nie zapomnij
dodać przynajmniej jednego widżetu Draggable.

 3. Użyj jQuery żeby wybrać element strony i zastosować w nim widżet
Draggable:

$(document).ready(function() {
 $('.product').draggable();
}); // Koniec funkcji ready.

W tym przykładzie dysponujemy stroną prezentującą zawartość katalogu, na
której umieszczono kilka produktów. Zdjęcie każdego produktu należy do klasy
product, zatem powyższy fragment kodu przekształci wszystkie zdjęcia na
elementy, które można przeciągać.

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Widżet Droppable

436

 4. Użyj jQuery, by wybrać element, w którym chcesz upuszczać zdjęcia pro-
duktów, i przekształć go w widżet Droppable:

$(document).ready(function() {
 $('.product').draggable();
 $('#cart').droppable();
}); // Koniec funkcji ready.

W ten sposób element o identyfikatorze cart został przekształcony w obszar,
w którym można upuszczać przeciągane elementy. Aby po upuszczeniu ele-
mentu coś się stało, by na przykład została przeliczona całkowita wartość ko-
szyka, za każdym razem gdy użytkownik coś w nim umieści, trzeba określić
różne opcje widżetu Droppable. W tym celu musisz przekazać w wywołaniu
funkcji droppable() obiekt, zawierający odpowiednie opcje i funkcje.

 5. Dodaj opcje do wywołania funkcji droppable():
$(document).ready(function() {
 $('.product').draggable();
 $('#cart').droppable({
 activeClass : 'highlight',
 drop : function (event,ui) {
 alert('Produkt został dodany');
 }
 });
}); // Koniec funkcji ready.

Najważniejsze opcje tego widżetu poznasz już w następnym punkcie rozdziału,
jednak teraz w ramach drobnej prezentacji jego możliwości przyjrzymy się
dwóm opcjom podanym w powyższym kodzie. Pierwsza z nich, activeClass,
informuje jQuery UI, że należy dodać do elementu klasę highlight. Innymi
słowy, pozwala na dodawanie do elementu określonej klasy CSS. Taka klasa
może w widoczny sposób wyróżnić widżet Droppable, dodając do niego ja-
skrawe tło bądź czerwone obramowanie.

Z kolei druga opcja, drop, określa procedurę obsługi zdarzeń. Pozwala na wy-
konywanie określonej funkcji, kiedy jakiś element zostanie upuszczony w ob-
szarze danego widżetu Droppable.

Opcje widżetu Droppable
Widżety Droppable nie udostępniają aż tak wielu opcji jak widżety Draggable
(ich podstawowym przeznaczeniem jest przyjmowanie upuszczanych elementów,
a w zasadzie wykonywanie określonych funkcji, kiedy to się zdarzy).

 accept. Opcja określa, które widżety Draggable będzie można dodawać do
danego widżetu Droppable. Jej wartością może być bądź to selektor, bądź funkcja.
W pierwszym przypadku będzie to selektor przeciąganych elementów. Jeśli
na przykład na stronie znajduje się grupa obrazków, z których każdy należy
do klasy photo, i chcemy, by można je było upuszczać w danym widżecie
Droppable, możemy użyć następującej opcji accept:

accept : '.photo'

 activeClass. Opcja pozwala wyróżnić widżet Droppable, w momencie gdy
użytkownik zacznie przeciągać dowolny widżet Draggable, który można w nim
upuścić. Przykładowo załóżmy, że napisaliśmy aplikację do obsługi systemu

R O Z D Z I AŁ 1 2 . INTERAKCJE I EFEKTY JQUERY UI

Widżet Droppable

437

plików, pozwalającą na przeglądanie plików umieszczonych na serwerze,
przenoszenie ich do innych katalogów, zmienianie nazw i tak dalej. Można
także przeciągać pliki do kosza, aby je usuwać. Ikona kosza na śmieci byłaby
widżetem Droppable, natomiast wszystkie pliki — widżetami Draggable.
Kiedy użytkownik zacznie przeciągać plik, nasza aplikacja może dodawać do
ikony kosza na śmieci wybraną klasę, aby go w jakiś sposób wyróżnić (na
przykład zmienić obraz tła, by wyświetlić kosz z otwartą klapą, gotowy na
wyrzucenie pliki). W tym celu wystarczy przypisać tej opcji nazwę klasy (bez
kropki), a jQuery UI doda ją do widżetu Droppable, gdy użytkownik zacznie
przeciągać odpowiedni widżet Draggable:

activeClass : 'hightlight'

 disabled. Określa, czy dany element jest aktywny i można w nim upuszczać
przeciągane elementy. Jeśli wartością tej opcji będzie true, upuszczanie elemen-
tów nie będzie możliwe. Wartość tej właściwości można określać po utworze-
niu widżetu jako sposób jego włączania i wyłączania. Przykładowo załóżmy, że
na stronie utworzyliśmy widżet Droppable, lecz chcemy zezwolić na upusz-
czenie na nim jedynie pięciu elementów. Kiedy już te pięć elementów zostanie
upuszczonych, możemy wyłączyć widżet, dzięki czemu użytkownik nie bę-
dzie już mógł na nim nic więcej upuścić. (Taką funkcję wyłączającą działa-
nie widżetu można by wykonywać w ramach obsługi zdarzeń drop, opisanych
na stronie 439).

$('#dropZone').droppable({
 disabled : true
});

Można by pomyśleć, że gdybyśmy nie chcieli zapewniać możliwości upusz-
czania elementów na danym elemencie, moglibyśmy w ogóle nie wywoływać
funkcji droppable(). To prawda, dlatego zazwyczaj opcja disabled nie jest
stosowana już w momencie tworzenia widżetu.

Jednak może się ona przydać później, kiedy użytkownik już upuścił jakiś ele-
ment na widżecie Droppable. Może się zdarzyć, że będziemy chcieli pozwolić
użytkownikowi na dodanie do koszyka jedynie pięciu produktów. W takim
przypadku po dodaniu piątego elementu wyłączymy widżet, dzięki czemu
użytkownik nie będzie już mógł dodać nic więcej do koszyka.

 hoverClass. Można także podać klasę, która będzie dodawana do widżetu Dro-
ppable, kiedy w jego obszarze będzie przeciągany jakiś element, który można
w nim upuścić (patrz rysunek 12.3). Przykładowo do elementu z ikoną kosza
na śmieci można by dodawać jakąś klasę tylko wtedy, gdy w jego obszarze zo-
stanie umieszczony przeciągany plik:

hoverClass : 'openTrashcan'

 scope. Opcja działa tak samo jak analogiczna opcja widżetu Draggable (patrz
strona 429). Pozwala na grupowanie powiązanych ze sobą widżetów Draggable
i Droppable.

scope : 'calendar'

Zastosowana nazwa — w tym przykładzie jest nią 'calendar' — nie ma
znaczenia. Można użyć dowolnej, sensownej nazwy; trzeba tylko upewnić się,
że nazwa użyta we wszystkich widżetach będzie taka sama.

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Widżet Droppable

438

Rysunek 12.3. Przy użyciu opcji hoverClass wi-
dżetu Droppable można dodać do elementu
nazwę klasy, kiedy inny element będzie przecią-
gany w jego obszarze. W tym przykładzie kiedy
mały kwadrat będzie przeciągany w obszarze
dużego, duży kwadrat zostanie wyróżniony
żółtym tłem (zmiana koloru jest określana przez
style CSS). Zastosowany styl dodaje do elemen-
tu zarówno obraz tła, jak i kolor tła, jednak
można by opracować styl, który dodawałby
grube obramowanie obszaru lub nawet używał
animacji CSS, by element pulsował, zmieniając
kolor tła między białym a innym, wybranym
kolorem

 tolerance. Opcja określa, kiedy widżet uzna, że przeciągany element znajduje
się w jego obszarze. Można jej przypisać jedną z czterech wartości.

 'fit' — przeciągany element musi się całkowicie zawierać w obszarze wi-
dżetu Droppable.

 'intersect' — przeciągany element musi się zawierać w obszarze widżetu
Droppable przynajmniej w 50% na wysokość i szerokość. Innymi słowy,
większa część przeciąganego elementu musi się znajdować w obszarze widżetu
Droppable. Stanowi ona domyślne ustawienie widżetu.

 'pointer' — jedynie wskaźnik myszy musi się znajdować w obszarze wi-
dżetu Droppable.

 'touch' — przeciągany element musi dotykać widżetu Droppable tylko
z jednej strony.

Wartość 'fit' jest przydatna w sytuacjach, gdy chcemy potwierdzić, że użyt-
kownik naprawdę chce umieścić przeciągany element w wyznaczonym obsza-
rze, lecz jednocześnie wymaga, by przeciągany element był mniejszy od wi-
dżetu Droppable, w którym ma zostać umieszczony. Najczęściej stosowaną
wartością jest 'intersect', gdyż nie wymaga od użytkownika zachowania dużej
precyzji podczas przeciągania:

tolerance : 'intersect'

Uwaga: Pełną listę opcji, metod i zdarzeń widżetu Droppable można znaleźć na stronie http://

api jqueryui.com/droppable/.

Zdarzenia widżetu Droppable
Prawdziwa zabawa z widżetem Droppable zaczyna się dopiero wtedy, gdy zacznie-
my wykonywać jakieś operacje w odpowiedzi na upuszczenie elementu w jego ob-
szarze bądź gdy element jest w nim przeciągany… lub przeciągany poza jego obszar.
Przykładowo możemy wyliczać całkowitą wartość zakupów, za każdym razem

http://api.jqueryui.com/droppable/
http://api.jqueryui.com/droppable/

R O Z D Z I AŁ 1 2 . INTERAKCJE I EFEKTY JQUERY UI

Widżet Droppable

439

gdy użytkownik upuści produkt na koszyku, a następnie aktualizować ją, kiedy
użytkownik usunie jakiś produkt z koszyka.

Widżet Droppable udostępnia kilka różnych zdarzeń, z których każde jest zgła-
szane w wyniku innej interakcji. Aby nasz program w jakiś sposób odpowiedział
na przeciąganie elementu, usunięcie go z obszaru widżetu bądź też upuszczenie
w obszarze widżetu, należy dodać do odpowiedniego zdarzenia funkcję. Załóżmy,
że napisaliśmy aplikację obsługującą listę zadań: za każdym razem, gdy użyt-
kownik przeciągnie zadanie z listy i upuści je na ikonie kosza na śmieci, element
tego zadania jest usuwany z listy oraz w ogóle ze strony. W takim przypadku zda-
rzeniem, które należy wykorzystać, jest zdarzenie drop.

W kolejnych podpunktach rozdziału przedstawione zostały zdarzenia widżetu Dro-
ppable, począwszy od tych, które są najczęściej stosowane.

Zdarzenie drop

Zdarzenie wykonuje skojarzoną z nim funkcję, kiedy przeciągany element zo-
stanie upuszczony w obszarze widżetu Droppable. Upuszczany element musi
być elementem akceptowanym — czyli określonym przez opcję accept (patrz
strona 437) — bądź mieć taką samą wartość opcji scope (patrz strona 429), co
widżet Droppable.

Zdarzenie wraz z obsługującą je funkcją jest określane jako właściwość obiektu
przekazywanego podczas tworzenia widżetu Droppable. Przykładowo załóżmy,
że na stronie znajduje się znacznik <div> o identyfikatorze trashcan. Poniższy
fragment kodu przekształca go w widżet Droppable i jednocześnie określa funkcję
obsługującą zdarzenia drop:

$('#trashcan').droppable({
 drop : function (event, ui) {
 // Kod obsługujący zdarzenie.
 }
});

Funkcja obsługująca to zdarzenie ma dwa parametry, event oraz ui. Pierwszy
z nich, event, jest obiektem event jQuery (patrz strona 194) zawierającym takie
informacje jak element, do którego zostało skierowane zdarzenie, współrzędne
wskaźnika myszy i tak dalej. Drugi parametr, ui, przypomina analogiczny pa-
rametr używany w funkcjach obsługujących zdarzenia widżetu Droppable (patrz
strona 430).
 Właściwość ui.helper jest obiektem jQuery zawierającym odwołanie do ele-

mentu, który jQuery UI przeciąga na stronie, i ma tę samą wartość, co wła-
ściwość ui.helper widżetów Draggable, opisana na stronie 432.
Właściwości ui.helper należy używać zawsze, gdy chcemy wykonać jakąś
operację na elemencie strony, który jest wizualnie przeciągany. Załóżmy, że
chcemy, by po upuszczeniu przeciągany element został ukryty przy użyciu
jednego z dostępnych efektów. W poniższym kodzie pokazano, jak to zrobić:

$('#trashcan').droppable({
 drop : function (event, ui) {
 ui.helper.hide('explode');
 }
});

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Widżet Droppable

440

Użycie wartości 'explode' spowoduje zastosowanie jednego z naprawdę
atrakcyjnych efektów wizualnych jQuery UI, który został dokładniej przed-
stawiony na stronie 463.

 Właściwość ui.draggable jest obiektem jQuery zawierającym odwołanie do
elementu, na rzecz którego została wywołana funkcja draggable(). W więk-
szości przypadków to ten sam obiekt, który jest zapisany we właściwości
ui.helper. Jednak w przypadku, gdy właściwości helper (patrz strona 427)
przeciąganego elementu została przypisana wartość 'clone', na stronie będzie
przeciągana kopia, a sam element pozostanie w początkowym położeniu.

Właściwość może się przydać podczas tworzenia strony sklepu internetowego
z koszykiem zakupów. Załóżmy, że napisaliśmy system dla sklepu, który ob-
sługuje zarówno magazyn, jak i sprzedaż produktów. Strona katalogu może
przedstawiać zdjęcie produktu oraz informacje o tym, ile jego egzemplarzy
jest dostępnych w magazynie, na przykład 10. Kiedy użytkownik kliknie pro-
dukt, może przeciągnąć kopię zdjęcia na ikonę koszyka. Po upuszczeniu pro-
duktu funkcja obsługująca zdarzenie drop mogłaby zaktualizować element
ui.draggable, zmniejszając o jeden liczbę dostępnych egzemplarzy danego
produktu (a jednocześnie mogłaby, korzystając z technologii AJAX — opisanej
w rozdziale 13. — zapisać odpowiednie informacje na serwerze bazy danych).

 Właściwość ui.position zawiera współrzędne określające położenie lewego
górnego wierzchołka elementu pomocniczego (czyli elementu, który jest wi-
zualnie przeciągany na stronie). Odpowiada ona właściwości ui.position
opisanej na stronie 433 przy okazji prezentowania widżetu Draggable.

 Właściwość ui.offset określa położenie górnego lewego rogu przeciąganego
elementu wyrażone względem okna przeglądarki. Odpowiada ona właściwo-
ści ui.offset opisanej na stronie 433 przy okazji prezentowania widżetu
Draggable.

 Właściwość ui.originalPosition zawiera współrzędne określające położe-
nie górnego lewego rogu widżetu Draggable, zanim użytkownik zaczął go
przeciągać. Odpowiada ona właściwości ui.originalPosition opisanej na
stronie 433 przy okazji prezentowania widżetu Draggable.

Podczas stosowania widżetu Droppable bardzo często będziemy korzystać ze
zdarzenia drop. Jedną z operacji, które być może będziemy musieli wykonać,
może być uniemożliwienie przeciągnięcia upuszczonego elementu poza obszar
widżetu Droppable. Wróćmy do przykładu z internetową wersją gry w warcaby:
ograniczenie to może się przydać, by nie pozwolić graczowi na cofnięcie wyko-
nanego ruchu. Innymi słowy, możemy „zablokować” pionek na polu, w którym
gracz go umieścił. Można to zrobić, wyłączając przeciągany element, w momencie
gdy zostanie upuszczony:

$('.square').drop({
 drop : function (event, ui) {
 ui.helper.draggable({
 disabled : true
 });
 }
});

R O Z D Z I AŁ 1 2 . INTERAKCJE I EFEKTY JQUERY UI

Widżet Droppable

441

Wykorzystaliśmy obiekt helper parametru ui (czyli element upuszczony w wi-
dżecie Droppable) i wywołaliśmy jego metodę draggable(), by przypisać właści-
wości disabled wartość true i wyłączyć w ten sposób możliwość jego przeciągania.
Zwróć uwagę, że wykorzystaliśmy właściwość disabled przeciąganego elementu
(patrz strona 426), a nie obszaru, w którym został upuszczony. Aby pozwolić na
dalsze przesuwanie elementu, będziemy musieli ponownie zmienić wartość jego
właściwości disabled, przypisując jej tym razem wartość false (patrz strona 426).

Zdarzenie activate
Kiedy użytkownik zacznie przeciągać element, który może zostać upuszczony
w danym widżecie Droppable (patrz opisane wcześniej opcje accept oraz scope
widżetu Droppable), zostaje zgłoszone zdarzenie activate. Można je wykorzystać
i dodać do widżetu funkcję, która je obsłuży. Załóżmy, że tworzymy aplikację, która
pozwala użytkownikowi przeciągnąć kilka miniaturek zdjęć, upuścić je w obszarze
elementu div, a następnie kliknąć przycisk Wyślij, aby wysłać wszystkie do zna-
jomego. W takim przypadku moglibyśmy wyświetlać w elemencie div komunikat
„Tutaj upuść zdjęcie”, lecz wyłącznie wtedy, gdy użytkownik zacznie przeciągać
zdjęcie.

Aby to zrobić, możemy dodać do zdarzenia activate funkcję, która wyświetli
w obszarze elementu div odpowiedni komunikat. Przy założeniu, że element div
stanowiący obszar, w którym użytkownik może upuszczać zdjęcia, ma identyfika-
tor photoZone, poniższy fragment kodu pozwala przekształcić go w widżet Droppable
i wyświetlać w nim komunikat za każdym razem, gdy użytkownik zacznie prze-
ciągać zdjęcie:

$('#photoZone').droppable({
 activate : function (event, ui) {
 $(this).append('<p id="dropMessage">Tutaj upuść zdjęcie</p>');
 }
});

Wyrażenie $(this) odwołuje się do bieżącego elementu (jeśli musisz sobie przy-
pomnieć, co oznacza to wyrażenie i jak działa, zajrzyj na stronę 169), czyli wi-
dżetu Droppable. Metoda append() dodaje podany kod HTML na samym końcu
wybranego elementu (patrz strona 157).

Funkcja activate pobiera dwa parametry — event oraz ui — te same, które są
używane w funkcji obsługującej zdarzenia drop (patrz strona 439).

Zdarzenie deactivate
Zdarzenie deactivate to przeciwieństwo zdarzenia activate. Jest zgłaszane
w momencie, gdy użytkownik skończy przeciągać element, który można upuścić
w obszarze danego widżetu Droppable, czyli zwolni przycisk myszy. Można je wy-
korzystać, by cofnąć efekty czynności wykonanych w ramach obsługi zdarzenia
activate. W poniższym fragmencie kodu pokazano, w jaki sposób można wy-
świetlać komunikat w widżecie Droppable, gdy użytkownik zacznie przeciągać
element, a następnie usunąć go po zakończeniu przeciągania.

$('#photoZone').droppable({
 activate : function (event, ui) {
 $(this).append('<p id="dropMessage">Tutaj upuść zdjęcie</p>');
 },

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Widżet Droppable

442

 deactivate : function (event, ui) {
 $('#dropMessage').remove();
 }
});

Zdarzenie over
Można nawet wykonywać funkcję podczas przeciągania elementu w obszarze
widżetu Droppable. Zdarzenie over zaczyna być zgłaszane od razu, gdy przeciągany
element znajdzie się w obszarze widżetu Droppable, a przestaje być zgłaszane,
gdy element zostanie upuszczony. Tego zdarzenia można używać, by na przykład
wyświetlać potencjalnemu klientowi komunikat zachęcający do upuszczenia
produktu na ikonie koszyka, taki jak: „Wiesz, że w tych butach będziesz wyglą-
dał świetnie. Nie wahaj się!”.

Załóżmy, że utworzyliśmy na stronie obszar reprezentowany przez ikonę kosza
na śmieci, na którym użytkownik może upuścić zdjęcie, aby je usunąć. Normalnie
kosz na śmieci jest zamknięty, kiedy jednak użytkownik umieści na nim zdjęcie,
możemy użyć zdarzenia over, by wyświetlić ikonę kosza z otworzoną klapą. Po-
dobnie, kiedy użytkownik już upuści zdjęcie, możemy użyć zdarzenia drop, by
zamiast pustego kosza wyświetlić ikonę wypełnionego.

Zdarzenie over obsługuje się dokładnie tak samo jak wszystkie inne zdarzenia
widżetów — wystarczy przypisać funkcję właściwości over.

$('#trashcan').droppable({
 over : function (event, ui) {
 $('#trashCanImage').attr('src','images/open-lid-can.png');
 }
});

W tym przypadku zmieniamy jedynie wyświetlony obrazek, jednak funkcja ob-
sługi tego zdarzenia (jak również wszystkich innych zdarzeń) może być znacznie
bardziej złożona.

Uwaga: Czynnikiem określającym, kiedy jQuery uzna, że przeciągany element znajduje się w obszarze

widżetu Droppable, kiedy został upuszczony oraz kiedy został usunięty z obszaru widżetu, jest właści-

wość tolerance (opisana na stronie 438).

Zdarzenie out
I w końcu można także zażądać wykonania określonej funkcji, w momencie gdy
użytkownik przeciągnął element poza obszar widżetu Droppable. Załóżmy, że
użytkownik przeciągnął produkt do obszaru koszyka z zakupami, co spowodowało,
że prezentowana gdzieś na stronie całkowita wartość zakupów została zaktuali-
zowana. Później jednak użytkownik uznał, że nie chce kupować danego produktu,
i przeciągnął go poza obszar koszyka. W takim przypadku zdarzenie out daje moż-
liwość odjęcia ceny produktu od całkowitej wartości zakupów:

$('#shoppingCart').droppable({
 drop : function (event, ui) {
 // Wyliczenia wartości zakupów po dodaniu produktu do koszyka.
 },
 out : function (event, ui) {
 // Wyliczenia wartości zakupów po usunięciu produktu z koszyka.
 }
});

R O Z D Z I AŁ 1 2 . INTERAKCJE I EFEKTY JQUERY UI

Przykład — technika
„przeciągnij i upuść”

443

Tych kilka przykładów wyraźnie pokazuje, że zdarzenia zazwyczaj będą używane
parami, pozwalającymi na wykonywanie odwrotnych czynności. Takimi przykła-
dowymi parami mogą być zdarzenia out oraz drop bądź deactivate oraz activate.

Przykład — technika „przeciągnij i upuść”
W tym przykładzie wykorzystasz oba widżety, Draggable i Droppable, w jednym
programie. Napiszesz w nim prostą aplikację korzystającą z techniki „przeciągnij
i upuść”, prezentującą podstawowe możliwości i sposoby użycia obu tych widże-
tów. Dokończona wersja strony będzie pozwalała na przeciąganie zdjęcia do ko-
sza na śmieci i usunie je ze strony w bardzo widowiskowy sposób (przedstawiony
na rysunku 12.4).

Rysunek 12.4. Umieszczenie na stronie elementów, które można przeciągać i upuszczać, może dawać zabawne,
wciągające i interesujące wrażenia. W tym przykładzie nauczysz się, jak tworzyć elementy, które można
przeciągać, i jak sprawić, by znikły po upuszczeniu w wybranym miejscu strony

Uwaga: Więcej informacji o tym, jak pobrać przykłady prezentowane w książce, można znaleźć na

stronie 46.

 1. W edytorze tekstów otwórz stronę to-the-trash.html, umieszczoną w ka-
talogu R12.

Do pliku zostały już dołączone niezbędne pliki CSS i JavaScript, jak również
znacznik <script> zawierający wywołanie funkcji $(document).ready()
(patrz strona 190).

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Przykład — technika
„przeciągnij i upuść”

444

Jeśli wyświetlisz stronę w przeglądarce, zobaczysz, że z jej lewej strony jest
umieszczona ikona kosza na śmieci, a z prawej strony — kilka miniaturek
zdjęć (patrz rysunek 12.4). Poniżej przedstawiony został kod HTML ikony
kosza oraz zdjęć:

<div id="photos">

</div>

Obrazek kosza na śmieci ma identyfikator trashcan, a wszystkie miniaturki
zdjęć zostały umieszczone wewnątrz elementu div o identyfikatorze photos.
Zaczniesz od zapewniania możliwości przeciągania miniaturek zdjęć.

 2. W pustym wierszu wewnątrz wywołania funkcji $(document).ready()
dodaj wiersz kodu wyróżniony poniżej pogrubioną czcionką:

$(document).ready(function() {
 $('#photos img').draggable();
}); // Koniec funkcji ready.

To wywołanie powoduje wybranie elementów img umieszczonych wewnątrz
elementu div i przekształcenie ich w widżety Draggable. Ponieważ celem tego
przykładu jest zapewnienie możliwości dodawania miniaturek zdjęć do kosza na
śmieci, zatem chcesz mieć pewność, że w przypadku, gdy użytkownik upuści
miniaturkę w innym miejscu strony niż na ikonie kosza, wróci ona w swoje po-
czątkowe położenie.

 3. W wywołaniu funkcji draggable() dodaj literał obiektowy, zawierający
właściwość revert o wartości 'invalid':

$('#photos img').draggable({
 revert : 'invalid'
});

Opcja revert opisana na stronie 428 spowoduje, że po upuszczeniu przeciągany
element wróci do swojego początkowego położenia. Przypisując tej opcji wartość
'invalid'1, stwierdzasz: „Jeśli ten element zostanie upuszczony w niewła-
ściwym miejscu, należy go wrócić w początkowe położenie”.

 4. Zapisz stronę i wyświetl ją w przeglądarce. Spróbuj przeciągnąć zdjęcie
i upuścić je w innym miejscu strony.
Zdjęcie powinno powrócić do początkowego położenia. Jeśli tak się nie stało,
sprawdź kod i zajrzyj także do konsoli JavaScript przeglądarki (patrz strona 51).
Następnie użyjesz zdarzeń widżetu Draggable, aby wykonać jakieś czynności
w momencie rozpoczynania przeciągania. Konkretnie rzecz biorąc, zmodyfiku-
jesz nieco wygląd miniaturki zdjęcia z wykorzystaniem przekształcenia CSS.

 5. Za łańcuchem 'invalid' wpisz przecinek, naciśnij klawisz Enter, a na-
stępnie dodaj funkcję obsługującą zdarzenia start (jej kod został wyróż-
niony pogrubioną czcionką):

1 Słowo „invalid” w języku angielskim oznacza: nieważny, błędny — przyp. tłum.

R O Z D Z I AŁ 1 2 . INTERAKCJE I EFEKTY JQUERY UI

Przykład — technika
„przeciągnij i upuść”

445

$('#photos img').draggable({
 revert : 'invalid',
 start : function (event, ui) {

 }
});

Wartością opcji start musi być funkcja, która pełni rolę procedury obsługi zda-
rzeń, podobnie jak te, których używałeś wcześniej w funkcjach jQuery click()
lub mouseover() (patrz strona 182). „Start” nie jest jednak prawdziwym zda-
rzeniem generowanym przez przeglądarkę. Jest to zdarzenie niestandardowe,
utworzone przez autorów biblioteki jQuery UI. Jest ono zgłaszane w momencie,
gdy użytkownik zacznie przeciągać element. Funkcja, którą dodałeś do kodu
w tym kroku, jest pusta, zatem będziesz musiał dopisać kod, który coś zrobi.
W tym przypadku zmodyfikujesz nieco wygląd miniaturki zdjęcia przy użyciu
funkcji css() jQuery (patrz strona 163) i prostych przekształceń CSS.

 6. Wewnątrz funkcji dodanej w poprzednim kroku wpisz poniższy wiersz
kodu (wyróżniony pogrubioną czcionką):

$('#photos img').draggable({
 revert : 'invalid',
 start : function (event, ui) {
 ui.helper.css('transform', 'rotate(5deg) scale(1.5)');
 }
});

Zgodnie z informacjami podanymi na stronie 432, funkcje obsługujące zdarze-
nia widżetów Draggable mają dwa parametry: obiekt event oraz obiekt ui, re-
prezentujący element przeciągany w oknie przeglądarki. Parametru ui można
użyć, by odwołać się do przeciąganego elementu i coś z nim zrobić. Właściwość
ui.helper (patrz strona 432) zawiera faktyczny element, który jest przeciągany
w oknie przeglądarki, a ponieważ jest to obiekt jQuery, można go użyć do wy-
woływania wszelkich funkcji jQuery. Tutaj funkcja css() określa wartość wła-
ściwości transform CSS, dzięki czemu element zostanie nieco obrócony i po-
większony 1,5 raza. Innymi słowy, przeciągana miniaturka zdjęcia zostanie
obrócona i powiększona.

W następnym kroku zapewnisz, że upuszczona miniaturka wróci na swoje
początkowe położenie.

Uwaga: Więcej informacji na temat właściwości CSS transform można znaleźć na stronie

http://www.sitepoint.com/css3-transformations-2d-functions/.

 7. Do obiektu opcji dodaj zdarzenie stop:
$('#photos img').draggable({
 revert : 'invalid',
 start : function (event, ui) {
 ui.helper.css('transform', 'rotate(5deg) scale(1.5)');
 },
 stop : function (event, ui) {
 ui.helper.css('transform', 'rotate(0deg) scale(1)');
 }
});

Nie zapomnij o przecinku za zamykającym nawiasem klamrowym funkcji
start.

http://www.sitepoint.com/css3-transformations-2d-functions/

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Przykład — technika
„przeciągnij i upuść”

446

Funkcja ta jedynie odtwarza stan elementu sprzed modyfikacji wprowadzo-
nych w funkcji start — czyli usuwa obrót i przywraca początkową wielkość
miniaturki zdjęcia. Jeśli teraz zapiszesz plik i wyświetlić go w przeglądarce,
zauważysz coś dziwnego: gdy klikniesz miniaturkę i zaczniesz ją przeciągać,
zobaczysz, że jest wyświetlana poniżej miniaturki z jej prawej strony (patrz
rysunek 12.5). Przyczyna takiego zachowania została wyjaśniona na rysunku
12.5. Rozwiązanie tego problemu jest całkiem proste — wystarczy zmienić
wartość z-index przeciąganego elementu.

Rysunek 12.5. Na wartość z-index elementu ma wpływ k lka czynników. Przykładowo kolejność rozmieszczenia
elementów w kodzie HTML wpływa na sposób, w jaki będą się one wzajemnie przesłaniać. W tym przypadku
znacznik wybranego zdjęcia hotelu (zakreślonego) jest umieszczony w kodzie strony przed znacznikiem
 obrazka przedstawiającego podstawki pod piłeczki golfowe (patrz krok 1. na stronie 443). Z tego powodu
zdjęcie hotelu jest przesłonięte przez zdjęcie podstawek

 8. Do literału obiektowego dodaj ostatnią już opcję — zIndex.
$('#photos img').draggable({
 revert : 'invalid',
 start : function (event, ui) {
 ui.helper.css('transform', 'rotate(5deg) scale(1.5)');
 },
 stop : function (event, ui) {
 ui.helper.css('transform', 'rotate(0deg) scale(1)');
 },
 zIndex : 100
});

Nie zapomnij o przecinku za zamykającym nawiasem klamrowym funkcji stop.
Opcja zIndex (opisana na stronie 430) zmienia jedynie wartość właściwości
CSS z-index elementu. Im wyższa jest wartość tej właściwości, tym „wyżej”
będzie położony dany element na stosie elementów zajmujących ten sam
obszar i wzajemnie się przesłaniających. Wartość 100 jest na tyle duża, by za-
pewnić, że przeciągana miniaturka zdjęcia nie zostanie przesłonięta przez żaden
inny element strony.

 9. Zapisz plik i wyświetl go w przeglądarce. Spróbuj przeciągnąć zdjęcie na
stronie.
Kiedy zaczniesz przeciągać miniaturkę zdjęcia, zostanie ona nieco obróco-
na i powiększona, a później, kiedy zwolnisz przycisk myszy, wróci do po-
czątkowych wymiarów i orientacji. Co więcej, kiedy zaczniesz przeciągać
miniaturkę, będzie ona wyświetlana powyżej wszelkich innych miniaturek
umieszczonych na stronie.
W ten sposób zakończyłeś pracę nad zdjęciami. Teraz zajmiesz się przekształce-
niem ikony kosza na śmieci w obszar, w którym będzie można coś upuścić.

R O Z D Z I AŁ 1 2 . INTERAKCJE I EFEKTY JQUERY UI

Przykład — technika
„przeciągnij i upuść”

447

 10. Poniżej wywołania funkcji draggable() utwórz nowy wiersz i dodaj do
niego poniższy kod:

$('#trashcan').droppable();

To wywołanie przekształca ikonę kosza na śmieci w widżet Droppable. Jeśli za-
piszesz stronę i wyświetlisz ją w przeglądarce, zauważysz, że można już upusz-
czać miniaturki na ikonie kosza. Jednak upuszczone na nim miniaturki nie
wracają na swoje początkowe położenie, gdyż kosz na śmieci jest obecnie pra-
widłowym widżetem Droppable.
Aby strona wyglądała jeszcze atrakcyjniej, zadbasz o wyróżnienie ikony kosza,
gdy użytkownik zacznie przeciągać jakąś miniaturkę. Konkretnie rzecz biorąc,
sprawisz, że kosz stanie się nieco jaśniejszy, co będzie stanowiło wizualny sy-
gnał informujący, że można na nim upuścić miniaturkę.

 11. W wywołaniu funkcji droppable() dodaj literał obiektowy z opcjami:
$('#trashcan').droppable({
 activeClass : 'highlight'
});

Opcja activeClass (patrz strona 436) sprawia, że kiedy tylko użytkownik za-
cznie przeciągać jakiś element, który można w danym widżecie upuścić, do
widżetu Droppable zostanie dodana wskazana nazwa klasy. W tym przykładzie
dodawana jest klasa highlight, zdefiniowana w pliku interactions.css. Zmienia
ona wartość właściwości opacity kosza na śmieci na 1 (czyli element ten będzie
całkowicie nieprzezroczysty). Inna reguła umieszczona w tym samym pliku
sprawia, że początkowa wartość właściwości opacity ikony kosza na śmieci
będzie wynosić .6 (czyli będzie nieprzezroczysta w 60%). Dzięki zmianie nie-
przezroczystości z .6 na 1 po rozpoczęciu przeciągania ikona kosza na śmieci
będzie się wydawać jaśniejsza.
Choć ta niewielka zmiana wygląda bardzo atrakcyjnie i stanowi wizualną
podpowiedź dla użytkowników, to jednak nie zrobiłeś jeszcze nic by zapew-
nić, że po upuszczeniu miniaturki na ikonie kosza coś się stanie. Aby to zrobić,
musisz skorzystać ze zdarzenia drop widżetu Droppable.

 12. Za łańcuchem 'highlight' wpisz przecinek, naciśnij klawisz Enter i do-
daj funkcję obsługującą zdarzenia drop:

$('#trashcan').droppable({
 activeClass : 'highlight',
 drop : function (event, ui) {

 }
});

Wartością opcji drop musi być funkcja, tak samo jak w przypadku zdarzeń
start i stop widżetów Draggable. Funkcja widoczna powyżej jest pusta, jednak
możesz sprawić, by coś robiła, na przykład odtworzyła jakiś atrakcyjny efekt wi-
zualny jQuery UI!

 13. Wewnątrz funkcji drop dodaj przedstawiony poniżej wiersz kodu (wyróż-
niony pogrubioną czcionką):

$('#trashcan').droppable({
 activeClass : 'highlight',
 drop : function (event, ui) {
 ui.helper.hide('explode');
 }
});

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Przykład — technika
„przeciągnij i upuść”

448

Właściwość ui.helper odwołuje się do przeciąganego elementu (patrz strona
432). Metody hide() używałeś już wcześniej w tej książce (na stronie 212),
jednak jQuery UI udostępnia dodatkowe efekty wizualne pozwalające na ukry-
wanie i wyświetlanie elementów. Opcja explode tworzy zabawny, animowany
efekt — to wesoły sposób pozwalający na ukrycie elementu strony. (Więcej in-
formacji o tych efektach można znaleźć na stronie 461).
Została Ci do zrobienia jeszcze jedna rzecz: po upuszczeniu miniaturki zdję-
cia na koszu musisz zmienić jego ikonę i wyświetlić kosz, który jest pełny.

 14. Wewnątrz funkcji drop dodaj jeszcze jeden wiersz kodu:
$('#trashcan').droppable({
 activeClass : 'highlight',
 drop : function (event, ui) {
 ui.helper.hide('explode');
 $(this).attr('src','../_images/trashcan-full-icon.png');
 }
});

Wyrażenie $(this) odwołuje się do kosza na śmieci — znacznika o iden-
tyfikatorze trashcan. Całe to wywołanie zmienia wartość właściwości src tego
znacznika i zapisuje w nim adres nowego obrazka. (W rozdziale 7. dowiedziałeś
się, jak to robić).
Dokończony kod JavaScript używany w tym przykładzie powinien mieć na-
stępującą postać:

$(document).ready(function() {
 $('#photos img').draggable({
 revert : 'invalid',
 start : function (event, ui) {
 ui.helper.css('transform', 'rotate(5deg) scale(1.5)');
 },
 stop : function (event, ui) {
 ui.helper.css('transform', 'rotate(0deg) scale(1)');
 },
 zIndex : 100
 });
 $('#trashcan').droppable({
 activeClass : 'highlight',
 drop : function (event, ui) {
 ui.helper.hide('explode');
 $(this).attr('src','../_images/trashcan-full-icon.png');
 }
 });
}); // Koniec funkcji ready.

 15. Zapisz plik i wyświetl go w przeglądarce.
Teraz możesz już przeciągać miniaturki zdjęć i upuszczać na ikonie kosza,
a one będą wybuchać i znikać ze strony (patrz rysunek 12.4). Do funkcji obsłu-
gującej zdarzenia drop w tym przykładzie mógłbyś dodać znacznie więcej kodu.
Mógłbyś skorzystać z technologii AJAX, by przesłać na serwer żądanie usunię-
cia wybranego zdjęcia z konta użytkownika (technologia AJAX została opisana
w rozdziale 13.). Ten krótki przykład może być dla Ciebie inspiracją do wymy-
ślenia wielu potencjalnych zastosowań widżetów Draggable i Droppable.

Uwaga: Końcowa, gotowa wersja tego przykładu jest dostępna w pliku complete-to-the-trash.html.

R O Z D Z I AŁ 1 2 . INTERAKCJE I EFEKTY JQUERY UI

Sortowanie elementów
strony

449

Sortowanie elementów strony
Biblioteka jQuery UI udostępnia także widżet pozwalający na tworzenie list, na przy-
kład list zadań do zrobienia, list odtwarzania, a nawet list umieszczonych wewnątrz
innych, takich jak listy plików w katalogach. Widżet Sortable zapewnia możliwość
zmiany kolejności elementów na liście poprzez ich przeciągnięcie i upuszczenie
w wybranym miejscu. Jest on bardzo przydatny do zarządzania, na przykład, listami
piosenek — dzięki niemu użytkownik może tworzyć swoje własne listy odtwarza-
nia, przeciągając na nie nowe piosenki, a nawet zmieniać ich kolejność po prze-
ciągnięciu ich w inne miejsca (patrz rysunek 12.6).

Rysunek 12.6. Widżet Sortable
biblioteki jQuery UI sprawia, że
zmiana kolejności elementów na
liście jest banalnie prosta i szyb-
ka. Bez trudu można przecią-
gnąć element z jednej listy, na
przykład z listy „Moje ulubione
utwory” na inną, taką jak „Moja
lista odtwarzania”. Taki sposób
interakcji jest bardzo popularny
w wielu klasycznych programach
komputerowych, takich jak iTunes,
a nawet w programach prezen-
tujących listy katalogów i plików

Widżet Sortable może operować na dowolnej zgrupowanej kolekcji elementów.
Choć naturalnym rozwiązaniem jest używanie go w wypunktowanych listach, jed-
nak można go także stosować w grupach elementów div, akapitów i obrazów, by
przekształcać je w sortowalne listy.

Stosowanie widżetu Sortable
Widżety Sortable są kolekcjami elementów, które można przeciągać w celu zmiany
ich kolejności: na przykład w liście zadań do zrobienia każde z zadań można
przeciągnąć i wstawić w dowolnym miejscu listy. A zatem taka lista jest widżetem
Sortable, czyli elementem sortowalnym, a jej zawartość to elementy, które można
sortować. Innymi słowy, widżet Sortable musi być kontenerem, takim jak lista wy-
punktowana () lub numerowana (), bądź też elementem <div> zawierają-
cym inne elementy, na przykład akapity, obrazy czy też inne elementy <div>.

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Sortowanie elementów
strony

450

Stosowanie widżetu Sortable jest proste.
 1. Wykonaj czynności opisane na stronie 329, aby dodać do strony niezbędne
pliki CSS i JavaScript.
Pamiętaj, że biblioteka jQuery UI ma własne pliki CSS oraz JavaScript i należy je
dołączyć do strony za plikiem JavaScript biblioteki jQuery.

 2. Umieść na stronie element kontenera.
Może to być lista wypunktowana lub znacznik <div>:

<ul id="playlist">

Dobrym pomysłem będzie dodanie do tego znacznika identyfikatora lub nazwy
klasy, aby można było łatwo odwołać się do niego przy użyciu jQuery.

 3. Wewnątrz elementu kontenera dodaj elementy listy.
Dla list wypunktowanych i numerowanych byłaby to grupa znaczników .
Elementy tego nadrzędnego kontenera reprezentują obiekty, które będzie moż-
na przeciągać na stronie i upuszczać w innych miejscach listy. Jeśli elementem
kontenera będzie znacznik <div>, wewnątrz niego można będzie umieszczać
akapity, obrazy lub nawet kolejne znaczniki <div> (będą one tworzyć zawartość
widżetu, którą będzie można sortować).

<ul id="playlist">
 My Way -- Frank Sinatra
 Like a Rolling Stone -- Bob Dylan
 Respect -- Aretha Franklin

 4. Na stronie lub w zewnętrznym pliku JavaScript umieść wywołanie funkcji
$(document).ready():

$(document).ready(function() {

}); // Koniec funkcji ready.

Zgodnie z informacjami podanymi na stronie 190, krok ten jest niezbędny
wyłącznie w przypadku, gdy kod JavaScript umieszczamy w sekcji <head> stro-
ny, przed właściwym kodem HTML stanowiącym jej treść. Niektórzy progra-
miści umieszczają swój kod JavaScript na końcu strony, bezpośrednio przed
zamykającym znacznikiem </body>; w takim przypadku umieszczanie kodu
w wywołaniu funkcji $(document).ready() nie jest konieczne.

 5. Skorzystaj z możliwości jQuery, by wybrać element dodany do strony
w kroku 2.:

$(document).ready(function() {
 $('#playlist').sortable();
}); // Koniec funkcji ready.

Powyższy kod wybiera element kontenera (znacznik reprezentowany
przez kod dodany w kroku 3.) i przekształca w widżet Sortable, w którym mo-
żemy zmieniać kolejność elementów. Postać i sposób działania widżetu można
modyfikować na wiele różnych sposobów, opisanych dalej w tym podrozdziale.

 6. W wywołaniu funkcji sortable() dodaj obiekt z opcjami:
$(document).ready(function() {
 $('#playlist').sortable({
 opacity : 0.5,

R O Z D Z I AŁ 1 2 . INTERAKCJE I EFEKTY JQUERY UI

Sortowanie elementów
strony

451

 placeholder : 'ui-state-hightlight'
 });
}); // Koniec funkcji ready.

Opcje widżetu Sortable poznasz już niebawem, jednak ich wybrane możli-
wości możesz ustalić, analizując powyższy fragment kodu. Pierwsza z zasto-
sowanych opcji, opacity, nakazuje, by jQuery UI zmieniła nieprzezroczystość
elementu podczas jego przeciągania. Z kolei druga opcja, placeholder, na-
kazuje zastosowanie podanego stylu do elementu reprezentującego puste
miejsce, w którym można upuścić przeciągany element.

Uwaga: Dokładniej wypróbujesz działanie widżetu Sortable w przykładowej aplikacji, którą napiszesz

w rozdziale 14.

Opcje widżetu Sortable
Widżet Sortable został wyposażony w wiele opcji. Można określać kierunek i odle-
głość, na jaką mogą być przesuwane elementy, sposób, w jaki się mają zachowy-
wać podczas przeciągania, a nawet to, za który fragment trzeba je przeciągać. Po-
dobnie jak w innych widżetach jQuery UI, także i w tym opcje należy podawać
w obiekcie przekazywanym w wywołaniu funkcji sortable(). Aby na przykład
zmienić wygląd wskaźnika myszy na dłoń z wyciągniętym palcem wskazującym
i określić, że elementy mogą być przeciągane wyłącznie za umieszczony wewnątrz
nich nagłówek <h2>, należałoby użyć następującego wywołania:

$('#playlist).sortable({
 cursor : 'pointer',
 handle : 'h2'
});

Poniżej przedstawione zostały najczęściej używane opcje widżetu Sortable.

 axis. Przy użyciu tej właściwości można ograniczyć możliwości przesuwania
elementów umieszczonych w widżecie wyłącznie do ruchu w pionie lub po-
ziomie. Załóżmy, że utworzyliśmy poziomą grupę elementów div, których
kolejność użytkownik może zmieniać w ramach gry (patrz rysunek 12.8).
Możemy ograniczyć ruch tych elementów wyłącznie do przesuwania w prawo
i lewo. Właściwość ta może przyjmować dwie wartości: 'x' (element będzie
można przesuwać wyłącznie w poziomie) lub 'y' (element będzie można prze-
suwać wyłącznie w pionie):

axis : 'x'

 cancel. Opcja umożliwia zabronienie przesuwania, jeśli kliknięty zostanie
określony element. Załóżmy, że na stronie jest umieszczona (wypunktowa-
na) lista utworów muzycznych. Obok nazwy każdego z utworów jest wyświe-
tlona ikona kosza na śmieci; użytkownik może kliknąć tę ikonę, aby usunąć
utwór z listy. Jeśli jednak użytkownik umieści na tej ikonie wskaźnik myszy
i wciśnie jej przycisk, będzie mógł przeciągnąć utwór w inne miejsce listy.
Aby wskazać konkretny element umieszczony wewnątrz elementów widżetu
Sortable, którego nie będzie można użyć jako uchwytu do przeciągania, należy
podać jego selektor w opcji cancel:

cancel : '.trashicon'

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Sortowanie elementów
strony

452

Jeśli teraz użytkownik kliknie ikonę kosza (przy założeniu, że została w niej
użyta klasa trashicon), nie będzie mógł przeciągnąć elementu. W tej opcji
można także podać więcej niż jeden element — wystarczy rozdzielić ich se-
lektory przecinkami:

cancel : '.trashicon, .addToFavorites'

Opcja handle opisana na stronie 453 pozwala określić konkretny element,
który ma pełnić rolę „uchwytu” do przeciągania.

 cancelWith. Umożliwia określenie selektorów innych widżetów Sortable,
czyli innych list, w których będzie można umieszczać elementy z tego widże-
tu. Załóżmy, że na stronie znajdują się dwie listy: lista życzeń zawierająca
produkty, które chcielibyśmy kupić, oraz lista koszyka z zakupami zawierająca
wszystkie produkty, które mamy zamiar kupić. Użytkownik powinien mieć
możliwość zmiany kolejności produktów na liście życzeń — aby na przykład
na jej początku umieścić produkt, na którym najbardziej mu zależy — lecz
także przeciągania elementów z listy życzeń do koszyka. W tym przypadku
na stronie powinniśmy umieścić dwie listy i osobno wywołać funkcję sortable()
dla każdej z nich. Jednak dzięki zastosowaniu opcji connectWith możemy
zapewnić użytkownikom możliwość przeciągania elementów z jednej listy do
drugiej.

$('#wishList').sortable({
 connectWith : '#shoppingCart'
});

Opcja connectWith określa połączenie jednokierunkowe. Innymi słowy, po-
wyższy kod pozwoli użytkownikowi przeciągać produkty z listy życzeń do
koszyka, lecz nie z koszyka na listę życzeń. Aby zdefiniować dwukierunkowe
połączenie między oboma listami, musielibyśmy dodać opcję connectWith
także do drugiego widżetu Sortable:

$('#shoppingCart').sortable({
connectWith : '#wishList'
});

Wartością opcji connectWith powinien być selektor odpowiadający elemen-
towi, na rzecz którego została wywołana funkcja sortable().

 containment. Można także uniemożliwić użytkownikom przeciąganie ele-
mentów listy poza obszar kontenera, w którym się znajdują. Opcja ta działa
dokładnie tak samo jak analogiczna opcja widżetu Draggable (patrz strona
425). W praktyce okazuje się, że elementy widżetu Sortable same są widże-
tami Draggable, które można umieszczać wewnątrz elementów listy. Opcja
containment może mieć kilka wartości.

 Selektor. Jeśli wartością opcji będzie selektor, jQuery UI zadba o to, by
elementy listy mogły znajdować się wyłącznie w obszarze wskazanego ele-
mentu. Gdyby na przykład na stronie znajdował się znacznik <div> o iden-
tyfikatorze mainContent, moglibyśmy zażądać, by podczas przeciągania
elementy listy mogły się znajdować wyłącznie w jego obszarze, przy użyciu
następującej właściwości:
containment : '#mainContent'

R O Z D Z I AŁ 1 2 . INTERAKCJE I EFEKTY JQUERY UI

Sortowanie elementów
strony

453

 Wartości parent, document lub window. Aby element listy musiał się
znajdować wewnątrz elementu jego rodzica, należy przypisać właściwości
containment wartość parent. Jeśli na przykład elementy widżetu są umiesz-
czone wewnątrz wypunktowanej listy i chcemy, by podczas przeciągania
mogły się znajdować wyłącznie w jej obszarze, powinniśmy użyć następującej
właściwości:
 containment : 'parent'

Wartości document oraz window działają niemal identycznie, przy czym
pierwsza z nich sprawia, że obszar, w którym będzie można przeciągać ele-
menty, będzie odpowiadał obszarowi dokumentu. Z kolei w przypadku zasto-
sowania wartości window fragmenty przeciąganego elementu będą mogły wy-
chodzić poza okno przeglądarki (co nie wygląda najlepiej, więc przed użyciem
tej opcji lepiej się dwa razy zastanowić).

 cursor. Działa tak samo jak analogiczna opcja widżetu Draggable (patrz
strona 425).

 cursorAt. Działa tak samo jak analogiczna opcja widżetu Draggable (patrz
strona 426).

 delay. Liczba milisekund, o którą należy opóźnić rozpoczęcie przeciągania
elementu. To opóźnienie może się przydać, gdy dojdziemy do wniosku, że
bardzo łatwo można rozpocząć przeciąganie elementu przypadkowo, podczas
przesuwania wskaźnika myszy po stronie. Opóźnienie to określa, jak długo
użytkownik będzie musiał trzymać wciśnięty przycisk myszy, zanim będzie
można rozpocząć przeciąganie elementu.

delay : 100

 distance. Wyrażona w pikselach odległość określająca, jak daleko trzeba bę-
dzie przeciągnąć element listy, zanim zacznie być wstawiany w innych miej-
scach. Opcja ta jest przydatna, gdy użytkownik może klikać elementy widżetu
w innych celach niż przeciągnięcie. Jeśli na przykład element listy zawiera
przycisk służący do jego usunięcia, moglibyśmy użyć opcji distance, by unie-
możliwić przypadkowe przeciągnięcie elementu, gdy użytkownik będzie chciał
kliknąć przycisk. Wartości przypisywane tej opcji powinny być stosunkowo
małe (inaczej użytkownik będzie musiał daleko przeciągnąć element, zanim
zauważy, że można zmieniać jego położenie na liście):

distance : 10

 grid. Opcja sprawia, że elementy listy będą przyciągane do punktów siatki.
Ustawienie to może działać bardzo dobrze, jeśli na stronie będą się znajdo-
wać obrazki lub elementy div o tej samej wielkości: w takim przypadku ele-
menty te mogą być przyciągane do punktów oddalonych od siebie o szerokość
elementu. Opcja ta działa tak samo jak analogiczna opcja widżetu Draggable
(patrz strona 426).

 handle. Opcja określa fragment elementu, który użytkownik musi kliknąć, by
przeciągnąć element. Normalnie użytkownik może przeciągać element listy,
klikając go w dowolnym miejscu. Może się jednak zdarzyć, że będziemy
chcieli zmusić użytkownika do kliknięcia w konkretnym miejscu, na przy-
kład na nagłówku. Opcja ta działa tak samo jak analogiczna opcja widżetów
Draggable (opisana na stronie 427).

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Sortowanie elementów
strony

454

 items. Opcja pozwala określić, które elementy listy będzie można przeciągać.
Załóżmy, że przekształciliśmy w widżet Sortable listę hierarchiczną, czyli listę
zawierającą inne listy (patrz rysunek 12.7). Nie chcemy jednak, by można
było zmieniać kolejność listy najwyższego poziomu (w przypadku listy z rysun-
ku 12.7 są to elementy Katalog A i Katalog B). Chcemy natomiast, by można
było przeciągać elementy list zagnieżdżonych — przeciągać je do innych list
lub zmieniać kolejność w ramach tej samej listy zagnieżdżonej.

W takim przypadku moglibyśmy przypisać opcji items wartość 'li li', in-
formując tym samym, że przeciągać będzie można wyłącznie elementy listy
umieszczone wewnątrz elementów innej listy (czyli elementy list zagnieżdżo-
nych). Elementy listy najwyższego poziomu nie są zagnieżdżone, więc nie będzie
można ich przeciągać:

items : 'li li'

Rysunek 12.7. Listy zagnież-
dżone (czyli listy umieszczone
wewnątrz innych list) można
tworzyć, dodając znacznik listy
wypunktowanej () lub nu-
merowanej () wewnątrz
elementu innej listy: Katalog
ALista zagnieżdżona
. Biblioteka jQu-
ery UI umożliwia określenie, które
elementy widżetu Sortable będzie
można przeciągać i zmieniać ich
kolejność; na przykład operacje
te można ograniczyć wyłącznie do
elementów list zagnieżdżonych

 opacity. Podczas przeciągania elementu można zmienić jego nieprzezroczy-
stość. Na przykład można sprawić, że element stanie się półprzezroczysty i bę-
dzie przypominał cień poruszający się po stronie. Taka zmiana jest często sto-
sowanym wizualnym sposobem sygnalizowania użytkownikom, że element
jest przeciągany z jednego miejsca w inne. Opcji tej można przypisywać war-
tości z zakresu od 0 (element jest zupełnie niewidoczny) do 1 (element jest
całkowicie nieprzezroczysty). Działa ona tak samo jak właściwość opacity ar-
kuszy stylów. Aby na przykład przeciągany element był półprzezroczysty, nale-
ży tej opcji przypisać wartość 0.5:

opacity : 0.5

 placeholder. Opcja określa nazwę klasy, którą jQuery UI zastosuje w pu-
stym elemencie listy, w którym zostanie umieszczony przeciągany element.
Miejsce to można wyróżnić, stosując na przykład klasy zdefiniowane przez
bibliotekę jQuery UI (przedstawione na stronie 418):

placeholder : 'ui-style-hightlight'

Uwaga: Informacje o wszystkich opcjach widżetu Sortable można znaleźć na stronie

http://api jqueryui.com/sortable/.

http://api.jqueryui.com/sortable/

R O Z D Z I AŁ 1 2 . INTERAKCJE I EFEKTY JQUERY UI

Sortowanie elementów
strony

455

Zdarzenia widżetu Sortable
Kiedy użytkownik prowadzi interakcję z widżetem Sortable, jQuery UI generuje
bardzo wiele różnego rodzaju zdarzeń; są one zgłaszane, kiedy na przykład użyt-
kownik zacznie przeciągać jeden z elementów listy bądź go upuści. Biblioteka
jQuery UI zgłasza ponad dziesięć różnych zdarzeń, a każde z nich można obsłu-
giwać. Niektóre są zgłaszane w tak krótkich odstępach czasu, że można uznać, iż
zachodzą jednocześnie.

Podobnie jak było w przypadku widżetów Draggable i Droppable, także i zdarze-
nia widżetu Sortable są obsługiwane za pomocą dodania funkcji do obiektu
przekazywanego w wywołaniu funkcji sortable(). Przykładowo poniższy frag-
ment kodu tworzy widżet Sortable, który po przeciągnięciu elementu będzie wy-
świetlać okno informacyjne z komunikatem:

$('#playList').sortable({
 stop : function (event, ui) {
 alert('Tak oto lista została uporządkowana!');
 }
});

Niektóre zdarzenia odnoszą się do wszystkich list, choć istnieją także dwa takie,
które są zgłaszane wyłącznie wtedy, gdy na stronie są umieszczone dwa (lub wię-
cej) widżety Sortable, a użytkownik przeciąga elementy między nimi. Przedsta-
wione zostaną teraz zdarzenia dotyczące wszystkich widżetów Sortable. Są one
zgłaszane w określonym porządku i w takiej samej kolejności zostały opisane.

 create. Zdarzenie jest zgłaszane za każdym razem, gdy użyjemy funkcji
sortable() w celu utworzenia nowej sortowalnej listy. Można z niego skorzy-
stać, aby na przykład wyświetlić okno dialogowe z instrukcjami typu: „Możesz
przeciągać utwory na liście, by zmienić ich kolejność”. Jest ono wywoływane
tylko jeden raz — podczas tworzenia widżetu Sortable.

Uwaga: W odróżnieniu od wszystkich innych zdarzeń widżetu Sortable, do funkcji obsługującej zda-

rzenie create nie jest przekazywany parametr ui (opisany na stronie 432).

 start. Zdarzenie jest zgłaszane, jak tylko użytkownik zacznie przeciągać
element listy. Do funkcji obsługującej te zdarzenia przekazywane są dwa ar-
gumenty; pierwszym z nich jest obiekt event (patrz strona 194), a drugim —
obiekt ui zawierający informacje o widżecie. Obiekt ui zawiera siedem innych
obiektów, z których każdy udostępnia ważne informacje na temat widżetu.

 ui.helper. Właściwość helper jest obiektem jQuery reprezentującym ele-
ment przeciągany w oknie przeglądarki. Biblioteka jQuery UI tworzy kopię
właściwego elementu listy, zatem podczas przeciągania istnieją w kodzie
HTML dwa różne elementy: pomocnicza kopia oraz element właściwy. Kiedy
użytkownik zakończy przeciąganie, kopia elementu jest usuwana z doku-
mentu. Ponieważ jest to normalny obiekt jQuery, zatem można go używać
do wywoływania wszystkich metod tej biblioteki, takich jak css(), animate()
czy też find().

 ui.item. Właściwość zawiera obiekt reprezentujący element widżetu, któ-
ry użytkownik klika, by rozpocząć przeciąganie, na przykład element .

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Sortowanie elementów
strony

456

Jest to faktyczny element HTML, który później zostanie umieszczony w od-
powiednim miejscu listy, kiedy użytkownik zakończy przeciąganie elementu
pomocniczego. Także ta właściwość zawiera obiekt jQuery, którego można
używać do wywoływania metod jQuery.

 ui.position. Właściwość zawiera współrzędne górnego lewego wierzchołka
elementu pomocniczego (czyli tego, który jest wizualnie przeciągany w oknie
przeglądarki), wyznaczone względem najbliższego, umiejscowionego elemen-
tu przodka. Jeśli widżet Sortable jest umieszczony wewnątrz jakiegoś elemen-
tu umiejscowionego (względnie lub bezwzględnie), właściwość ui.position
będzie zawierać współrzędne górnego lewego wierzchołka elementu po-
mocniczego wyrażone względem górnego lewego wierzchołka elementu umiej-
scowionego.
Do samych współrzędnych można się odwoływać, używając wyrażeń
ui.position.top oraz ui.position.left.

 ui.originalPosition. Określa początkowe położenie elementu listy —
czyli miejsce, w którym się znajdował, zanim użytkownik zaczął go prze-
ciągać. Podobnie jak w przypadku właściwości ui.position, także ten
obiekt zawiera dwie właściwości — top oraz left.

 ui.offset. Wartością tej właściwości jest obiekt zawierający dwie właści-
wości — top i left. Jednak w tym przypadku współrzędne są wyznaczane
względem górnego lewego wierzchołka okna przeglądarki. Właściwość
ui.offset.top określa, jak daleko poniżej górnej krawędzi okna przeglą-
darki znajduje się element pomocniczy.
Z kolei właściwość ui.offset.left określa odległość, wyrażoną w pikse-
lach, pomiędzy lewą krawędzią okna przeglądarki a przeciąganym elemen-
tem pomocniczym.

 ui.sender. Właściwość jest stosowana wyłącznie podczas przeciągania
elementu z jednego widżetu Sortable do drugiego. Zawiera obiekt jQuery,
reprezentujący widżet, w którym początkowo znajdował się przeciągany
element.

 placeholder. Właściwość zawiera obiekt jQuery reprezentujący pusty ob-
szar tworzony na liście podczas przeciągania elementu.
Obiekt ui jest przekazywany także do wszystkich innych funkcji obsługi
zdarzeń widżetów Sortable (takich jak activate, over, sort i tak dalej)
z wyjątkiem zdarzeń create.

 activate. Zdarzenie jest zgłaszane bezpośrednio po zdarzeniu start, przy
czym praktycznie następuje to w tym samym momencie. Można je wykorzy-
stać, jeśli chcemy dodać drugą funkcję, która będzie wykonywana bezpo-
średnio po funkcji obsługującej zdarzenie start.

 sort. Zdarzenie sort jest zgłaszane za każdym razem, gdy podczas przecią-
gania elementu listy zostanie przesunięty wskaźnik myszy. Innymi słowy,
jest ono zgłaszane nieustannie, dlatego w ramach jego obsługi nie należy
wykonywać żadnych czasochłonnych operacji ani operacji, które mogą zna-
cząco obciążać procesor. W przeciwnym razie ciągłe wywoływanie tej funkcji
może pogorszyć szybkość działania strony, a także utrudnić przeciąganie ele-
mentów listy.

R O Z D Z I AŁ 1 2 . INTERAKCJE I EFEKTY JQUERY UI

Sortowanie elementów
strony

457

 change. Zdarzenie jest zgłaszane, jak tylko przeciągany element zmieni miejsce
na liście. Kiedy na przykład przeciągamy element z samego początku listy w dół,
element, który wcześniej był drugi, wskoczy na pierwsze miejsce i wygeneruje
tym samym zdarzenie change. Można go użyć przykładowo do wyróżnienia
dwóch elementów listy, których położenie zostało zmienione.

 beforestop. Zdarzenie jest zgłaszane bezpośrednio przed zakończeniem opera-
cji przeciągania elementu listy. Jest ostatnim zdarzeniem, które ma dostęp
do elementu pomocniczego — ui.helper. Po zakończeniu jego obsługi element
pomocniczy (czyli kopia faktycznego elementu listy) jest usuwany.

 update. Zdarzenie jest zgłaszane, kiedy wszystkie elementy widżetu Sortable
są już na miejscu i DOM strony został zaktualizowany.

 deactivate. Zdarzenie jest zgłaszane po zakończeniu przeciągania, bezpo-
średnio po zdarzeniu update.

 stop. Kiedy element listy zostanie upuszczony na miejsce, jest zgłaszane
zdarzenie stop. Jest to ostatnie zdarzenie w sekwencji i zawsze następuje po
zdarzeniach beforestop i deactivate. Funkcję obsługi tego zdarzenia moż-
na określać w przypadku, gdy chcemy mieć pewność, że będzie to ostatnia
czynność wykonana po upuszczeniu elementu listy. Można go na przykład użyć,
by sprawdzić status listy i upewnić się, że jej elementy znajdują się w pewnej,
predefiniowanej kolejności (patrz rysunek 12.7).

Powyższe zdarzenia są zgłaszane w kolejności, w jakiej zostały opisane. Istnieją
jednak inne zdarzenia, które są zgłaszane w innych momentach i dla innych ty-
pów widżetów Sortable.
 out. Zdarzenie out zostaje zgłoszone, kiedy element widżetu Sortable zostanie

przeciągnięty poza jego obszar; kiedy na przykład użytkownik przeciągnie
element listy poza nią, na pusty obszar strony. Jest ono zgłaszane także w przy-
padku, gdy element zostanie przeciągnięty poza obszar jednego widżetu Sortable
i umieszczony w obszarze innego widżetu Sortable.

 over. Zdarzenie jest zgłaszane, kiedy element zostanie przesunięty i umiesz-
czony w obszarze listy powiązanej z danym widżetem Sortable. Jeśli na przykład
na stronie są umieszczone dwie listy — dwa widżety Sortable — i przecią-
gniemy element jednej z nich w obszar drugiej, zostanie zgłoszone zdarzenie
over. Jest ono zgłaszane także w przypadku, gdy przesuniemy element zu-
pełnie poza obszar widżetu, a następnie ponownie go w nim umieścimy.

 receive. Zdarzenia receive można używać, kiedy na stronie umieszczono
kilka powiązanych ze sobą widżetów Sortable (patrz właściwość connectWith,
opisana na stronie 451). Gdy do jednego z widżetów zostanie przeciągnięty
element umieszczony wcześniej na innej liście, zostanie zgłoszone zdarzenie
receive. Można go używać w połączeniu z obiektem ui.sender (patrz stro-
na 456), by określić, skąd pochodzi nowy element listy.

 remove. Zdarzenie jest zgłaszane, kiedy element zostanie usunięty z widżetu
Sortable. Załóżmy, że na stronie znajdują się dwa widżety Sortable — lista
życzeń oraz koszyk z zakupami. Jeśli użytkownik przeciągnie produkt z listy
życzeń do koszyka, w widżecie listy życzeń zostanie zgłoszone zdarzenie remove
(jak również zdarzenie out). (W tym przypadku w widżecie koszyka z zakupami
zostaną natomiast zgłoszone zdarzenia over i receive).

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Sortowanie elementów
strony

458

Metody widżetów Sortable
Widżet Sortable udostępnia kilka metod, czyli funkcji, które można na jego rzecz
wywoływać. Nie są one jednak wywoływane w taki sam sposób, jak zwyczajne
metody biblioteki jQuery, czyli poprzez wybranie odpowiedniego elementu strony,
a następnie zastosowanie na nim jakiejś metody, na przykład $('body').hide().
Zamiast tego nazwę metody podaje się w formie łańcucha znaków i przekazuje
w wywołaniu funkcji sortable(). Załóżmy, że chcemy wywołać metodę destroy,
która usuwa widżet ze strony — metoda ta zwraca elementy stanowiące zawartość
widżetu jako zwyczajne elementy listy, których nie można przeciągać. Poniżej
przedstawiony został kod pozwalający na wywołanie tej metody:

$('#sortableItems').sortable('destroy');

Selektor zastosowany w tym przykładzie — #sortableItems — powinien odpo-
wiadać selektorowi widżetu Sortable umieszczonego na stronie. Metody te są
bardzo często używane w odpowiedzi na zdarzenia generowane przez widżet, opisa-
ne w poprzednim punkcie rozdziału. Jeśli na przykład utworzymy grę, która wyma-
ga od użytkownika umieszczenia grupy elementów w określonej kolejności, mogli-
byśmy usuwać widżet Sortable, kiedy użytkownik skończy grę, i oszczędzić mu
tym samym konieczności ponownego ustawiania elementów.

Pełną listę metod widżetu Sortable można znaleźć na stronie http://api.jqueryui.
com/sortable/, jednak poniżej opisanych zostało kilka najbardziej przydatnych.

 cancel. Wywołanie tej metody anuluje jakiekolwiek zmiany wprowadzone
w kolejności elementów listy. Innymi słowy, przerywa ona sortowanie listy.
Można jej używać na przykład wraz ze zdarzeniem receive (opisanym na
stronie 457), aby odrzucić element przeciągnięty z innego widżetu Sortable.
Ewentualnie, w ramach obsługi zdarzenia stop (patrz strona 457) można za-
stosować funkcję, która będzie sprawdzać, w którym miejscu został umiesz-
czony upuszczony element listy, i anulować całą operację, jeśli nie zostaną
spełnione określone kryteria. Przykładowo w aplikacji do zarządzania listą
zadań mogą się pojawić zadania zależne od innych zadań. Jeśli użytkownik
spróbuje przeciągnąć jakieś zadanie na sam początek listy, lecz przed nim
musi zostać wykonane inne, aplikacja może anulować operację i wyświetlić
okno dialogowe z komunikatem tłumaczącym problem.

 destroy. Metoda pozwala całkowicie usunąć ze strony możliwości funkcjo-
nalne widżetu Sortable.

 disable. Metoda pozwala tymczasowo zablokować możliwości funkcjonal-
ne widżetu Sortable. Można jej używać, aby tymczasowo uniemożliwić użyt-
kownikowi sortowanie elementów listy, aż do momentu, kiedy zostanie
spełniony określony warunek. Pełne możliwości funkcjonalne widżetu można
ponownie włączyć, wywołując metodę enable (opisaną poniżej).

 enable. Ta metoda ponownie włącza wyłączony wcześniej widżet Sortable —
czyli widżet, w którym wywołano metodę disable.

 serialize. Metoda pozwala przesyłać uporządkowane elementy listy na
serwer, przy wykorzystaniu technologii AJAX bądź zwykłego formularza HTML.
Można z niej korzystać w przypadkach, gdy zapisanie kolejności elementów

http://api.jqueryui.com/sortable/
http://api.jqueryui.com/sortable/

R O Z D Z I AŁ 1 2 . INTERAKCJE I EFEKTY JQUERY UI

Sortowanie elementów
strony

459

listy na serwerze jest niezbędne w celu ich późniejszego odtworzenia. Gdyby
na przykład gdyby menadżer porządkował listę zadań dla swoich pracowników,
ich kolejność można by przesłać na serwer, zapisać w bazie danych, a następnie
odtwarzać, gdy do aplikacji zalogują się pracownicy chcący sprawdzić, jakie
prace należy wykonać (i w jakiej kolejności). Aby skorzystać z tej możliwości,
elementy listy należy przygotować w odpowiedni sposób.

 Każdy element listy musi mieć identyfikator.

 Każdy identyfikator musi się zaczynać od tego samego słowa, które będzie
pełnić rolę identyfikatora grupowego dla danej listy; za tym słowem należy
umieścić znak podkreślenia (_).

 Za znakiem podkreślenia należy podać unikalny identyfikator danego ele-
mentu listy.

Przykładowo załóżmy, że na stronie jest umieszczona lista utworów mu-
zycznych. Jej kod HTML mógłby wyglądać w następujący sposób:

<ul id="playlist">
 <li id="song_1">My Way -- Frank Sinatra
 <li id="song_2">Like a Rolling Stone -- Bob Dylan
 <li id="song_3">Respect -- Aretha Franklin

Zwróć uwagę, że każdy z elementów listy rozpoczyna się od łańcucha zna-
ków song_ , po którym został umieszczony unikalny identyfikator utworu
z bazy danych. Chodzi o to, by przekazać na serwer informacje o nowej ko-
lejności elementów na liście.

Poniższe wywołanie pokazuje, w jaki sposób można pobrać informacje o ko-
lejności elementów na liście:

var listOrder = $('#playList').sortable('serialize');

Wywołanie metody serialize zwraca łańcuch znaków o następującej, przy-
kładowej postaci:

song[]=2&song[]=3&song[]=1

Ten łańcuch określa kolejność elementów listy. W powyższym przykładzie
liczby 2, 3 i 1 oznaczają, że pierwszy element listy został przeciągnięty na jej
koniec. Taki łańcuch znaków można dołączyć do adresu URL i przesłać na
serwer bądź też przekazać go przy użyciu technologii AJAX (opisanej w roz-
dziale 13.).

Uwaga: Metoda serialize udostępnia opcje pozwalające określać format zwracanego łańcu-

cha znaków. Więcej informacji na jej temat można znaleźć na stronie http://api.jqueryui.com/sortable/

#method-serialize.

 toArray. Metoda toArray, podobnie jak serialize, jest sposobem na uzy-
skanie uporządkowanej listy elementów widżetu. Aby z niej skorzystać,
wszystkie elementy widżetu muszą mieć identyfikatory. Jednak, w odróżnie-
niu od metody serialize, identyfikatory te mogą być zupełnie dowolne —
nie trzeba ich zapisywać w żadnym określonym formacie. Metoda ta zwraca
tablicę zawierającą identyfikatory wszystkich elementów widżetu, zapisane
w takiej kolejności, w jakiej elementy są umieszczone na liście. Przykładowo

http://api.jqueryui.com/sortable/#method-serialize
http://api.jqueryui.com/sortable/#method-serialize

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Sortowanie elementów
strony

460

załóżmy, że na stronie znajduje się widżet Sortable o identyfikatorze colorList.
Wewnątrz niego są umieszczone trzy elementy, z których każdy reprezentuje
inny kolor.

<ul id="colorList">
 <li id="red">Czerwony
 <li id="green">Zielony
 <li id="blue">Niebieski

Załóżmy teraz, że użytkownik zmienił kolejność elementów w taki sposób,
że Niebieski jest pierwszy, Czerwony jest drugi, a Zielony — trzeci. Jeśli
teraz wywołamy metodę toArrray, aby pobrać informacje o kolejności ele-
mentów listy:

var colors = $('#colorList').sortable('toArray');

to w zmiennej color zostanie zapisana tablica o następującej zawartości:
['blue', 'red', 'green']

Jak widać, metoda ta zwraca zwyczajną tablicę JavaScript (patrz strona 77),
na której można operować przy użyciu dowolnych metod opisanych na stro-
nach od 78 do 83.

Jednym z potencjalnych zastosowań metody toArray jest sprawdzanie, czy
kolejność elementów listy odpowiada jakiemuś predefiniowanemu stanowi.
Załóżmy, że napisaliśmy grę, która wyświetla grupę kolorowych kwadratów
w losowej kolejności. Zadaniem użytkownika jest rozmieszczenie ich w takiej
kolejności, w jakiej poszczególne kolory występują w tęczy (pamiętasz? Są to
kolory: czerwony, pomarańczowy, żółty, zielony, niebieski, indygo i fioletowy).
W takiej aplikacji, w funkcji obsługującej zdarzenie stop (patrz strona 457)
moglibyśmy pobierać kolejność kolorowych elementów przy użyciu metody
toArray, a następnie porównywać z tablicą zawierającą prawidłową odpowiedź
(patrz rysunek 12.8).

Rysunek 12.8. Metoda toArray widżetu Sortable pozwala pobrać tablicę identyfikatorów elementów, zapisanych
w takiej kolejności, w jakiej aktualnie występują one na liście. Można jej użyć, by porównać bieżącą kolejność
elementów na liście z jakimś predefiniowanym stanem. W tej grze każde przesunięcie kolorowego kwadratu
powoduje porównanie kolejności z prawidłowym wynikiem. Jeśli bieżąca kolejność odpowiada prawidłowej
odpowiedzi, gracz wygrywa. Przedstawioną tu stronę — pattern-game.html — można znaleźć w przykładach
dołączonych do książki, dla rozdziału R12

R O Z D Z I AŁ 1 2 . INTERAKCJE I EFEKTY JQUERY UI

Efekty jQuery UI

461

Uwaga: Biblioteka jQuery UI udostępnia także jeszcze dwa inne widżety rozszerzające możliwości inte-

rakcji użytkownika ze stroną. Pierwszy z nich, widżet Resizable, jest używany przez okna dialogowe

jQuery (patrz strona 330) i pozwala użytkownikom zmieniać ich wielkość poprzez przeciąganie

uchwytów umieszczonych w rogach. Można go stosować, by zapewnić możliwość zmiany wiel-

kości pływających okien. Więcej informacji na temat tego widżetu można znaleźć na stronie http://

api jqueryui.com/resizable/.

Widżet Selectable pozwala użytkownikom wybierać elementy (wyróżniać je) poprzez ich kliknię-

cie. Z powodzeniem można by go użyć na stronie do przesyłania zdjęć na serwer: „Zaznacz zdję-

cia, które chcesz przesłać”. Więcej informacji o tym widżecie można znaleźć na stronie http://api.

jqueryui.com/selectable/.

Efekty jQuery UI
W skład biblioteki jQuery UI wchodzi także zestaw wizualnych, animowanych
efektów, które mogą ożywiać nasze aplikacje internetowe. Przykładowo efekt
explode, który zastosowałeś w przykładzie przedstawionym na stronie 447, powo-
duje, że element rozpada się na części i stopniowo zanika. Już za chwilę dowiesz się
więcej o dostępnych efektach, jednak najpierw musisz nauczyć się je stosować.

Efekty są przeznaczone do wyświetlania elementów na stronie, ukrywania ele-
mentów, które są widoczne, bądź też wizualnego wyróżniania elementów — na
przykład poprzez zmianę koloru lub szybkie przesuwanie tam i z powrotem, co
sprawia wrażenie, jakby element się trząsł. Efekty te można stosować albo przy
użyciu niektórych funkcji jQuery (jak robiliśmy w przykładach przedstawionych
wcześniej w książce), albo też za pomocą wywołania specjalnej funkcji jQuery UI,
czyli effect(). Aby na przykład zastosować efekt drop, w którym element wydaje
się spadać na stronę, można wywołać metodę show() i podać w niej nazwę efektu
oraz czas trwania animacji:

$('#pageElement').show('drop', 1000);

To wywołanie spowoduje „upuszczenie” elementu na stronę, przy czym odtwarzanie
efektu będzie trwało jedną sekundę (1000 milisekund). Metoda show() powinna
już wyglądać znajomo (patrz strona 212). To funkcja jQuery, która wyświetla
ukryty wcześniej element. Jednak biblioteka jQuery UI wzbogaca funkcję show()
oraz dwie inne funkcje jQuery o kilka dodatkowych możliwości. jQuery UI udo-
stępnia cztery różne funkcje pozwalające na dodawanie efektów do elementów.
Oto one.

 show(). Biblioteka jQuery UI rozszerza funkcję show(); pozwala wyświetlać
ukryte wcześniej elementy strony na 15 różnych sposobów. Przed wywołaniem
funkcji show() należy się upewnić, że element jest niewidoczny (patrz funkcja
hide() opisana na stronie 212), gdyż w przeciwnym razie element najpierw
szybko zniknie, a potem się pojawi.

 hide(). Aby zastosować jeden z efektów jQuery UI podczas ukrywania elemen-
tu, należy wywołać funkcję hide(). Działa ona podobnie do funkcji hide()
jQuery (patrz strona 212), czyli sprawia, że element znika ze strony; używa przy
tym specjalnego efektu. Przed zastosowaniem tej funkcji należy się upewnić,
że element jest widoczny.

http://api.jqueryui.com/resizable/
http://api.jqueryui.com/resizable/
http://api.jqueryui.com/selectable/
http://api.jqueryui.com/selectable/

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Efekty jQuery UI

462

 toggle(). Funkcja toggle() naprzemiennie wyświetla i ukrywa element. Jeśli
element jest ukryty, wywołanie funkcji toggle()wyświetli go, używając poda-
nego efektu. Jeśli natomiast element jest widoczny, wywołanie toggle()
ukryje go.

 effect(). Większość efektów jQuery UI zostało zaprojektowanych po to, by
w widowiskowy sposób wyświetlać i ukrywać elementy. Istnieje także kilka
efektów — bounce, hightlight, pulsate oraz shake — które wyróżniają
element widoczny na stronie bez jego ukrywania. Efekt highlight wyróżnia
element, wyświetlając w nim szybko jasny kolor tła. Stanowi to doskonały
sposób zwrócenia uwagi użytkownika na konkretne miejsce strony. Funkcja
effect() jest udostępniana przez jQuery UI, a nie przez bibliotekę jQuery.

Uwaga: Funkcji effect() użyjesz w przykładowej aplikacji, którą napiszesz w rozdziale 14.

Efekty
Efekty jQuery UI są użytecznymi, animowanymi narzędziami dostępnymi w naszym
przyborniku. Każdy z nich można przekazać, w formie łańcucha znaków, w wy-
wołaniu jednej z funkcji opisanych w poprzednim punkcie rozdziału. Każdy ge-
neruje także inny efekt wizualny.

Podstawowy sposób stosowania efektów jQuery UI przy użyciu jednej z wcześniej
opisanych funkcji wygląda następująco:

$('#element').hide('nazwaEfektu', { nazwaOpcji : wartoscOpcji },
czasTrwania, funkcjaZwrotna);

Gdybyśmy chcieli ukryć element o identyfikatorze deleteThis, rozrywając go na
16 części, które zanikną w ciągu pół sekundy, a następnie wyświetlić komunikat
„Buuum!”, należałoby użyć następującego wywołania:

$('#deleteThis').hide('explode', { pieces : 16 }, 500, function () {
 alert('Buuum!');
});

Większość tych efektów pozwala na przekazywanie jednej lub kilku opcji dodat-
kowo kontrolujących ich działanie. Opcje te są przekazywane w formie obiektu
zawierającego pary nazwa – wartość. W powyższym przykładzie taką opcją jest
liczba fragmentów, na które zostanie podzielony wybuchający element:

{ pieces : 16 }

Każdy efekt posiada inne opcje, a niektóre nie mają ich w ogóle. Poniżej przed-
stawiona została lista efektów jQuery UI.

 blind. Efekt blind wyświetla bądź ukrywa element; przykładem może być
opuszczanie lub podnoszenie rolety. Efekt umożliwia przekazanie jednej opcji,
direction, określającej kierunek ruchu rolety: up (w górę), down (w dół), left
(w lewo) lub right (w prawo). Opcję tę należy przekazywać w postaci obiektu
— pary nazwa – wartość — jako drugi argument wywołania funkcji. A tak można
użyć tego efektu do ukrycia elementu strony:

$('#element').hide('blind', { direction : 'left'}, 1000);

R O Z D Z I AŁ 1 2 . INTERAKCJE I EFEKTY JQUERY UI

Efekty jQuery UI

463

 bounce. Efekt bounce można wykorzystać podczas wyświetlania i ukrywania
elementów. Można go także stosować przy użyciu funkcji effect(), aby po
prostu poruszać widocznym elementem w górę i w dół; stanowi to doskonały
sposób zwrócenia uwagi na element — jakby element „wołał”: „Hej, popatrz
na mnie!!”. Efekt ten ma dwie opcje.

 distance. Największa odległość (wyrażona w pikselach), na jaką element zo-
stanie odsunięty podczas odbijania. Im większa ta liczba, tym dalej element
będzie się odbijać i tym bardziej będzie przyciągać uwagę użytkownika.

 times. Opcja określa, ile razy element zostanie odbity.

W poniższym kodzie pokazano, w jaki sposób można sprawić, by element odbił
się 20 razy na odległość 100 pikseli:

$('#theElement').click(function () {
 $(this).effect('bounce', {
 distance : 100,
 times : 20
 },
 1000
);
});

 clip. Efekt clip polega na zastosowaniu właściwości CSS clip, by element
pojawiał się, rozwijając się do pełnych wymiarów w pionie lub w poziomie.
Efekt ten obsługuje tylko jedną opcję, direction, która może przyjmować
jedną z dwóch wartości: vertical (w pionie) lub horizontal (w poziomie).

{ direction : 'horizontal' }

 drop. Efekt umożliwia wyświetlanie lub ukrywanie elementu; stopniowo
zmienia jego nieprzezroczystość i jednocześnie przesuwa go w górę, dół, lewo
lub prawo. W efekcie można zastosować jedną opcję, direction, która może
przyjmować jedną z czterech wartości: up (w górę), down (w dół), left (w lewo)
i right (w prawo).

 explode. Efekt explode dzieli element na określoną liczbę fragmentów, na-
stępnie animuje ich ruch na zewnątrz względem środka elementu i jedno-
cześnie sprawia, że stopniowo zanikają. Zastosowany w funkcji show() spo-
woduje efekt eksplodującego elementu oglądanego wstecz: na początku pojawiają
się fragmenty, które następnie zbliżają się do siebie, tworząc w końcu jedną
całość. Efekt ten udostępnia tylko jedną opcję, pieces, określającą liczbę
fragmentów, na które zostanie podzielony element. Jej wartości muszą być
kwadratami kolejnych liczb całkowitych, czyli mają to być liczby: 1, 4, 9, 16,
25 i tak dalej (nie używaj jednak wartości większej od 25, gdyż sprawi to, że
efekt będzie odtwarzany bardzo wolno):

{ pieces: 16 }

 fade. Efekt działa jak funkcje jQuery fadeIn() oraz fadeOut(); innymi sło-
wy, nie jest szczególne efektowny.

 fold. Efekt pozwala wyświetlać i chować element poprzez jego rozkładanie
i składanie. Działanie tego ciekawego efektu można modyfikować przy użyciu
dwóch opcji. Pierwsza z nich, size, określa wielkość elementu (wyrażoną
w pikselach), do której powinien zostać zmniejszony, zanim zacznie być roz-
wijany lub składany wzdłuż drugiej osi. Druga opcja, horizFirst, przyjmuje

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Efekty jQuery UI

464

wartość logiczną i określa, czy element najpierw ma być rozkładany lub składa-
ny wzdłuż osi pionowej (to domyślny sposób działania efektu) czy też wzdłuż
osi poziomej.

{ size : '50%', horizFirst : true }

 hightlight. Efekt highlight błyskawicznie zmienia kolor tła elementu, aby
przyciągnąć uwagę użytkownika. To kolejny z grupy efektów, których można
używać na widocznym elemencie strony bez jego ukrywania. Kolor tła, jaki
zostanie zastosowany, określany jest przy użyciu opcji color. Aby na przy-
kład wyróżnić element, zmieniając jego kolor tła na czerwony na okres 1 se-
kundy, należałoby użyć następującego wywołania funkcji effect():

$('#element').effect('highlight', { color : '#ff0000' }, 1000);

 puff. Efekt zmienia wielkość elementu i sprawia, że jednocześnie stopniowo
zanika lub się pojawia. Udostępnia on tylko jedną opcję, percent, określają-
cą (w procentach) wielkość, do jakiej element zostanie powiększony (podczas
ukrywania) lub od jakiej zacznie się zmniejszać do docelowych wymiarów
(podczas wyświetlania).

{ percent : 200 }

 pulsate. To kolejny z grupy efektów, których można używać w celu przycią-
gnięcia uwagi użytkownika bez ukrywania elementu. Efekt naprzemiennie
ukrywa i wyświetla element. Przy użyciu opcji times można określić, ile razy
element ma zniknąć i ponownie się pojawić. Poniżej przedstawiony został
przykład użycia tego efektu:

$('#element').effect('pulsate', { times : 20 }, 2000);

 scale. Efekt scale pozwala na zmianę wielkości elementu. Można go uży-
wać zarówno w metodzie hide(), jak i show(). Zazwyczaj, kiedy wywołamy
metodę show(), by wyświetlić ukryty element, będzie on powiększany od
maleńkiego punktu aż do swoich pełnych wymiarów. Jeśli natomiast element
jest widoczny na stronie i wywołamy metodę hide(), element będzie się stop-
niowo zmniejszał, aż całkowicie zniknie.

 shake. Efekt można zastosować przy użyciu funkcji effect() (patrz strona
462) na elemencie, który jest widoczny. Powoduje on „potrząśnięcie” ele-
mentem w podanym kierunku, na podaną odległość i w określonym kierunku.
To kolejny z grupy efektów typu „Proszę zwrócić na mnie uwagę!”, choć
można go także używać do ważniejszych celów, takich jak zasygnalizowanie
wystąpienia błędu; na przykład można „potrząsnąć” oknem dialogowym, jeśli
użytkownik nie zaznaczył pola wyboru „Akceptuję regulamin” w formularzu
rejestracyjnym. Postać tego efektu można modyfikować przy użyciu trzech
opcji. Pierwsza z nich, direction, określa kierunek, w którym element bę-
dzie potrząsany. Może ona przyjmować wartości: up, down, left lub right.
Druga opcja, distance, określa odległość (wyrażoną w pikselach), na jaką
element zostanie przesunięty przy każdym potrząśnięciu; im większa jej war-
tość, bym bardziej zauważalny będzie efekt. I w końcu ostatnia opcja, times,
określa, ile razy element ma zostać potrząśnięty. Aby na przykład potrząsnąć
elementem w lewo (i dalej przesuwać go w poziomie) 10 razy na odległość
50 pikseli, należałoby użyć następujących opcji:

{ direction : 'left', distance : 50, times : 10 }

R O Z D Z I AŁ 1 2 . INTERAKCJE I EFEKTY JQUERY UI

Efekty jQuery UI

465

 size. Efekt zmienia wielkość elementu do podanych wymiarów. Udostępnia
trzy opcje. W pierwszej z nich, to, należy zapisać obiekt zawierający dwie
właściwości, width oraz height. Określają one, jakie mają być docelowe wy-
miary elementu (podczas jego ukrywania) bądź też jego wymiary początkowe
(podczas wyświetlania).

Opcja origin określa położenie punktu, do którego będzie przesuwany zmniej-
szający się element podczas ukrywania. Jej wartością jest tablica dwóch liczb;
określają one odpowiednio współrzędną pionową i poziomą tego punktu.

Ostatnia z opcji, scale, określa, co należy skalować, i może przyjmować na-
stępujące wartości: both, box oraz content. Aby na przykład jedynie zmniejszać
lub zwiększać zewnętrzne pudełko elementu (jego obramowanie, tło, wyso-
kość i szerokość), należy przypisać jej wartość box. W takim przypadku za-
wartość elementu (taka jak umieszczony w nim tekst) nie będzie skalowana.

 slide. Efekt powoduje wysunięcie elementu poza obszar strony (w przypad-
ku jego ukrywania) lub wsunięcie na stronę (w przypadku wyświetlania).
Udostępnia on jedną właściwość, direction, która może przyjmować war-
tości left, right, up lub down i określa kierunek, w jakim element będzie
przesuwany.

$('#element').show('slide', { direction : 'right' }, 1000);

Uwaga: Więcej informacji na temat efektów jQuery UI można znaleźć na stronie http://api.jqueryui.com/

category/effects/.

Tempo animacji
Biblioteka jQuery UI udostępnia także zestaw funkcji (ang. easing functions)
określających, jak zmienia się tempo animacji wraz z upływem czasu. Funkcje te
nie mają wpływu na długość trwania animacji, lecz zmieniają szybkość odtwa-
rzania jej poszczególnych etapów. Jeśli na przykład używamy efektu bounce, mo-
żemy zastosować funkcję, która sprawi, że efekt początkowo będzie odtwarzany
wolno, a następnie przed zakończeniem przyspieszy.

Uwaga: Na witrynie jQuery UI dostępna jest lista wszystkich funkcji określających tempo animacji oraz

przykłady pozwalające zobaczyć, jakie są efekty ich działania: http://api.jqueryui.com/easings/.

Aby zastosować jedną z tych funkcji, należy ją przekazać jako właściwość obiektu
opcji. W tym celu trzeba użyć właściwości easing, której wartością powinna być
nazwa wybranej funkcji, na przykład easeInOutQuarter, easeInSine i tak dalej
(pełna lista dostępnych funkcji dostępna jest na stronie http://api.jqueryui.com/
easings/).

Załóżmy, że chcemy zastosować efekt bounce (patrz strona 463), aby animować
element za każdym razem, gdy zostanie kliknięty. Chcemy, by element odbił się
20 razy na maksymalną odległość 100 pikseli (te dwa parametry są opcjami efek-
tu bounce). Chcemy także zastosować funkcję, która sprawi, że efekt będzie wy-
glądał bardziej realistycznie — odbijający się element zwalnia, gdy traci energię.

http://api.jqueryui.com/category/effects/
http://api.jqueryui.com/easings/
http://api.jqueryui.com/easings/
http://api.jqueryui.com/category/effects/
http://api.jqueryui.com/easings/

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

Efekty jQuery UI

466

W poniższym przykładzie pokazano, w jaki sposób można dodać właściwość
easing do obiektu opcji:

$('#theElement').click(function () {
 $(this).effect('bounce', {
 distance : 100,
 times : 20,
 easing : 'easeOutBounce'
 },
 1000
);
});

Nasze możliwości nie ograniczają się do stosowania tych funkcji wyłącznie z efek-
tami jQuery UI. Zgodnie z informacjami podanymi na stronie 221, można ich
także używać z animacjami tworzonymi z pomocą jQuery UI.

Animowanie zmiany klas
Biblioteka jQuery UI udostępnia także kilka funkcji pozwalających na animo-
wanie zmian wartości właściwość CSS elementu, podczas gdy są do niego doda-
wane klasy CSS lub też klasy te są z niego usuwane. Funkcje te są w zasadzie
rozszerzeniami istniejących już funkcji jQuery: addClass(), toggleClass()
oraz removeClass() (patrz strona 160). Biblioteka jQuery UI jedynie dodaje me-
chanizm animowania wprowadzanych zmian — w ten sposób, kiedy dodajemy
klasę do jakiegoś elementu lub ją z niego usuwamy, jQuery UI animuje zauwa-
żalne zmiany wynikające z faktu dodania lub usunięcia właściwości CSS.

Uwaga: Animowanie klas obsługiwane przez jQuery UI może przywodzić na myśl przemiany CSS. I fak-

tycznie, są one dosyć podobne: przemiany CSS zależą od wbudowanego w przeglądarkę mechanizmu

wyświetlania, natomiast jQuery animuje zmiany, używając języka JavaScript. Przemiany CSS są lepszym

rozwiązaniem: działają bardziej płynnie i nie wymagają angażowania interpretera JavaScript. Jednak

z drugiej strony przemiany CSS nie są obsługiwane przez przeglądarkę Internet Explorer 9 i jej

wcześniejsze wersje, dlatego, aby uzyskać w nich ten sam efekt, trzeba będzie użyć możliwości

animowania zmian klas udostępnianej przez jQuery UI. Jeśli jednak nie musimy obsługiwać starych

wersji Internet Explorera, lepiej użyć przemian CSS i zrezygnować z funkcji jQuery UI. Informacje

na temat przemian CSS można znaleźć na stronie https://developer.mozilla.org/en-US/docs/Web/

Guide/CSS/Using_CSS_transitions.

Wszystkie funkcje jQuery UI służące do animowania zmian klas mogą przyj-
mować do czterech argumentów określających sposób ich działania. Pierwszym
z nich jest nazwa dodawanej lub usuwanej klasy. Kolejnymi trzema argumenta-
mi są: czas trwania animacji, używana funkcja określająca jej tempo oraz funk-
cja zwrotna wywoływana po zakończeniu animacji — czyli te same argumenty,
które są przekazywane w metodzie effect() (patrz strona 462). Aby na przy-
kład wybrać element o identyfikatorze feature, dodać do niego klasę o nazwie
highlight i animować widoczne zmiany wywołane przez dodanie tej klasy, nale-
żałoby użyć następującego fragmentu kodu:

$('#feature').addClass('highlight', 1000, 'easeOutBack', function () {
 alert('Animacja została zakończona.');
});

https://developer.mozilla.org/en-US/docs/Web/

R O Z D Z I AŁ 1 2 . INTERAKCJE I EFEKTY JQUERY UI

Efekty jQuery UI

467

Powyższy kod dodaje do elementu klasę o nazwie highlight i animuje widoczne
zmiany w wyglądzie elementu, wprowadzając je w czasie jednej sekundy (1000
milisekund) i używając przy tym funkcji easeOutBack (patrz strona 465). Po za-
kończeniu animacji wywoływana jest funkcja zwrotna, która wyświetla okno
dialogowe z komunikatem „Animacja została zakończona.”. W celu wykonania
animacji zmiany klas konieczne jest jedynie podanie nazwy klasy oraz czasu
trwania animacji.

Biblioteka jQuery UI udostępnia cztery metody służące do animowania zmian klas.

 Metoda addClass() pozwala na dodanie klasy do jednego lub kilku elemen-
tów oraz wykonanie animacji widocznych zmian w zadanym okresie czasu.

Uwaga: Jeśli w wywołaniu którejkolwiek z tych metod nie zostanie przekazany czas trwania animacji,

jQuery UI zastosuje standardową funkcję jQuery, która nie korzysta z animacji, na przykład:

$('#feature').addClass('highlight');

Ten kod dodaje do elementu klasę highlight, lecz nie wykonuje animacji zmian.

 Metoda removeClass() działa podobnie jak metoda addClass(). W jej wy-
wołaniu podajemy nazwę klasy, czas trwania animacji, opcjonalną nazwę funkcji
określającej tempo animacji oraz także opcjonalną funkcję zwrotną. Jednak
w odróżnieniu do addClass() ta metoda usuwa z elementu podaną klasę,
animując przy tym wszelkie wizualne zmiany, które to usunięcie wywoła.

 Metoda toggleClass() dodaje podaną klasę do elementu, jeśli jeszcze nie
jest w nim używana, lub usuwa ją, jeśli jest. Można jej używać w połączeniu
ze zdarzeniem click (patrz strona 179), aby dodać klasę do elementu, gdy
zostanie kliknięty po raz pierwszy, a następnie usunąć ją po ponownym
kliknięciu — w taki sposób można utworzyć element działający jak przełącznik,
który może być włączony lub wyłączony. Oczywiście także ta metoda animuje
wszelkie widoczne zmiany wywołane dodaniem lub usunięciem klasy.

Uwaga: Metoda toggleClass() jQuery UI udostępnia także bardziej zaawansowane opcje. Wszelkie

informacje na ich temat można znaleźć na stronie http://api.jqueryui.com/toggleClass/.

 Metoda switchClass() jest jedyną spośród metod związanych z operacjami
na klasach, która nie ma swojego odpowiednika wśród funkcji biblioteki
jQuery. Wymaga podania nazw dwóch klas: pierwsza z nich jest klasą, którą
jQuery UI usunie z wybranego elementu, a druga — klasą, która zostanie do
niego dodana. A zatem metoda ta działa jak połączenie wywołań dwóch metod
— removeClass() i addClass()— lecz pozwala animować zmiany, przyjmując
jako punkt początkowy stan elementu sprzed usunięcia pierwszej klasy, a jako
punk końcowy — stan elementu po dodaniu drugiej klasy. Jeśli na przykład
usuniemy z elementu klasę, która definiuje jego kolor tła jako czerwony, i do-
damy klasę, która zmienia to tło na zielone, jQuery UI wykona animację zmia-
ny koloru tła pomiędzy kolorami czerwonym i zielonym:

$('#feature').switchClass('defaultStyles','highlight',1000);

Uwaga: Więcej informacji na temat metod jQuery UI można znaleźć na stronie http://api.jqueryui.

com/category/effects-core/.

http://api.jqueryui.com/toggleClass/
http://api.jqueryui.com/category/effects-core/
http://api.jqueryui.com/category/effects-core/

C ZĘŚĆ I I I  W P R O W A D Z E N I E D O B I B L I O T E K I J Q U E R Y U I

468

Zaawansowane
zastosowania jQuery
i języka JavaScript

Rozdział 13. Wprowadzenie do technologii AJAX

Rozdział 14. Tworzenie aplikacji do obsługi listy zadań

IV
CZĘŚĆ

Wprowadzenie
do technologii AJAX

avaScript to wspaniały język, ale nawet jego możliwości są ograniczone. Jeśli
chcesz wyświetlić informacje z bazy, wysłać e-mail z danymi z formularza lub
wczytać dodatkowy kod HTML, musisz nawiązać komunikację z serwerem

WWW. Zwykle odbywa się to przez pobranie nowej strony WWW. Przykładowo
przy wyszukiwaniu informacji w bazie przeglądarka zwykle opuszcza pierwotną stro-
nę i wyświetla wyniki w nowej.

Oczekiwanie na wczytanie nowej strony oczywiście zajmuje czas. Użytkownicy na
pewno chcieliby, by witryny sprawiały wrażenie, że działają szybciej i sprawniej
reagują na wykonywane czynności, tak jakby były otwierane na lokalnym kompu-
terze, a nie na odległym serwerze. Witryny, takie jak Facebook, Twitter, Google Docs
czy też Gmail, sprawiają, że granica pomiędzy witrynami WWW a tradycyjnym
programami komputerowymi staje się coraz bardziej niewyraźna. Technologią, która
pomaga tworzyć aplikacje internetowe nowej generacji, jest AJAX.

AJAX umożliwia żądanie i pobieranie odpowiedzi od serwera WWW oraz aktuali-
zowanie wyświetlanych materiałów bez konieczności wczytywania całej nowej stro-
ny. Efektem są witryny, które dużo szybciej reagują na działania użytkowników.
Przykładowo w witrynie Google Maps (patrz rysunek 13.1) możesz przybliżyć wi-
dok, przejść na północ, południe, wschód lub zachód, a nawet chwycić i przeciągnąć
mapę. Wszystkie te operacje zachodzą bez wczytywania nowych stron.

Czym jest AJAX?
Nazwę „AJAX” wymyślono w roku 2005. Miała ona opisywać istotę nowych witryn
udostępnionych przez firmę Google — Google Maps (http://maps.google.com/)
oraz Gmail (http://www.gmail.com). AJAX to akronim od zwrotu Asynchronous
JavaScript and XML, jednak w przeciwieństwie do języków HTML, JavaScript i CSS

J

13
ROZDZIAŁ

http://maps.google.com/
http://www.gmail.com

C ZĘŚĆ I V  Z A A W A N S O W A N E Z A S T O S O W A N I A J Q U E R Y I JĘZ Y K A J A V A S C R I P T

Czym jest AJAX?

472

Rysunek 13.1. Google Maps (http://maps.google.com/) to jedna z pierwszych dużych witryn, w której użyto
AJAX-a do odświeżania zawartości strony bez konieczności wczytywania całych dokumentów. Szybkość
reagowania strony wynika z tego, że zmieniają się jedynie dane mapy, a pozostałe części strony — logo, pole
wyszukiwania, ramka z wynikami i kontrolki mapy — pozostają takie same przy żądaniu nowych obszarów

nie jest to „oficjalna” technologia. To po prostu określenie, które opisuje współ-
działanie kilku technologii — języka JavaScript, mechanizmów przeglądarek i ser-
werów WWW — przy pobieraniu i wyświetlaniu nowych materiałów bez koniecz-
ności wczytywania całych stron WWW.

Oto sposób działania technologii AJAX: umieszczony na stronie skrypt wysyła
żądanie z przeglądarki na serwer WWW, który z kolei przesyła z powrotem do prze-
glądarki jakieś dane (nazywane odpowiedzią). Skrypty JavaScript przyjmują te dane
i używają ich. Jeśli klikniesz w witrynie Google Maps strzałkę skierowaną w górę,
kod JavaScript zażąda od serwera Google nowych danych, a następnie użyje ich do
wyświetlenia odpowiedniego fragmentu mapy.

Choć pewnie nie pracujesz nad nową wersją witryny Google Maps, AJAX umożliwia
też wykonywanie wielu prostych operacji. Oto przykłady.

 Wyświetlanie nowych danych HTML bez konieczności odświeżania strony.
Przykładowo na stronie prezentującej kilka nagłówków oraz wyświetlającej treść
artykułu po kliknięciu jednego z nagłówków można uchronić użytkowników
przed oczekiwaniem na wczytanie nowej strony. Zamiast tego wybrany artykuł
może zostać wyświetlony bezpośrednio na dotychczasowej stronie, bez żadnych

http://maps.google.com/

R O Z D Z I AŁ 1 3 . W P R O W A D Z E N I E D O T E C H N O L O G I I A J A X

AJAX — podstawy

473

banerów reklamowych, bocznych kolumn, stopki oraz całej pozostałej zawarto-
ści strony, którą w przeciwnym razie przeglądarka musiałaby wczytywać. Jak
utworzyć takie rozwiązanie, dowiesz się na stronie 480.

 Przesyłanie formularzy i natychmiastowe wyświetlanie wyników. Wyobraź
sobie formularz rejestrowania się na liście abonentów biuletynu. Kiedy użyt-
kownik wypełni i prześle taki formularz, jego elementy znikną i natychmiast
pojawi się komunikat typu „Zarejestrowałeś się na liście abonentów”. Na stronie
495 zobaczysz, jak utworzyć taki formularz za pomocą AJAX-a.

 Logowanie się bez opuszczania strony. Strona z małym formularzem logo-
wania to następne zastosowanie języka JavaScript związane z formularzami.
Wystarczy wypełnić formularz i wcisnąć przycisk Zaloguj, a skrypt nie tylko
zaloguje użytkownika, ale też wyświetli jego status, nazwę i inne specyficzne
informacje.

 Kontrolka do oceny materiałów za pomocą liczby gwiazdek. W witrynach
z listami książek, filmów i innych produktów często dostępne są oceny w po-
staci liczby gwiazdek (zwykle od jednej do pięciu), określające jakość towaru
zdaniem klientów. Takie systemy oceniania przeważnie pozwalają wyrazić swoją
opinię przez zaznaczenie odpowiedniej liczby gwiazdek. Dzięki AJAX-owi można
umożliwić użytkownikom dokonanie oceny bez opuszczania strony. Wystarczy,
że klient kliknie właściwą gwiazdkę. Do obsługi tego mechanizmu można użyć
wtyczki biblioteki jQuery (http://www.wbotelhos.com/raty/).

 Przeglądanie informacji z bazy danych. Amazon to typowy przykład interne-
towej bazy danych, którą można przeglądać. Kiedy klient szuka w witrynie skle-
pu Amazon książek na temat języka JavaScript, otrzymuje listę dostępnych pod-
ręczników. Zwykle nie mieszczą się one wszystkie na jednej stronie, dlatego
trzeba przechodzić między kolejnymi fragmentami listy, aby wyświetlić na-
stępne 10 pozycji. Za pomocą AJAX-a można poruszać się po rekordach bazy
danych bez konieczności przechodzenia do nowej strony. A oto sposób, w jaki
AJAX jest używany w serwisie Twitter: gdy przeglądasz swoją stronę na Twitte-
rze, wyświetlana jest lista komunikatów od osób, które „śledzimy”. Po przewi-
nięciu tej listy do samego końca serwis wczytuje nową porcję komunikatów.
Wystarczy przewinąć trochę dalej, a pojawią się nowe komunikaty. W ten
sposób można odnieść wrażenie, że strona jest nieskończona!

W żadnej z tych operacji nie ma nic rewolucyjnego. Podobne efekty można uzyskać
za pomocą standardowego kodu HTML i skryptów działających po stronie serwera
(są potrzebne na przykład do pobierania danych z formularza lub informacji z bazy).
Różnica kryje się w zwrocie „bez konieczności wczytywania nowej strony”. AJAX
sprawia, że strony reagują szybciej, zatem usprawnia korzystanie z witryny i popra-
wia doznania użytkowników.

AJAX — podstawy
Technologie, na których oparto AJAX, są dość skomplikowane. Niezbędne jest
współdziałanie kodu JavaScript, skryptów działających po stronie serwera i mecha-
nizmów przeglądarek. Jednak podstawowa zasada funkcjonowania tej technologii jest

http://www.wbotelhos.com/raty/

C ZĘŚĆ I V  Z A A W A N S O W A N E Z A S T O S O W A N I A J Q U E R Y I JĘZ Y K A J A V A S C R I P T

AJAX — podstawy

474

prosta, jeśli zrozumiesz wszystkie kroki związane z użytkowaniem AJAX-a. Na ry-
sunku 13.2 przedstawiono różnicę między komunikacją serwera WWW z tradycyj-
nymi stronami HTML i ze stronami opartymi na AJAX-ie.

Rysunek 13.2. W tradycyjnych,
prostych witrynach WWW prze-
glądarka żąda przesłania strony
z serwera i otrzymuje ją od niego
(na górze). Proces ten polega na
ciągłym wczytywaniu i odświeża-
niu stron. Przy korzystaniu z AJAX-a
przeglądarka żąda tylko nowych
informacji. Serwer zwraca żądane
dane, po czym — przy udziale
skryptów JavaScript — następuje
aktualizacja treści i wyglądu strony
(u dołu)

Elementy układanki
AJAX nie jest niezależną technologią. Składa się z wielu różnych elementów, któ-
rych współdziałanie poprawia komfort pracy użytkowników. Oto trzy podstawowe
składniki AJAX-a.

 Przeglądarka internetowa. Jest ona oczywiście niezbędna do przeglądania stron
WWW i uruchamiania kodu JavaScript, jednak większość przeglądarek ma też
wbudowany tajemny składnik umożliwiający działanie AJAX-a. Jest to obiekt
XMLHttpRequest. Ten element o dziwnej nazwie sprawia, że kod JavaScript może
nawiązać komunikację z serwerem WWW i odbierać od niego informacje.

R O Z D Z I AŁ 1 3 . W P R O W A D Z E N I E D O T E C H N O L O G I I A J A X

AJAX — podstawy

475

Obiekt XMLHttpRequest wprowadzono w przeglądarce Internet Explorer 5 wiele
lat temu, jednak stopniowo zaczął się pojawiać we wszystkich najważniejszych
przeglądarkach. Więcej o tym obiekcie dowiesz się na stronie 476.

 Język JavaScript wykonuje większość skomplikowanych zadań w technologii
AJAX. Przesyła żądania na serwer, oczekuje na odpowiedź, przetwarza ją i zazwy-
czaj aktualizuje stronę przez dodanie nowych materiałów lub zmianę jej wyglądu.
W zależności od przeznaczenia programu kod JavaScript może przesyłać informa-
cje z formularza, żądać dodatkowych rekordów z bazy lub wysyłać pojedyncze dane
(na przykład ocenę przyznaną książce przez użytkownika). Po przesłaniu danych
na serwer skrypt JavaScript jest gotowy na odbiór odpowiedzi, na przykład rekor-
dów z bazy danych lub prostych komunikatów typu „Twój głos został dodany”.
Na podstawie uzyskanych informacji skrypt JavaScript aktualizuje stronę, na
przykład wyświetla nowe rekordy lub informuje użytkownika o udanym logowa-
niu. Aktualizowanie strony obejmuje manipulowanie modelem DOM (ang. Do-
cument Object Model; patrz strona 145) w celu dodania, zmiany lub usunięcia
znaczników HTML i ich zawartości. Większość tej książki opisuje właśnie takie
operacje — modyfikowanie treści i wyglądu stron za pomocą języka JavaScript.

 Serwer WWW odbiera żądanie od przeglądarki i przesyła odpowiedź z danymi.
Serwer może zwracać kod HTML lub zwykły tekst, a także dokumenty XML
(patrz ramka na stronie 495) lub dane w formacie JSON (patrz strona 500). Jeśli
serwer odbiera informacje z formularza, może dodać je do bazy danych i zwrócić
komunikat z potwierdzeniem: „Rekord został dodany”. Skrypt JavaScript może
też zażądać 10 następnych rekordów z bazy, a serwer powinien wtedy zwrócić
informacje zawierające te dane.
Ten element układanki bywa skomplikowany i zwykle wymaga użycia kilku
technologii: serwera WWW, serwera aplikacji i serwera baz danych. Serwer
WWW to specyficzna „szafka na akta”. Przechowuje dokumenty, a także udo-
stępnia je, kiedy przeglądarka ich zażąda. Do wykonywania bardziej skompli-
kowanych zadań, na przykład umieszczania danych z formularza w bazie,
potrzebne są serwer aplikacji i serwer baz danych. Serwer aplikacji obsługuje
języki programowania używane po stronie serwera, takie jak PHP, Java, C#,
Ruby lub Cold Fusion, oraz przetwarza zadania, których nie można wykonać za
pomocą samych stron HTML. Umożliwia na przykład wysyłanie listów elek-
tronicznych, sprawdzanie cen książek w witrynie Amazon lub zapisywanie
informacji w bazie danych. Serwer baz danych służy do przechowywania infor-
macji, między innymi nazwisk i adresów klientów, szczegółowych informacji
o sprzedawanych produktach lub archiwum ulubionych przepisów. Do popu-
larnych serwerów tego typu należą MySQL, PostgreSQL i SQL Server.

Uwaga: Pojęcie „serwer” może oznaczać sprzęt lub oprogramowanie. W tej książce nazwy serwer

aplikacji, serwer WWW i serwer baz danych oznaczają oprogramowanie, które może działać na tym

samym komputerze (jest to często stosowane rozwiązanie).

Różne serwery WWW, serwery aplikacji i serwery baz danych można łączyć na
wiele sposobów. Na przykład można korzystać z serwera WWW IIS Microso-
ftu, ASP.NET (serwera aplikacji) i narzędzia SQL Server (serwera baz danych).
Inny zestaw to Apache (serwer WWW), PHP (serwer aplikacji) i MySQL (ser-
wer baz danych).

C ZĘŚĆ I V  Z A A W A N S O W A N E Z A S T O S O W A N I A J Q U E R Y I JĘZ Y K A J A V A S C R I P T

AJAX — podstawy

476

W I E D Z A W P I G U Ł C E

Konfigurowanie serwera WWW
AJAX współpracuje z serwerem WWW. W końcu pod-

stawowym zadaniem tej technologii jest umożliwienie

wysyłania i pobierania informacji z serwera za pomocą

kodu JavaScript. Wszystkie przykłady przedstawione

w tym rozdziale, z wyjątkiem jednego — prezentującego

korzystanie z serwisu Flickr — wymagają działające-

go serwera WWW. Co więcej, prawdopodobnie będziesz

chciał go uruchomić, także po to, aby lepiej poznać

świat AJAX-a. Jeśli masz już witrynę dostępną w in-

ternecie, możesz przetestować programy ajaksowe

przez przeniesienie plików na używany serwer WWW.

Niestety, ta technika jest niewygodna w użyciu. Musisz

utworzyć strony na własnym komputerze, a następnie

przenieść je na serwer za pomocą programu do obsługi

kont FTP, aby zobaczyć, czy działają.

Lepsze podejście polega na zainstalowaniu serwera do
tworzenia oprogramowania. W tym celu należy zain-

stalować serwer WWW na własnym komputerze, aby

można było rozwijać i testować na nim programy ajakso-

we. Na pozór jest to trudne zadanie, jednak istnieje wiele

bezpłatnych programów, które umożliwiają instalację

wszystkich potrzebnych komponentów przez dwukrot-

ne kliknięcie pliku.

W systemie Windows możesz zainstalować serwery

Apache, PHP i MySQL za pomocą pakietu WAMP

(http://www.wampserver.com/en/). Jest to bezpłatny

pakiet instalacyjny, który konfiguruje wszystkie ele-

menty potrzebne do zasymulowania działania praw-

dziwych witryn dostępnych w internecie.

Miłośnicy komputerów Mac mogą skorzystać z łatwego

w użyciu programu MAMP (http://www.mamp.info/en/),

który obejmuje serwery Apache, PHP i MySQL. Także

ten pakiet jest bezpłatny. (Dostępna jest także wersja

MAMP przeznaczona dla systemów Windows).

Przykłady przedstawione na stronach 482 oraz 495

wymagają użycia serwera WWW. Dlatego jeśli chcesz

uruchomić wszystkie przykłady, musisz zainstalować ze-

staw AMP przy użyciu jednego z wymienionych wcze-

śniej pakietów. Jeśli masz już witrynę działającą na innym

serwerze (na przykład IIS Microsoftu), prawdopodobnie

zechcesz zainstalować go także na własnym komputerze,

jeżeli planujesz tworzenie aplikacji ajaksowych i udo-

stępnianie ich w internecie. Serwer IIS jest domyślnie in-

stalowany w systemie Windows 8 — trzeba go jedynie

włączyć. Dowiesz się, jak to zrobić, z tego klipu wideo:

https://www.youtube.com/watch?v=mRm9-Xddt2w.

Uwaga: Zestaw Apache, PHP i MySQL (często nazywany AMP) jest bardzo popularny i dostępny

bezpłatnie. Większość dostawców usług hostingowych korzysta z tych serwerów. Także przykłady

przedstawione w tej książce oparto na tym zestawie (patrz ramka na stronie 476).

Komunikacja z serwerem WWW
Podstawą każdego programu ajaksowego jest obiekt XMLHttpRequest (czasem
nazywany też XHR). Jest on wbudowany we współczesne przeglądarki, które umoż-
liwiają przesyłanie informacji na serwer WWW i odbieranie ich za pomocą kodu
JavaScript. Proces komunikacji obejmuje pięć głównych kroków, a wszystkie je można
obsłużyć przy użyciu języka JavaScript.

 1. Tworzenie egzemplarza obiektu XMLHttpRequest.

Pierwszy krok przygotowuje przeglądarkę na przesłanie przez skrypt infor-
macji na serwer WWW. W najprostszej postaci instrukcja tworząca obiekt
XMLHttpRequest w kodzie JavaScript wygląda następująco:

var xhr = new XMLHttpRequest();

Choć powyższa instrukcja jest prosta, to jednak korzystanie z technologii
AJAX przy wykorzystaniu wyłącznie zwyczajnych możliwości języka Java-
Script może być trudne. Na szczęście biblioteka jQuery znacznie ułatwia wy-
syłanie informacji i obsługę AJAX-a. Dowiesz się o tym więcej na stronie 479.

http://www.wampserver.com/en/
http://www.mamp.info/en/
https://www.youtube.com/watch?v=mRm9-Xddt2w

R O Z D Z I AŁ 1 3 . W P R O W A D Z E N I E D O T E C H N O L O G I I A J A X

AJAX — podstawy

477

 2. Zastosowanie metody open() obiektu XHR do określenia rodzaju przesyła-
nych danych i ich docelowej lokalizacji.

Dane można przesyłać na kilka sposobów. Zdecydowanie najczęściej używane
są jednak dwie, określane jako metody GET lub POST (są to te same metody, któ-
rych używasz do wysyłania formularzy HTML). Metoda GET przesyła dane na
serwer WWW w adresie URL, na przykład show.php?productID=34. W tym
przypadku dane są przesyłane w formie łańcucha zapytania (ang. query string)
i zostały zapisane po znaku zapytania (?); konkretnie rzecz biorąc, jest to
fragment productID=34. Jak widać, mają one postać pary nazwa – wartość
(productID to nazwa, a 34 to wartość). Wyobraź sobie, że ten pierwszy element
to nazwa pola formularza, a wartość to dane wprowadzone w tym polu przez
użytkownika.

Metoda POST przesyła dane niezależnie od adresu URL. Programiści zwykle
używają metody GET do pobierania danych z serwera, a metody POST — do prze-
syłania informacji, które serwer powinien zapamiętać (czyli informacji służą-
cych do dodawania, modyfikowania lub usuwania rekordów w bazie danych).
Na stronie 486 dowiesz się, jak korzystać z obu tych metod.

W metodzie open() można też określić stronę na serwerze, do której kierowane
są dane. Zwykle jest to strona z kodem w języku działającym po stronie serwera
(takim jak PHP), która pobiera dane z bazy lub wykonuje inne zadania. Stronę
tę należy wskazać za pomocą adresu URL. Na przykład poniższy kod informuje
obiekt XHR o tym, której metody ma użyć (GET) i do jakiej strony na serwerze
skierować żądanie:

xhr.open('GET', shop.php?productID=34');

Uwaga: Adres URL podany w wywołaniu metody open() musi wskazywać zasób umieszczony na tym

samym serwerze, z którego pochodzi strona generująca żądanie. Ze względów bezpieczeństwa prze-

glądarki WWW nie pozwalają na przesyłanie przy użyciu technologii AJAX żądań skierowanych do in-

nych domen. Ograniczenie to można obejść, korzystając z rozwiązania nazywanego JSONP, które zo-

stało opisane na stronie 506.

 3. Tworzenie funkcji obsługującej pobrane dane.

Kiedy serwer WWW zwróci odpowiedź, na przykład nowe informacje z bazy,
potwierdzenie przetworzenia formularza lub zwykły komunikat tekstowy, zwykle
należy użyć odebranych danych. Może to wymagać tylko wyświetlenia tekstu
typu „Przesyłanie formularza zakończyło się powodzeniem” lub zastąpienia całej
tabeli rekordów bazy danych tabelą z nowymi informacjami. Zawsze jednak
trzeba przygotować funkcję JavaScript do obsługi odpowiedzi. Ta funkcja (jest
to funkcja wywoływana zwrotnie) to często najważniejsza część programu.

Zwykle takie funkcje manipulują zawartością strony i zmieniają jej model DOM.
Usuwają elementy (na przykład przesłany za pomocą AJAX-a formularz), do-
dają je (na przykład komunikat „Przesyłanie formularza zakończyło się powo-
dzeniem” lub nową tabelę HTML z rekordami z bazy danych) lub modyfikują
(na przykład wyróżniają liczbę gwiazdek klikniętą przez użytkownika przy oce-
nie produktu).

C ZĘŚĆ I V  Z A A W A N S O W A N E Z A S T O S O W A N I A J Q U E R Y I JĘZ Y K A J A V A S C R I P T

AJAX — podstawy

478

Potrzebne są jeszcze pewne dodatkowe operacje, jednak do zarządzania szcze-
gółami posłuży biblioteka jQuery, dlatego musisz jedynie pamiętać, że wywo-
ływana zwrotnie funkcja zawiera kod JavaScript, który obsługuje odpowiedź
zwróconą przez serwer.

 4. Wysyłanie żądania.

Aby przesłać informacje na serwer WWW, należy użyć metody send() obiektu
XHR. Wszystkie operacje do tego momentu to faza przygotowawcza. Dopiero ten
krok informuje przeglądarkę, że wszystko jest gotowe i można wysłać żądanie.
Jeśli używasz metody GET, ten etap jest bardzo prosty:

xhr.send();

Metoda send() może przyjmować jeden argument — dane, które mają zostać
przesłane na serwer. W przypadku żądań przesyłanych metodą GET informacje
są przesyłane w adresie URL (na przykład search.php?q=javascript, gdzie
q=javascript to dane). Przy korzystaniu z metody POST trzeba przekazać dane
do metody send() w następujący sposób:

xhr.send('q=javascript');

Także tu nie musisz martwić się szczegółami. W następnym punkcie zobaczysz,
jak uprościć tę operację za pomocą biblioteki jQuery.

Po przesłaniu żądania program JavaScript nie musi wstrzymywać działania.
Litera „A” w nazwie AJAX pochodzi od słowa asynchroniczny, co oznacza, że
po wysłaniu żądania skrypt może wykonywać dalsze operacje. Przeglądarka nie
musi bezczynnie oczekiwać na odpowiedź od serwera.

 5. Pobieranie odpowiedzi.

Kiedy serwer przetworzy żądanie, przesyła odpowiedź do przeglądarki. Za ob-
sługę odpowiedzi odpowiada wywoływana zwrotnie funkcja, którą utworzyłeś
w kroku 3., jednak obiekt XHR otrzymuje w tym czasie kilka informacji, w tym
status żądania, tekst odpowiedzi i — w zależności od ustawień — odpowiedź
w formacie XML.

Status odpowiedzi to numer określający, jak serwer zareagował na żądanie.
Prawdopodobnie znasz status 404, który oznacza, że nie znaleziono żądanego
pliku. Jeśli wszystko poszło zgodnie z planem, serwer zwróci wartość 200 lub
304. Jeśli w czasie przetwarzania strony wystąpił błąd, otrzymasz status 500
(wewnętrzny błąd serwera), a jeśli żądany plik jest zabezpieczony hasłem, pojawi
się błąd 403 (dostęp wzbroniony). Kompletną listę kodów statusu można znaleźć
na stronie http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html.

Przeważnie serwer zwraca odpowiedź tekstową, która jest zapisywana we właści-
wości responseText obiektu XHR. Tą odpowiedzią może być fragment kodu HTML,
prosty komunikat tekstowy lub skomplikowany zbiór danych w formacie JSON
(patrz strona 500). Jeśli serwer zwróci plik XML, zostanie on zapisany we właści-
wości responseXML obiektu XHR. Choć format XML nadal jest używany, strony
działające na serwerze częściej zwracają dane jako tekst, kod HTML lub JSON,
dlatego może się okazać, że nigdy nie będziesz musiał przetwarzać odpowiedzi
w formie kodu XML.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

R O Z D Z I AŁ 1 3 . W P R O W A D Z E N I E D O T E C H N O L O G I I A J A X

AJAX w bibliotece jQuery

479

Niezależnie od formatu zwróconych danych są one dostępne dla wywoływanej
zwrotnie funkcji, która może ich użyć do zaktualizowania strony. Wykonanie ko-
du tej funkcji kończy cały cykl obsługi ajaksowego żądania. Warto jednak pamiętać,
że w tym samym czasie można zgłosić wiele takich żądań.

AJAX w bibliotece jQuery
Choć podstawowy proces korzystania z obiektu XMLHttpRequest nie jest skompliko-
wany, to przesłanie i obsługa każdego żądania wymagają wykonania sekwencji tych
samych czynności. Na szczęście biblioteka jQuery udostępnia kilka funkcji, które
znacznie upraszczają ten proces. W końcu, po przyjrzeniu się pięciu krokom obsłu-
gi żądań ajaksowych (patrz strona 476) można zauważyć, że fragmenty wykonujące
istotne dla skryptu operacje (czyli kod przetwarzający odpowiedź zwróconą przez
serwer) trzeba dodać tylko w jednym, 3. kroku (opisanym na stronie 477). Biblio-
teka jQuery upraszcza wszystkie pozostałe etapy, dlatego można skoncentrować się
na pisaniu ciekawego kodu.

W I E D Z A W P I G U Ł C E

Nauka tworzenia skryptów działających po stronie serwera
Jeśli do wczytywania kodu HTML ze strony zapisanej na

serwerze do strony widocznej w przeglądarce nie uży-

wasz podstawowej metody load() biblioteki jQuery

(opisanej powyżej), to aby zastosować AJAX, potrzebu-

jesz skryptów uruchamianych po stronie serwera. Pod-

stawowym zadaniem AJAX-a jest umożliwianie komu-

nikowania się kodu JavaScript z serwerem (i pobieranie

w ten sposób informacji). Przeważnie oznacza to, że na

serwerze WWW znajduje się inny skrypt, który wykonuje

zadania niemożliwe do obsłużenia za pomocą języka

JavaScript, na przykład wczytuje informacje z bazy da-

nych, wysyła listy elektroniczne lub loguje użytkowników.

Omawianie tworzenia skryptów działających po stronie

serwera wykracza poza zakres tej książki, dlatego musisz

nauczyć się używać języków serwerowych, takich jak

PHP, Ruby on Rails, .NET, JSP (możesz też skorzystać

z usług programisty, który napisze taki kod za Ciebie).

Jeśli nie wybrałeś jeszcze języka, którego chcesz używać

po stronie serwera, dobrym punktem wyjścia będzie PHP.

To jeden z najpopularniejszych języków tego typu; jest

bezpłatny i prawie wszystkie firmy hostingowe obsługują

go na swych serwerach. Język ten ma duże możliwości,

został opracowany specjalnie pod kątem sieci WWW i jest

stosunkowo łatwy w nauce. Jeśli chcesz rozpocząć pozna-

wanie tego języka, wypróbuj książki Learning PHP, MySQL
& JavaScript: With jQuery, CSS & HTML5, 4th Edition1

(wydawnictwo O’Reilly), Head First PHP & MySQL2 (wy-

dawnictwo O’Reilly)

Dostępnych jest też wiele bezpłatnych materiałów do

nauki języka PHP. Seria samouczków PHP 101 (http://

devzone.zend.com/6/php-101-php-for-the-absolute-
-beginner/) firmy Zend, jednej z głównych organizacji

wspomagających rozwój języka PHP, zawiera mnóstwo

podstawowych i zaawansowanych informacji. Witryna

W3Schools także udostępnia przydatne materiały dla

początkujących programistów języka PHP (http://www.

w3schools.com/PHP).

1 Wydanie polskie: PHP, MySQL i JavaScript. Wprowadzenie. Wydanie IV, Helion, Gliwice
2015 — przyp. red.

2 Wydanie polskie: Head First PHP & MySQL. Edycja polska, Helion, Gliwice 2010 —
przyp. red.

http://devzone.zend.com/6/php-101-php-for-the-absolute-beginner/
http://devzone.zend.com/6/php-101-php-for-the-absolute--beginner/
http://devzone.zend.com/6/php-101-php-for-the-absolute-beginner/
http://www.w3schools.com/PHP
http://www.w3schools.com/PHP

C ZĘŚĆ I V  Z A A W A N S O W A N E Z A S T O S O W A N I A J Q U E R Y I JĘZ Y K A J A V A S C R I P T

AJAX w bibliotece jQuery

480

Używanie metody load()
Najprostszą metodą biblioteki jQuery związaną z korzystaniem z AJAX-a jest load().
Wczytuje ona plik HTML do określonego elementu strony. Załóżmy, że na stronie
znajduje się obszar przeznaczony na krótką listę nagłówków wiadomości. Po
wczytaniu strony na liście ma znaleźć się pięć najnowszych informacji. Warto
też udostępnić kilka odnośników, które pozwolą użytkownikom wybrać rodzaj
wyświetlanych artykułów (na przykład wczorajsze wydarzenia, informacje lokalne,
wiadomości sportowe i tak dalej). Odsyłacze te mogą prowadzić do odrębnych
stron, z których każda zawiera odpowiednie teksty, jednak zmusza to czytelników
do pobierania nowych dokumentów (i w ogóle nie wymaga użycia AJAX-a!).

Inne podejście polega na wczytaniu wybranych wiadomości do pola z artykułami
na aktualnie widocznej stronie. Oznacza to, że kiedy użytkownik wybierze nową
kategorię informacji, przeglądarka zażąda z serwera nowego pliku HTML, a następ-
nie umieści go w obszarze przeznaczonym na wiadomości, nie przechodząc przy tym
do następnej strony (patrz rysunek 13.3).

Aby wywołać metodę load(), najpierw należy użyć selektora jQuery do pobrania
elementu strony, w którym ma znaleźć się żądany kod HTML. Następnie można
wywołać tę funkcję i przekazać do niej adres URL pobieranej strony. Załóżmy, że
na stronie znajduje się znacznik <div> o identyfikatorze headlines i chcesz zapisać
w tym elemencie kod HTML z pliku todays_news.html. Można to zrobić w nastę-
pujący sposób:

$('#headlines').load('todays_news.html');

Kiedy skrypt uruchomi ten kod, przeglądarka zażąda pliku todays_news.html z ser-
wera WWW. Po pobraniu go przeglądarka zastąpi bieżącą zawartość znacznika
<div> o identyfikatorze headlines kodem nowego pliku. W żądanym pliku
HTML może znajdować się kompletna strona HTML (wraz ze znacznikami <html>,
<head> i <body>) lub tylko fragment kodu, na przykład jeden znacznik <h1> i aka-
pit tekstu. Plik ten nie musi zawierać całej strony, ponieważ metoda load() tylko
dołącza jego kod do aktualnej (kompletnej) strony WWW.

Uwaga: Można wczytywać pliki HTML pochodzące tylko z tej samej witryny, w której działa bieżąca

strona. Nie możesz użyć metody load() na przykład do wczytania strony głównej witryny Google do

elementu <div> strony z własnej witryny.

Kiedy używasz metody load(), musisz zwrócić uwagę na ścieżki prowadzące do
plików. Adres URL przekazywany do tej metody należy podać względem bieżącej
strony. Oznacza to, że musisz użyć takiej samej ścieżki jak w odnośniku prowadzą-
cym z bieżącej strony do pobieranego pliku HTML. Ponadto ścieżki w kodzie
HTML nie są aktualizowane po wczytaniu tego kodu do dokumentu, dlatego jeśli
pobierany plik zawiera odnośniki lub rysunki, ich adresy URL muszą być poprawne
na stronie wywołującej metodę load(). Jeśli używasz ścieżek podawanych względem
dokumentu (patrz ramka na stronie 45), a pobierany plik HTML znajduje się w in-
nym katalogu witryny, rysunki i odnośniki mogą nie działać po wczytaniu kodu
HTML do bieżącej strony. Jest jednak proste rozwiązanie tego problemu — wy-
starczy używać ścieżek podawanych względem katalogu głównego lub upewnić
się, że wczytywany plik znajduje się w tym samym katalogu co strona wywołująca
metodę load().

R O Z D Z I AŁ 1 3 . W P R O W A D Z E N I E D O T E C H N O L O G I I A J A X

AJAX w bibliotece jQuery

481

Rysunek 13.3. Górna część rysunku przedstawia standardową, opartą na odnośnikach metodę dostępu do
dodatkowego kodu HTML. Kliknięcie odsyłacza na stronie (po lewej) powoduje wczytanie zupełnie nowego do-
kumentu (po prawej). Jednak przy użyciu AJAX-a i funkcji load() biblioteki jQuery można wyświetlić ten sam
kod HTML bez opuszczania bieżącej strony (u dołu). Kliknięcie odnośnika prowadzi do wczytania kodu HTML
do znacznika <div>

C ZĘŚĆ I V  Z A A W A N S O W A N E Z A S T O S O W A N I A J Q U E R Y I JĘZ Y K A J A V A S C R I P T

AJAX w bibliotece jQuery

482

Metoda load() pozwala nawet określić, która część pobranego pliku HTML ma
znaleźć się na stronie. Załóżmy, że żądany plik to zwykła strona witryny. Obejmuje
ona wszystkie standardowe elementy, między innymi baner, pasek nawigacji i stopkę.
Możliwe, że potrzebny jest tylko fragment tej strony, na przykład konkretny element
<div> i jego zawartość. Aby określić, którą część strony chcesz wczytać, po adresie
URL dodaj odstęp i selektor jQuery. Przykładowo załóżmy, że w poprzednim przy-
kładzie chcesz wstawić tylko zawartość elementu <div> o identyfikatorze news
z pliku todays_news.html; możesz to zrobić, używając następującego kodu:

$('#headlines').load('todays_news.html #news');

Przeglądarka pobierze stronę todays_news.html, ale zamiast wstawiać cały kod z tego
pliku do znacznika <div> o identyfikatorze headlines, doda wyłącznie tag <div>
o identyfikatorze news (i jego zawartość). W następnym przykładzie zobaczysz, jak
zastosować tę technikę.

Przykład — korzystanie z metody load()
W tym przykładzie użyjesz biblioteki jQuery, aby zamiast tradycyjnej metody otwie-
rania stron HTML techniką „kliknij i wczytaj” (patrz rysunek 13.3, u góry) zastoso-
wać bardziej interaktywnym podejście, które zastępuje treść bieżącej strony nowym
kodem HTML (patrz rysunek 13.3 — na dole).

Omówienie przykładu

Aby zrozumieć, jak ma działać ten przykład, trzeba najpierw poznać kod HTML stro-
ny, na której chcesz zastosować AJAX. Przyjrzyj się rysunkowi 13.4. Strona zawiera
listę wypunktowaną odnośników, z których każdy wskazuje na inną stronę z różnymi
wiadomościami. Lista ta znajduje się w znaczniku o identyfikatorze newslinks.
Ponadto w ramce w prawej części strony (pod napisem „Doniesienia”) znajduje się
pusty znacznik <div> o identyfikatorze headlines. Na tym etapie jest on tylko pustym
kontenerem na dane. Kiedy użyjesz metody load() biblioteki jQuery, kliknięcie
jednego z odnośników spowoduje umieszczenie informacji w tym elemencie <div>.

Obecnie kliknięcie odnośnika jedynie otwiera stronę WWW z wiadomościami.
Oznacza to, że strona działa w tradycyjny sposób — zawiera odsyłacze, które pro-
wadzą do innych plików. W rzeczywistości nawet bez zmyślnego kodu JavaScript,
który wkrótce dodasz, strona działa zupełnie dobrze i doprowadzi użytkowników do
szukanych informacji. Jest to korzystne, ponieważ nie wszystkie przeglądarki obsłu-
gują język JavaScript. Ponadto jeśli jedynym sposobem na dotarcie do wiadomości
będzie kod JavaScript, wyszukiwarki pominą te wartościowe informacje.

Uwaga: Większość przeglądarek nie pozwala na stosowanie metody load() do bezpośredniego po-

bierania plików z własnego dysku twardego, bez wykorzystania serwera WWW. Dlatego też, aby

wykonać ten przykład, będziesz musiał taki serwer zainstalować (patrz ramka na stronie 476). W czasie

pisania tej książki przeglądarka Safari dla systemu Mac OS pozwalała na stosowanie metody load()

bez użycia serwera WWW.

R O Z D Z I AŁ 1 3 . W P R O W A D Z E N I E D O T E C H N O L O G I I A J A X

AJAX w bibliotece jQuery

483

Rysunek 13.4. Przy używaniu języka
JavaScript do dodawania treści do
strony programiści często dodają pusty
znacznik <div> o określonym identy-
fikatorze. Następnie można w dowol-
nym momencie pobrać ten element
i umieścić w nim dane. W ramce
w prawej części widocznej strony
znajduje się pusty tag <div> (<div
id="headlines">). Przy użyciu AJAX-a
można w łatwy sposób umieścić
w nim zawartość dowolnego pliku,
do którego prowadzą odnośniki
ze środkowej części strony

Ten przykład ilustruje technikę stopniowego wzbogacania. Strona działa prawi-
dłowo także bez kodu JavaScript, jednak użycie tego języka pozwala ją usprawnić.
Oznacza to, że każdy użytkownik może uzyskać dostęp do danych i nikt nie będzie
poszkodowany.

Uwaga: Informacje o pobieraniu przykładowych plików znajdziesz na stronie 46.

Tworzenie kodu

Aby zaimplementować stopniowe wzbogacenie strony, dodasz do niej kod Java-
Script, który „przechwyci” standardowy sposób działania odnośników, następnie
odczyta adres URL klikniętego odnośnika, wczyta odpowiednią stronę i umieści jej
zawartość wewnątrz pustego elementu <div>. W tym celu wykonaj następujące,
proste czynności.

 1. Otwórz w edytorze tekstu plik load.html z katalogu R13.

Należy zacząć od przypisania zdarzenia click do każdego odnośnika z listy
wypunktowanej z głównej części strony. Ta lista (znacznik) ma identyfi-
kator newslinks, dlatego można użyć jQuery do łatwego pobrania wszystkich
odsyłaczy i wywołania dla nich funkcji click().

W pliku load.html znajduje się już element dołączający bibliotekę jQuery,
a także element <script> z funkcją $(document).ready().

 2. Kliknij pusty wiersz pod funkcją $(document).ready() i wpisz poniższy kod:
$('#newslinks a').click(function() {

});

C ZĘŚĆ I V  Z A A W A N S O W A N E Z A S T O S O W A N I A J Q U E R Y I JĘZ Y K A J A V A S C R I P T

AJAX w bibliotece jQuery

484

Wyrażenie $('#newslinks a') pozwala pobrać odnośniki za pomocą jQuery,
a funkcja .click() umożliwia określenie funkcji obsługującej zdarzenie click
(omówienie zdarzeń znajdziesz na stronie 182).

Następny krok polega na pobraniu adresu URL każdego odnośnika.

 3. W funkcji click() (pusty wiersz w kroku 2. powyżej) wpisz instrukcję
var url=$(this).attr('href'); i wciśnij klawisz Enter, aby utworzyć
pusty wiersz.

Ten wiersz kodu tworzy nową zmienną (url) i przypisuje do niej wartość
atrybutu href odnośnika. Na stronie 155 dowiedziałeś się, że jeśli dołączysz
funkcję (na przykład click()) do znaczników pobranych za pomocą jQuery,
$('#newslinks a'), biblioteka przejdzie po każdym znalezionym elemencie
(tu są to odnośniki) i wywoła dla niego podaną funkcję. Konstrukcja $(this) to
sposób na uzyskanie dostępu do aktualnie przetwarzanego elementu. Kiedy
jQuery przechodzi w pętli po kolekcji elementów, konstrukcja ta wskazuje na
kolejne odnośniki. Metoda attr() (patrz strona 166) służy do pobierania i usta-
wiania atrybutów tych odnośników. Tu metoda ta pobiera wartość atrybutu
href, co pozwala ustalić adres URL strony, do której prowadzi dany odsyłacz.
W następnym kroku użyjesz tego adresu wraz z metodą load() do pobrania
zawartości pliku i wyświetlenia jej w elemencie <div> na bieżącej stronie.

 4. Dodaj instrukcję $('#headlines').load(url);, aby skrypt wyglądał nastę-
pująco:

$('#newslinks a').click(function() {
 var url=$(this).attr('href');
 $('#headlines').load(url);
});

Pamiętaj, że pusty znacznik <div> przeznaczony na pobrany kod HTML ma
identyfikator headlines, dlatego wyrażenie $('#headlines') pobiera ten ele-
ment. Funkcja load() wczytuje plik HTML przy użyciu adresu URL pobranego
w poprzednim wierszu, a następnie umieszcza zawartość tego pliku w pustym
znaczniku <div>. To prawda, na zapleczu zachodzi mnóstwo operacji, aby
można było uzyskać ten efekt, jednak dzięki jQuery nie musisz samodzielnie
ich programować.

Strona nie jest jeszcze gotowa. Jeśli zapiszesz plik i wyświetlisz go w przeglą-
darce, zauważysz, że kliknięcie odnośników nie powoduje wczytania nowych
informacji na stronę. Przeglądarka opuszcza bieżący dokument i otwiera stronę,
do której prowadzi odsyłacz. Co się stało z ajaksowym kodem? Wciąż znajduje
się w pliku, jednak przeglądarka wykonuje domyślne operacje związane z klik-
nięciem odnośnika i wczytuje nową stronę. Należy zablokować ten proces.

 5. Dodaj nowy, pusty wiersz pod kodem wprowadzonym w poprzednim kroku
i wpisz instrukcję return false;. Skrypt powinien wyglądać jak poniżej:

$('#newslinks a').click(function() {
 var url=$(this).attr('href');
 $('#headlines').load(url);
 return false;
});

Ten prosty kod informuje przeglądarkę o tym, że ma nie przechodzić do strony
wskazanej w odnośniku. Jest to jeden ze sposobów na zablokowanie domyślnej

R O Z D Z I AŁ 1 3 . W P R O W A D Z E N I E D O T E C H N O L O G I I A J A X

AJAX w bibliotece jQuery

485

reakcji przeglądarki na zdarzenie. Ten sam efekt można uzyskać za pomocą
funkcji preventDefault() biblioteki jQuery (patrz strona 195).

 6. Zapisz plik.

Jeśli zainstalowałeś na swoim komputerze serwer WWW, będziesz mógł wyświe-
tlić stronę w przeglądarce. Kliknij jakiś odnośnik, aby sprawdzić jego działanie.

Teraz pojawia się następny problem, widoczny na rysunku 13.5. Metoda load()
działa, jednak strona nie wygląda prawidłowo. Metoda ta pobrała całą stronę
WWW i wstawiła jej zawartość do elementu <div>. Spowodowało to pojawienie
się na stronie dziwnych odstępów i zupełnie niepotrzebne powtórzenie nagłówka.
A Ty chciałeś wstawić do elementu <div> tylko fragment strony — ten, który za-
wiera nowe elementy. Na szczęście także tu można skorzystać z metody load().

Rysunek 13.5. Metoda load() biblioteki jQuery pobiera cały kod HTML wskazanego pliku i umieszcza go w ele-
mencie na bieżącej stronie. Jeśli wczytany plik zawiera niepotrzebne fragmenty witryny, na przykład powtó-
rzony nagłówek, ramkę boczną lub stopkę, będzie wyglądał jak strona wewnątrz innej strony. W tym przypadku
pojawiło się sporo miejsca powyżej nagłówka „Doniesienia wczorajsze”, a nagłówek u góry strony został
przesunięty w bok; co więcej, nad początkowym nagłówkiem pojawił się drugi!

C ZĘŚĆ I V  Z A A W A N S O W A N E Z A S T O S O W A N I A J Q U E R Y I JĘZ Y K A J A V A S C R I P T

AJAX w bibliotece jQuery

486

 7. Znajdź wiersz z funkcją load() i dodaj fragment + ' #newsItem' po argu-
mencie url. Gotowy kod powinien wyglądać następująco:

$('#newslinks a').click(function() {
 var url=$(this).attr('href');
 $('#headlines').load(url + ' #newsItem');
 return false;
});

Na stronie 480 przeczytałeś, że można określić, który fragment pobranego pliku
funkcja load() ma dodać do strony. W tym celu należy dodać odstęp po adresie
URL, a następnie podać selektor wskazujący obszar, który chcesz wyświetlić.

Oto opis użytego kodu. Na każdej z pobieranych stron znajduje się znacznik
<div> o identyfikatorze newsItem. Zawiera on potrzebny kod HTML z infor-
macjami. Dlatego należy nakazać funkcji load() wstawienie tylko tej części
wczytanego kodu HTML, dodając do adresu URL przekazanego do tej funkcji
odstęp i selektor #newsItem. Na przykład jeśli zechcesz pobrać plik today.html
i umieścić w znaczniku <div> o identyfikatorze headlines tylko tag <div>
o identyfikatorze newsItem, powinieneś użyć następującego kodu:

$('#headlines').load('today.html #newsItem');

Tu trzeba połączyć dwa łańcuchy znaków — zawartość zmiennej url i selektor
'#newsItem', określający potrzebny kod. Dlatego w implementacji load(url
+ '#newsItem') użyto operatora łączenia łańcuchów znaków (znaku +). (Jeśli
chcesz przypomnieć sobie informacje o scalaniu łańcuchów znaków, zajrzyj
na stronę 69.)

 8. Zapisz plik.

Jeśli zainstalowałeś na swoim komputerze serwer WWW, będziesz mógł wyświe-
tlić stronę w przeglądarce. Kliknij jakiś odnośnik, aby sprawdzić jego działanie.
Teraz w ramce widocznej w środkowej części strony powinny pojawić się wia-
domości — i tylko one — z każdego pliku wskazanego w odnośnikach. Dodałeś
AJAX za pomocą tylko kilku wierszy kodu! (Gotową wersję tego przykładu
znajdziesz w pliku complete_load.html w katalogu R13.)

Metody get() i post()
Medota load() (opisana w poprzednim punkcie rozdziału) to prosty sposób na po-
branie z serwera WWW kodu HTML i dodanie go do strony. Jednak serwer nie
zawsze zwraca zwykły kod HTML. Może też przesłać komunikat tekstowy, numer
kodowy lub dane, które trzeba przetworzyć za pomocą kodu JavaScript. Jeśli
chcesz użyć AJAX-a do pobrania rekordów z bazy danych, serwer może zwrócić
plik XML z tymi rekordami (patrz ramka na stronie 495) lub obiekt w formacie
JSON (patrz strona 500). Nie należy po prostu dodawać takich danych do strony.
Najpierw trzeba je przetworzyć i wygenerować potrzebny kod HTML.

Metody get() i post() biblioteki jQuery to proste narzędzia do przesyłania danych
na serwer oraz pobierania z niego informacji. Jak wspomniano w kroku 2. na stronie
477, obiektem XMLHttpRequest należy zarządzać nieco inaczej przy korzystaniu
z metod GET i POST. Jednak biblioteka jQuery automatycznie obsługuje różnice

R O Z D Z I AŁ 1 3 . W P R O W A D Z E N I E D O T E C H N O L O G I I A J A X

AJAX w bibliotece jQuery

487

między nimi, dlatego funkcje get() i post() działają identycznie. Której z nich
powinieneś używać? Odpowiedź znajdziesz w ramce na stronie 488.

Podstawowa składnia tych funkcji wygląda następująco:
$.get(url, data, callback);

lub:
$.post(url, data, callback);

W odróżnieniu od większości innych funkcji biblioteki jQuery przed funkcjami
get() i post() nie należy dodawać selektora. Oznacza to, że nie wolno używać
instrukcji typu $('#mainContent').get('products.php'). Te dwie funkcje są
samodzielne i nie łączą się z żadnym elementem strony, dlatego wystarczy użyć
symbolu $, kropki i wywołania get lub post (na przykład $.get()).

Funkcje get() i post() przyjmują trzy argumenty: url to łańcuch znaków zawie-
rający ścieżkę do skryptu przetwarzającego dane po stronie serwera (na przykład
'processForm.php'); argument data to albo łańcuch znaków, albo literał obiektowy
języka JavaScript z danymi przesyłanymi na serwer (w następnym punkcie dowiesz
się, jak przygotować takie dane); argument ostatni, callback, to funkcja przetwarza-
jąca instrukcje zwrócone przez serwer (szczegółowe informacje o funkcjach zwrot-
nych znajdziesz na stronie 223).

W momencie wywołania funkcji get() lub post() przeglądarka wysyła określone
dane pod wskazany adres URL. Kiedy serwer prześle dane z powrotem do przeglą-
darki, ta przekazuje je do funkcji zwrotnej, która z kolei przetwarza zawarte w nich
informacje i zazwyczaj w jakiś sposób aktualizuje zawartość strony. Będziesz miał
okazję zobaczyć takie rozwiązanie w działaniu na stronie 495.

Formatowanie danych przesyłanych na serwer
Programy JavaScript używające AJAX-a zwykle przesyłają dane na serwer. Aby na
przykład pobrać informacje na temat produktu zapisanego w bazie danych, trzeba
przesłać numer reprezentujący dany towar. Kiedy serwer otrzyma liczbę w żądaniu
od obiektu XHR, wyszuka w bazie pasujący do tego numeru produkt, pobierze infor-
macje i prześle je z powrotem do przeglądarki. Możesz też użyć AJAX-a do przesłania
informacji z całego formularza z zamówieniem lub danymi abonenta biuletynu roz-
syłanego pocztą elektroniczną.

Dane przesyłane w żądaniu trzeba tak sformatować, aby były zrozumiałe dla funkcji
get() i post(). Drugi argument przekazywany do każdej z tych funkcji zawiera
wysyłane dane. Mogą one mieć format łańcucha znaków z zapytaniem lub literału
obiektowego języka JavaScript. Możliwości te opisano w dwóch następnych pod-
punktach.

Łańcuch znaków z zapytaniem

Prawdopodobnie widziałeś już wiele łańcuchów znaków z zapytaniem. Często
pojawiają się one na końcu adresu URL, po symbolu ?, na przykład w adresie
www.chia-vet.com/products.php?prodID=18&sessID=1234. Ten łańcuch znaków

C ZĘŚĆ I V  Z A A W A N S O W A N E Z A S T O S O W A N I A J Q U E R Y I JĘZ Y K A J A V A S C R I P T

AJAX w bibliotece jQuery

488

z zapytaniem zawiera dwie pary nazwa – wartość: prodID=18 i sessID=1234. Jest to
odpowiednik utworzenia dwóch zmiennych, prodID i sessID, oraz zapisania w nich
wartości. Łańcuch znaków z zapytaniem to standardowa technika przekazywania
informacji w adresach URL.

W ten sposób można przesyłać dane na serwer także za pomocą AJAX-a. Przyj-
mijmy, że utworzyłeś stronę, na której użytkownicy mogą ocenić film przez zazna-
czenie określonej liczby gwiazdek. Kliknięcie pięciu gwiazdek powoduje przesłanie
na serwer oceny „pięć”. Wysyłane dane mogą wyglądać następująco: rating=5.
Jeśli nazwa strony przetwarzającej oceny to rateMovie.php, kod przesyłający dane
na serwer za pomocą AJAX-a powinien wyglądać następująco:

$.get('rateMovie.php','rating=5');

Jeśli używasz metody post, skorzystaj z poniższego kodu:
$.post('rateMovie.php','rating=5');

Uwaga: Funkcje get() i post() biblioteki jQuery nie wymagają definiowania danych ani funkcji wywoły-

wanych zwrotnie. Wystarczy przekazać adres URL strony działającej po stronie serwera, jednak prawie

zawsze podawane są także dane. Na przykład w kodzie $.get('rankMovie.php','rating=5');

podano tylko adres URL i dane. Nie ma tu wywoływanej zwrotnie funkcji. Użytkownik jedynie oce-

nia film, dlatego serwer nie musi zwracać odpowiedzi, a wywoływana zwrotnie funkcja — wykony-

wać żadnych operacji.

C Z Ę S T O Z A D A W A N E P Y T A N I A

Metoda GET czy POST?
Dwie metody przesyłania danych na serwer WWW,

GET i POST, wyglądają bardzo podobnie. Której z nich
powinienem używać?

Trudno udzielić jednoznacznej odpowiedzi na to pytanie.

W niektórych sytuacjach programista nie ma wyboru.

Załóżmy, że przesyłasz informacje do gotowego skryptu

działającego po stronie serwera. Oznacza to, że wystar-

czy użyć kodu JavaScript, aby nawiązać komunikację

z utworzonym wcześniej skryptem. Wtedy trzeba użyć

metody oczekiwanej przez gotowy program. Zwykle

programiści tak tworzą skrypty, aby przyjmowały dane

przesłane albo metodą GET, albo metodą POST. Dlatego

należy porozmawiać z autorem danego skryptu lub

zajrzeć do kodu i sprawdzić, której metody używa.

Następnie trzeba użyć odpowiedniej funkcji biblioteki

jQuery — get() lub post().

Jeśli skrypt działający po stronie serwera nie jest jeszcze

gotowy, możesz wybrać sposób komunikacji. Metoda GET

jest przeznaczona głównie do przesyłania żądań, które

nie zmieniają stanu bazy danych i plików na serwerze.

Oznacza to, że służy do pobierania informacji, na przy-

kład żądania ceny danego produktu lub listy najpopu-

larniejszych towarów. Metoda POST jest przeznaczona do

wysyłania danych modyfikujących informacje po stronie

serwera. W ten sposób można zażądać usunięcia pliku,

zaktualizowania bazy danych lub wstawienia do niej no-

wych informacji.

W praktyce można wymiennie używać obu metod, dla-

tego programiści często stosują metodę GET do usuwa-

nia danych z bazy, a metody POST — do pobierania in-

formacji z serwera. Jednak w pewnej konkretnej sytuacji

metoda POST jest niezbędna. Jeśli przesyłasz na ser-

wer duży zbiór danych z formularza (na przykład skła-

dający się z setek słów artykuł w blogu), użyj właśnie

tego sposobu. Metoda GET ma wbudowane ograni-

czenie ilości przesyłanych danych. Jest ono różne w po-

szczególnych przeglądarkach, jednak limit narzucany

przez Internet Explorera wynosi kilka tysięcy znaków. Do

przesyłania danych z formularzy zawierających więcej niż

kilka pól programiści zazwyczaj używają metody POST.

R O Z D Z I AŁ 1 3 . W P R O W A D Z E N I E D O T E C H N O L O G I I A J A X

AJAX w bibliotece jQuery

489

Jeśli chcesz przesłać na serwer więcej niż jedną parę nazwa – wartość, dodaj między
parami znak &:

$.post('rateMovie.php','rating=5&user=Robert');

Musisz jednak zachować staranność przy korzystaniu z tej metody, ponieważ nie-
które znaki w łańcuchach zapytania mają specjalne znaczenie. Na przykład symbol &
pozwala dołączyć następną parę nazwa – wartość, a znak = przypisuje wartość do
nazwy. Na przykład poniższy łańcuch jest nieprawidłowy:

'favFood=Mac & Cheese' // Błąd.

Symbol „&” miał tu być częścią wartości „Mac & Cheese”, jednak zostanie potrak-
towany jak początek drugiej pary nazwa – wartość. Jeśli chcesz użyć znaków specjal-
nych w nazwie lub wartości, musisz użyć sekwencji ucieczki, czyli zakodować dany
symbol, aby nie został uznany za znak o specjalnym znaczeniu. Na przykład odstę-
powi odpowiada sekwencja %20, symbol & ma kod %26, a znak = to %3D. Dlatego parę
z wartością „Mac & Cheese” należy przepisać w następujący sposób:

'favFood=Mac%20%26%20Cheese' // Prawidłowo zakodowane.

JavaScript udostępnia metodę encodeURIComponent(), która służy do kodowania
znaków w łańcuchach. Należy przekazać do niej łańcuch, a metoda zwróci jego po-
prawnie zakodowaną wersję, na przykład:

var queryString = 'favFood=' + encodeURIComponent('Mac & Cheese');
$.post('foodChoice.php', queryString);

Literały obiektowe

Łańcuchy znaków z zapytaniem dobrze nadają się do przesyłania krótkich i pro-
stych fragmentów danych, które nie zawierają żadnych znaków specjalnych. Jednak
bezpieczniejsza metoda obsługiwana przez funkcje get() i post() biblioteki jQuery
polega na zapisywaniu danych w literałach obiektowych. Na stronie 165 dowiedzia-
łeś się, że literały obiektowe języka JavaScript umożliwiają przechowywanie par
nazwa – wartość. Podstawowa struktura takiego literału wygląda następująco:

{
 nazwa1: 'wartość1',
 nazwa2: 'wartość2'
}

Literał obiektowy można przekazać bezpośrednio do funkcji get() lub post().
W poniższym kodzie użyto łańcucha znaków z zapytaniem:

$.post('rateMovie.php','rating=5');

Aby użyć literału obiektowego, należy wprowadzić następujące zmiany:
$.post('rateMovie.php', { rating: 5 });

Literały obiektowe można przekazać bezpośrednio do funkcji get() lub post()
albo najpierw zapisać w zmiennej, a następnie użyć w jednej z omawianych metod:

var data = { rating: 5 };
$.post('rankMovie.php', data);

W obiekcie przekazywanym do funkcji get() lub post() można oczywiście umie-
ścić dowolną liczbę par nazwa – wartość:

C ZĘŚĆ I V  Z A A W A N S O W A N E Z A S T O S O W A N I A J Q U E R Y I JĘZ Y K A J A V A S C R I P T

AJAX w bibliotece jQuery

490

var data = {
 rating: 5,
 user: 'Robert'
}
$.post('rankMovie.php', data);

Literał obiektowy można także przekazać bezpośrednio w wywołaniu funkcji post():
$.post('rankMovie.php',
 {
 rating: 5,
 user: 'Robert'
 }
); // koniec post

Funkcja serialize() biblioteki jQuery

Tworzenie łańcucha znaków z zapytaniem lub literału obiektowego z parami nazwa
– wartość dla wszystkich pól formularza bywa pracochłonne. Trzeba pobrać nazwę
i wartość każdego elementu formularza, a następnie połączyć je w długi łańcuch
znaków lub duży literał obiektowy języka JavaScript. Na szczęście jQuery udostęp-
nia funkcję, która ułatwia przekształcanie informacji z formularza na dane zrozu-
miałe dla funkcji get() i post().

Funkcję serialize() możesz zastosować do dowolnego formularza, a nawet do
wybranych pól, aby utworzyć potrzebny łańcuch znaków z zapytaniem. W celu użycia
jej najpierw pobierz formularz za pomocą biblioteki jQuery, a następnie wywołaj dla
niego funkcję serialize(). Załóżmy, że strona zawiera formularz o identyfikatorze
login. Jeśli zechcesz utworzyć łańcuch znaków z zapytaniem obejmujący dane z tego
formularza, użyj następującego kodu:

var formData = $('#login').serialize();

Fragment var formData tworzy nową zmienną, wyrażenie $('#login') znajduje
formularz za pomocą biblioteki jQuery, a wywołanie .serialize() pobiera nazwy
i aktualne wartości pól formularza, po czym tworzy pojedynczy łańcuch znaków
z zapytaniem.

Aby użyć tego łańcucha w funkcji get() lub post(), należy przekazać go do wybra-
nej funkcji jako drugi argument — po adresie URL. Jeśli chcesz wysłać zawartość
formularza logowania do strony login.php, możesz to zrobić za pomocą poniż-
szego kodu:

var formData = $('#login').serialize();
$.get('login.php', formData,loginResults);

Ten kod przesyła dane wprowadzone przez użytkownika w formularzu do pliku
login.php za pomocą metody GET. Ostatni argument tej metody, loginResults, to
wywoływana zwrotnie funkcja. Przyjmuje ona dane zwrócone przez serwer i używa ich
do wykonania odpowiednich operacji. Wkrótce dowiesz się, jak tworzyć takie funkcje.

Przetwarzanie danych zwróconych z serwera
AJAX to technologia dwustronna. Program JavaScript przesyła dane na serwer, który
z kolei zwraca informacje do programu. Wtedy skrypt może użyć zwróconych danych
do zaktualizowania strony. W poprzednich punktach zobaczyłeś, jak sformatować

R O Z D Z I AŁ 1 3 . W P R O W A D Z E N I E D O T E C H N O L O G I I A J A X

AJAX w bibliotece jQuery

491

dane i przesłać je na serwer za pomocą funkcji get() i post(). Teraz dowiesz się, jak
odbierać i przetwarzać odpowiedzi zwrócone przez serwer.

Kiedy przeglądarka wysyła żądanie na serwer za pomocą obiektu XMLHttpRequest,
oczekuje na odpowiedź. Jak serwer ją prześle, wywoływana jest funkcja zwrotna,
która obsługuje pobrane dane. Funkcja ta przyjmuje kilka argumentów. Pierwszy
i najważniejszy z nich to informacje zwrócone przez serwer.

Odpowiedź przesyłaną przez serwer można sformatować na wiele sposobów. Skrypt
działający po stronie serwera może zwrócić liczbę, słowo, akapit tekstu lub kompletną
stronę WWW. Jeśli serwer przesyła dużo informacji (na przykład zbiór rekordów z bazy
danych), często używany jest format XML lub JSON (XML opisano w ramce na
stronie 495, a omówienie formatu JSON znajdziesz na stronie 500).

Drugi argument funkcji zwrotnej to łańcuch znaków określający status odpo-
wiedzi. Przeważnie informuje on o udanym przetworzeniu żądania i zwróceniu
danych. Jednak czasem obsługa żądania kończy się niepowodzeniem. Wynika to
z różnych przyczyn. Możliwe, że żądany plik nie istnieje lub wystąpił błąd w skryp-
cie działającym po stronie serwera. Jeśli tak się stanie, wywoływana zwrotnie funk-
cja otrzyma jako status komunikat o błędzie.

Funkcja zwrotna przetwarza pobrane informacje i zazwyczaj aktualizuje stronę
WWW, na przykład zastępuje przesłany formularz danymi z serwera lub wyświetla
komunikat typu „Przetwarzanie żądania zakończyło się powodzeniem”. Aktuali-
zowanie zawartości strony jest proste — wystarczy użyć funkcji html() i text() bi-
blioteki jQuery (patrz strona 157). Inne metody manipulowania modelem DOM
strony opisano w rozdziale 4.

Aby zrozumieć cały cykl zgłaszania żądania i przetwarzania odpowiedzi, przyjrzyj
się prostemu przykładowi oceniania filmu (patrz rysunek 13.6). Użytkownik może
dokonać oceny przez kliknięcie jednego z pięciu odnośników. Każdy z nich oznacza
inną liczbę punktów. Kiedy użytkownik wybierze odsyłacz, skrypt prześle ocenę
i identyfikator filmu do programu działającego po stronie serwera. Program ten do-
daje liczbę punktów do bazy, a następnie zwraca średnią ocenę danego filmu, która
jest wyświetlana na stronie.

Aby opisane rozwiązanie funkcjonowało bez kodu JavaScript, każdy odnośnik musi
prowadzić do działającej na serwerze strony, która potrafi przetworzyć ocenę. Na przy-
kład w odsyłaczu do pięciogwiazdkowej oceny (patrz rysunek 11.6) może to być strona
rate.php?rate=5&movie=123. Nazwa pliku przetwarzającego oceny to rate.php,
a łańcuch znaków z zapytaniem (?rate=5&movie=123) obejmuje dwie porcje
informacji dla serwera — ocenę (rate=5) i liczbę, która określa oceniany firm
(movie=123). Można użyć kodu JavaScript do przechwytywania kliknięć tych od-
nośników i przekształcania ich na ajaksowe wywołania kierowane na serwer:

1 $('#message a').click(function() {
2 var href=$(this).attr('href');
3 var querystring=href.slice(href.indexOf('?')+1);
4 $.get('rate.php', querystring, processResponse);
5 return false; // Blokowanie działania odnośnika.
6 });

C ZĘŚĆ I V  Z A A W A N S O W A N E Z A S T O S O W A N I A J Q U E R Y I JĘZ Y K A J A V A S C R I P T

AJAX w bibliotece jQuery

492

Rysunek 13.6. Na tej stronie
użytkownik może kliknąć odno-
śnik, aby ocenić f lm (na górze).
Przy użyciu AJAX-a można prze-
słać ocenę na serwer bez opusz-
czania strony. Na podstawie od-
powiedzi zwróconej przez serwer
można następnie zaktualizować
zawartość strony (na dole)

Wiersz 1. pobiera wszystkie odnośniki (znaczniki <a>) z tagu o identyfikatorze
message (tu każdy odsyłacz służący do oceny filmu znajduje się w znaczniku <div>
o takim identyfikatorze). Następnie skrypt przypisuje funkcję do zdarzenia click
pobranych odnośników.

Wiersz 2. pobiera atrybut HREF odnośnika i przypisuje do zmiennej href adresy URL
typu rate.php?rate=5&movie=123. Wiersz 3. zapisuje fragment tego adresu znaj-
dujący się po znaku ?. Służy do tego metoda slice() (patrz strona 569), która pobiera
fragment łańcucha znaków, i metoda indexOf() (patrz strona 567), określająca po-
zycję znaku ? (metoda slice() używa tej informacji do ustalenia miejsca rozpoczę-
cia pobierania łańcucha).

Wiersz 4. to ajaksowe żądanie. Skrypt przesyła je do strony rate.php z serwera (patrz
rysunek 13.7), używając metody GET i łańcucha znaków z zapytaniem. Zwrócone
dane trafiają do wywoływanej zwrotnie funkcji processResponse(). Wiersz 5. blo-
kuje domyślne działanie odnośników i zapobiega przejściu przeglądarki do strony
wskazanej w odnośniku.

R O Z D Z I AŁ 1 3 . W P R O W A D Z E N I E D O T E C H N O L O G I I A J A X

AJAX w bibliotece jQuery

493

Rysunek 13.7. Ten rysunek ilu-
struje interakcję między kodem
JavaScript a serwerem WWW.
Funkcja get() przesyła informacje na
serwer, natomiast funkcja zwrotna,
processResponse(), obsługuje dane
zwrócone przez serwer

Uwaga: Jeśli chcesz przypomnieć sobie działanie funkcji i sposoby ich tworzenia, wróć do strony 115.

Pora utworzyć funkcję zwrotną. Przyjmuje ona dane i łańcuch znaków ze statusem
odpowiedzi (jeśli serwer zwrócił informacje, ma ona wartość 'success'). Pamiętaj, że
nazwę funkcji zwrotnej należy określić w żądaniu (wiersz 4. kodu ze strony 491).
Tu ta nazwa to processResponse. Kod do obsługi odpowiedzi zwróconej przez
serwer może wyglądać następująco:

1 function processResponse(data) {
2 var newHTML;
3 newHTML = '<h2>Twój głos został dodany.</h2>';
4 newHTML += '<p>Średnia ocena filmu to ';
5 newHTML += data + '.</p>';
6 $('#message').html(newHTML);
7 }

Funkcja ta przyjmuje argument data, zawierający informacje zwrócone przez ser-
wer. Informacje te mogą być zapisane w formie zwyczajnego tekstu, kodu HTML,
XML lub w formacie JSON. Wiersz 2. tworzy nową zmienną, która przechowuje
kod HTML wyświetlany na stronie (na przykład „Twój głos został zapisany.”).
W wierszach 3. i 4. w zmiennej newHTML zapisywany jest kod HTML, zawierający
znaczniki <h2> i <p>. Odpowiedź serwera (zapisana w zmiennej data) jest używana
dopiero w wierszu 5., gdzie skrypt dodaje ją do zmiennej newHTML. Tu serwer zwraca
łańcuch znaków ze średnią oceną filmu, na przykład '3 gwiazdki'.

Uwaga: Jeśli chcesz dodać do witryny system oceny za pomocą gwiazdek, możesz użyć do te-

go doskonałej wtyczki biblioteki jQuery, która obsługuje większość szczegółowych operacji

(http://www.wbotelhos.com/raty/).

Wiersz 6. modyfikuje kod HTML strony za pomocą funkcji html() biblioteki
jQuery (patrz strona 157). Skrypt zastępuje zawartość znacznika <div> o identy-
fikatorze message nowym kodem HTML. Przykładowy efekt przedstawia dolna
część rysunku 13.6.

http://www.wbotelhos.com/raty/

C ZĘŚĆ I V  Z A A W A N S O W A N E Z A S T O S O W A N I A J Q U E R Y I JĘZ Y K A J A V A S C R I P T

AJAX w bibliotece jQuery

494

W tym przykładzie funkcję zwrotną zdefiniowano poza funkcją get(). Jednak jeśli
chcesz umieścić cały kod związany z AJAX-em w jednym miejscu, możesz użyć
funkcji anonimowej (patrz strona 168):

$.get('file.php', data, function(data,status) {
 // Tu kod wpisz funkcji zwrotnej.
});

Niżej pokazałem, w jaki sposób można zmienić 4. wiersz kodu ze strony 491, tak
by korzystał z funkcji anonimowej:

$.get('rate.php', querystring, function(data) {
 var newHTML;
 newHTML = '<h2>Twój głos został dodany.</h2>';
 newHTML += '<p>Średnia ocena filmu to ';
 newHTML += data + '.</p>';
 $('#message').html(newHTML);
}); // koniec get

Obsługa błędów
Niestety nie wszystko zawsze idzie zgodnie z planem. Podczas korzystania z tech-
nologii AJAX w celu prowadzenia wymiany danych z serwerem mogą pojawić się
problemy. Może się zdarzyć, że w danej chwili serwer będzie niedostępny bądź połą-
czenie komputera użytkownika z internetem zostanie przerwane. W takich przy-
padkach wywołanie metod $.get() i $.post() zakończy się niepowodzeniem, a użyt-
kownik się o tym nie dowie. Choć problemy tego typu pojawiają się sporadycznie,
jednak warto się na nie przygotować i informować użytkowników o chwilowych
problemach, gdyż to może im pomóc w ustaleniu, co mają zrobić (na przykład
odświeżyć stronę, podjąć próbę wykonania operacji jeszcze raz bądź wrócić na stronę
po jakimś czasie).

Aby reagować na błędy, wystarczy za wywołaniem funkcji $.get() lub $.post()
umieścić wywołanie funkcji .error(). Podstawowa struktura takiego kodu po-
winna wyglądać tak:

$.get(url, dane, funObslugiPowodzenia).error(funObslugiBledow)

Przykładowo 4. wiersz przykładu zamieszczonego na stronie 491 można by zmody-
fikować w następujący sposób:

$.get('rate.php', querystring, processResponse).error(errorResponse);

Następnie należałoby zdefiniować funkcję o nazwie errorResponse(), która in-
formowałaby użytkownika o zaistniałych problemach. Oto przykład takiej funkcji:

function errorResponse() {
 var errorMsg = "Nie można było przetworzyć Twojej oceny. ";
 errorMsg += "Spróbuj ponownie później.";
 $('#message').html(errorMsg);
}

W tym przypadku funkcja errorResponse() zostanie wywołana wyłącznie w przy-
padku wystąpienia jakiegoś problemu z serwerem lub połączeniem z internetem.

Uwaga: Metoda .error() nie działa z metodą .load() ani z żądaniami przesyłanymi na inne witryny

przy wykorzystaniu JSONP (patrz strona 506).

R O Z D Z I AŁ 1 3 . W P R O W A D Z E N I E D O T E C H N O L O G I I A J A X

AJAX w bibliotece jQuery

495

P O R A D N I A D L A Z A A W A N S O W A N Y C H

Pobieranie kodu XML z serwera
XML to popularny format do przesyłania danych między

komputerami. W języku XML, podobnie jak HTML-u,

informacje są zapisane w znacznikach. Różnica polega na

tym, że w XML-u można samodzielnie tworzyć tagi,

które dokładnie odzwierciedlają treść danych. Na przy-

kład prosty plik XML może wyglądać następująco:

<?xml version="1.0"?>
<message id="234>
 <from>Robert</from>
 <to>Żaneta</to>
 <subject>Witaj, Żaneto</subject>
 <content>Żaneto, wyskoczmy dziś
 na lunch.</content>
</messages>

Główny znacznik (tak zwany element główny; to odpo-

wiednik znacznika <html> z kodu HTML), <message>, i kil-

ka dodatkowych tagów określają znaczenie zapisanych

w nich danych.

Działający na serwerze program może zwracać do skryptu

ajaksowego plik w formacie XML. Biblioteka jQuery ułatwia

odczyt i pobieranie danych z takich plików. Jeśli używasz

metod $.get() lub $.post(), a serwer zwraca informa-

cje w formacie XML, argument data przekazywany do

funkcji zwrotnej będzie zawierał model DOM pliku XML.

Oznacza to, że jQuery wczyta plik XML i potraktuje go jak

dowolny inny dokument. Następnie można użyć selektora

jQuery, aby uzyskać dostęp do informacji z tego pliku.

Załóżmy, że działający na serwerze plik xml.php zwraca

przedstawione wcześniej dane w formacie XML, a skrypt

ma pobierać tekst ze znacznika <content>. Plik XML to

zwracane dane, dlatego można go przetworzyć w funkcji

zwrotnej. Za pomocą funkcji find() i standardo-

wych selektorów biblioteki jQuery należy znaleźć od-

powiednie dane z tego pliku. Możesz użyć do tego

selektorów elementów, klas, identyfikatorów i potom-

ków (patrz strona 151), a także filtrów biblioteki jQuery

(patrz strona 153).

Oto przykład:

$.get('xml.php','id=234',processXML);
function processXML(data){
 var messageContent=$(data).
 find('content').text();
}

Kluczowy jest tu fragment $(data).find('content'),

który nakazuje bibliotece jQuery pobranie wszystkich

znaczników <content> ze zmiennej data. Zmienna

ta zawiera plik XML, zatem kod sprawia, że jQuery

znajdzie znacznik <content> w danych XML.

Aby lepiej poznać format XML, odwiedź stronę http://
www learn-xml-tutorial.com/xml-basics.cfm. Dodatkowe

informacje o funkcji find() biblioteki jQuery znajdziesz

na stronie http://api.jquery.com/find/.

Przykład — korzystanie z metody $.get()
W tym przykładzie użyjesz AJAX-a do przesyłania danych z formularza logowania.
Kiedy użytkownik poda odpowiednią nazwę i właściwe hasło, pojawi się komunikat
informujący o udanym logowaniu. Jeśli dane uwierzytelniające są nieprawidłowe,
na tej samej stronie (bez wczytywania nowego dokumentu) znajdzie się komunikat
o błędzie.

Uwaga: Aby uruchomić ten przykład, musisz użyć serwera AMP (Apache, MySQL i PHP), w którym

będziesz mógł przetestować strony. W ramce na stronie 476 znajdziesz informacje o instalowaniu

serwera na potrzeby testów.

Omówienie przykładu

Rozpoczniesz pracę od formularza widocznego na rysunku 13.8. Zawiera on pola na
nazwę użytkownika i hasło przesyłane na serwer. Kiedy internauta prześle formu-
larz, serwer sprawdzi, czy określony użytkownik istnieje i czy podano prawidłowe
hasło. Jeśli dane uwierzytelniające są poprawne, serwer zaloguje użytkownika.

http://www.learn-xml-tutorial.com/xml-basics.cfm
http://www.learn-xml-tutorial.com/xml-basics.cfm
http://api.jquery.com/find/

C ZĘŚĆ I V  Z A A W A N S O W A N E Z A S T O S O W A N I A J Q U E R Y I JĘZ Y K A J A V A S C R I P T

AJAX w bibliotece jQuery

496

Rysunek 13.8. Strona logowania jest całkiem prosta — zawiera k lka pól i przycisk Wyślij. Nie ma powodu, aby
opuszczać tę stronę po zalogowaniu się użytkownika. Za pomocą AJAX-a można przesłać dane uwierzytelniające,
a następnie poinformować internautę o tym, czy logowanie zakończyło się powodzeniem, czy porażką

Aby obsługiwać formularz przy użyciu AJAX-a, należy przesłać dane uwierzytel-
niające za pomocą obiektu XMLHttpRequest. Serwer zwróci następnie komunikat
do wywoływanej zwrotnie funkcji, która usunie formularz i wyświetli informację
o udanym logowaniu, jeśli dane były poprawne, lub komunikat o błędzie, jeśli wy-
stąpiły problemy.

Tworzenie kodu

W uwadze na stronie 46 znajdziesz informacje o pobieraniu przykładowych plików.
Wyjściowy dokument zawiera kod HTML formularza. Należy do niego dodać kod
oparty na jQuery i technologii AJAX.

 1. Otwórz w edytorze tekstu plik login.html z katalogu R13.

Dokument zawiera już kod dołączający bibliotekę jQuery i funkcję $(document).
ready(). Najpierw należy pobrać formularz i dodać do niego zdarzenie submit.

 2. Kliknij pusty wiersz w funkcji $(document).ready() i wpisz poniższy kod:
$('#login').submit(function() {

}); // Koniec funkcji submit

Znacznik <form> ma identyfikator login, dlatego selektor $('#login') biblioteki
jQuery pobierze formularz, a funkcja submit() doda do niego uchwyt zdarzenia
submit. Oznacza to, że przy próbie przesłania formularza skrypt uruchomi
funkcję, którą zaraz utworzysz.

R O Z D Z I AŁ 1 3 . W P R O W A D Z E N I E D O T E C H N O L O G I I A J A X

AJAX w bibliotece jQuery

497

Następny krok wymaga pobrania informacji z formularza i przekształcenia ich
na łańcuch znaków z zapytaniem, który będzie można przesłać na serwer.
Można to zrobić przez znalezienie każdego pola, określenie wartości wpisanej
przez użytkownika i utworzenie łańcucha przez połączenie poszczególnych
informacji. Na szczęście metoda serialize() biblioteki jQuery pozwala wy-
konać wszystkie te operacje w jednym kroku.

 3. Umieść kursor w pustym wierszu wewnątrz funkcji dodanej w kroku 2.
Wpisz w nim poniższy kod:

var formData = $(this).serialize();

Ten wiersz tworzy nową zmienną na dane z formularza, a następnie wywołuje
dla tego formularza metodę serialize(). Konstrukcja $(this) wskazuje na prze-
twarzany element, którym tu jest formularz logowania (konstrukcja ta oznacza
to samo co wyrażenie $('#login'); więcej informacji o niej znajdziesz na stro-
nie 169). Metoda serialize() (patrz strona 490) pobiera nazwy i wartości pól
formularza, a następnie przekształca je przed przesłaniem na serwer na odpo-
wiedni format.

Teraz należy użyć funkcji $.get() do skonfigurowania obiektu XMLHttpRequest
i wysłania żądania.

 4. Wciśnij klawisz Enter, aby utworzyć następny pusty wiersz. Wpisz w nim
następujący kod:

$.post('login.php',formData,processData);

Ta instrukcja przekazuje do metody $.get() trzy argumenty. Pierwszy, 'login.
php', to łańcuch znaków określający lokalizację docelową wysyłanych danych.
Tu informacje trafiają do zapisanego na serwerze pliku login.php. Drugi ar-
gument to łańcuch znaków z zapytaniem zawierający dane uwierzytelniające
przesyłane na serwer. Ostatni argument, processData, to nazwa funkcji
zwrotnej, która będzie przetwarzać odpowiedź serwera. Teraz należy przy-
gotować tę funkcję.

 5. Dodaj następny pusty wiersz i wpisz w nim poniższy kod:
1 function processData(data) {
2
3 } // Koniec funkcji processData.

Te wiersze tworzą szkielet funkcji zwrotnej. Na razie nie zawiera ona żadnego
kodu. Zauważ, że funkcja ma przyjmować jeden argument (data), którym jest
odpowiedź serwera. Strona działająca na serwerze zwraca jedno słowo. Jeśli
logowanie zakończyło się powodzeniem, jest to łańcuch pass. Jeśli wystąpił
błąd, strona zwraca słowo fail.

Uwaga: Przykładowa strona działająca na serwerze nie jest kompletnym skryptem do obsługi lo-

gowania. Reaguje na podanie prawidłowych danych uwierzytelniających, ale nie należy jej stosować

w witrynach chronionych hasłem. Istnieje wiele technik zabezpieczania witryn w podobny sposób,

jednak większość z nich wymaga przygotowania bazy danych lub skonfigurowania różnych usta-

wień serwera WWW. Opis tych zagadnień wykracza poza zakres tej książki. Kompletny, oparty na ję-

zyku PHP skrypt logowania znajdziesz na stronie http://www.wikihow.com/Create-a-Secure-

Login-Script-in-PHP-and-MySQL.

http://www.wikihow.com/Create-a-Secure-Login-Script-in-PHP-and-MySQL
http://www.wikihow.com/Create-a-Secure-Login-Script-in-PHP-and-MySQL

C ZĘŚĆ I V  Z A A W A N S O W A N E Z A S T O S O W A N I A J Q U E R Y I JĘZ Y K A J A V A S C R I P T

AJAX w bibliotece jQuery

498

Skrypt na podstawie odpowiedzi serwera wyświetla odpowiedź z informacją
o udanym lub nieudanym logowaniu. Do obsługi takiego rozwiązania doskonale
nadaje się instrukcja warunkowa.

 6. W funkcji processData()wpisz poniższy kod:
1 function processData(data) {
2 if (data === 'pass') {
3 $('.main').html('<p>Logowanie zakończyło się
powodzeniem!</p>');
4 }
5 } // koniec funkcji processData.

Wiersz 2. sprawdza, czy serwer zwrócił łańcuch znaków 'pass'. Jeśli tak, logo-
wanie zakończyło się powodzeniem i skrypt wyświetli informujący o tym ko-
munikat (wiersz 3.). Formularz znajduje się w znaczniku <div> klasy main,
dlatego instrukcja $('.main').html('<p> Logowanie zakończyło się po-
wodzeniem!</p>') zastąpi zawartość tego elementu <div> nowym akapitem.
Oznacza to, że formularz zniknie, a pojawi się komunikat o udanym logowaniu.

Aby ukończyć przykład, należy dodać klauzulę else i poinformować użytkow-
nika, że podał nieprawidłowe dane uwierzytelniające.

 7. Dodaj do funkcji processData() klauzulę else, aby kod wyglądał nastę-
pująco (zmiany wyróżniono pogrubieniem):

1 function processData(data) {
2 if (data=='pass') {
3 $('.main').html('<p>Logowanie zakończyło się
powodzeniem!</p>');
4 } else {
5 $('#formwrapper').prepend('<p id="fail">Nieprawidłowe dane
 uwierzytelniające. Spróbuj ponownie.</p>');
6 }
7 } // Koniec funkcji processData.

Wiersz 5. wyświetla informację o nieudanym logowaniu. Zauważ, że użyto tu
funkcji prepend() (patrz strona 159). Umożliwia ona dołączanie kodu na po-
czątek elementu. Funkcja ta nie usuwa obecnej zawartości znacznika, ale
dodaje nowy kod. Skrypt nie powinien usuwać w tym miejscu formularza, aby
użytkownik mógł ponownie spróbować się zalogować.

 8. Zapisz plik i wyświetl go w przeglądarce.

Aby uruchomić przykład, musisz otworzyć tę stronę w przeglądarce za pomocą
adresu URL, na przykład http://localhost/R11/login.html. Informacje o instalo-
waniu serwera WWW znajdziesz na stronie 476.

 9. Spróbuj zalogować się w witrynie.

Prawdopodobnie pomyślisz sobie: „Jak mam to zrobić, skoro nie otrzymałem
nazwy użytkownika ani hasła?”. I o to chodzi. Zobacz, co się stanie, jeśli wpro-
wadzisz nieprawidłowe dane. Spróbuj zalogować się po raz drugi. Na stronie
pojawi się druga wiadomość „Nieprawidłowe dane uwierzytelniające” (patrz ry-
sunek 13.9). Funkcja prepend() nie usuwa pierwszego komunikatu o błędzie,
a jedynie dodaje po raz wtóry ten sam tekst. Nie jest to dobre rozwiązanie.

R O Z D Z I AŁ 1 3 . W P R O W A D Z E N I E D O T E C H N O L O G I I A J A X

AJAX w bibliotece jQuery

499

Rysunek 13.9. Funkcja prepend() biblioteki jQuery dodaje kod HTML do istniejącego elementu. Metoda ta nie
usuwa żadnych danych, dlatego skrypt może wielokrotnie dodawać ten sam komunikat

Problem ten można rozwiązać na kilka sposobów. Można na przykład umieścić
pod formularzem nowy, pusty znacznik <div> — <p id= failMessage >.
Następnie, w przypadku nieudanego logowania można po prostu podmieniać
umieszczony w nim kod HTML. Jednak w naszym przykładzie na stronie nie
ma żadnego pustego znacznika <div>. Zamiast niego użyjemy zwyczajnej in-
strukcji warunkowej, która będzie sprawdzać, czy na stronie został już wy-
świetlony jakiś komunikat o błędzie — jeśli taki komunikat faktycznie został
już wyświetlony, dodawanie go po raz wtóry nie będzie konieczne.

 10. Dodaj następną instrukcję warunkową (wiersze 5. i 7.):
1 function processData(data) {
2 if (data=='pass') {
3 $('.main').html('<p>Logowanie zakończyło się powodzeniem!</p>');
4 } else {
5 if ($('#fail').length==0) {
6 $('#formwrapper').prepend('<p id="fail">Nieprawidłowe dane

 uwierzytelniające. Spróbuj ponownie.</p>');
7 }
8 }
9 } // Koniec funkcji processData.

Zauważ, że akapit z komunikatem o błędzie ma identyfikator, fail, dlatego
można użyć jQuery do sprawdzenia, czy element o takim identyfikatorze znaj-
duje się na stronie. Jeśli nie, skrypt dodaje do dokumentu odpowiedni komu-
nikat. Aby sprawdzić, czy element znajduje się na stronie, można spróbować
pobrać go za pomocą biblioteki jQuery, a następnie sprawdzić wartość atrybutu
length kolekcji znalezionych znaczników. Jeśli jQuery nie znajdzie żadnych

C ZĘŚĆ I V  Z A A W A N S O W A N E Z A S T O S O W A N I A J Q U E R Y I JĘZ Y K A J A V A S C R I P T

Format JSON

500

elementów, wartość tego atrybutu będzie równa 0. Wyrażenie $('#fail') po-
biera element o identyfikatorze fail. Jeśli jQuery go nie znajdzie (czyli komuni-
katu o błędzie nie ma na stronie), atrybut length będzie miał wartość 0, warunek
będzie prawdziwy, a program wyświetli informacje o nieudanym logowaniu. Po
dodaniu komunikatu o błędzie warunek będzie nieprawdziwy, a skrypt nie doda
następnej wiadomości.

Teraz trzeba poinformować przeglądarkę o tym, że nie powinna przesyłać for-
mularza z danymi, ponieważ skrypt zrobił to już za pomocą AJAX-a.

 11. Dodaj instrukcję return false; na końcu funkcji obsługującej zdarzenie
submit (wiersz 14. poniżej). Gotowy skrypt powinien wyglądać następująco:

1 $(document).ready(function() {
2 $('#login').submit(function() {
3 var formData = $(this).serialize();
4 $.post('login.php',formData,processData);
5 function processData(data) {
6 if (data=='pass') {
7 $('.main').html('<p>Logowanie zakończyło się
 powodzeniem!</p>');
8 } else {
9 if ($('#fail').length==0) {
10 $('#formwrapper').prepend('<p id="fail">Nieprawidłowe dane
 uwierzytelniające. Spróbuj ponownie.</p>');
11 }
12 }
13 } // Koniec funkcji processData.
14 return false;
15 }); // Koniec funkcji submit
16 }); // Koniec funkcji ready

 12. Zapisz plik i ponownie wyświetl stronę.

Ponownie spróbuj się zalogować. Prawidłowe dane to nazwa 007 i hasło secret.
Gotową wersję tego przykładu zawiera plik kompletny_login.html z katalogu R13.

Uwaga: Jak wspomniano na stronie 486, funkcje $.post() i $.get() biblioteki jQuery działają iden-

tycznie, choć na zapleczu jQuery wykonuje dwa różne zestawy operacji, żeby ajaksowe żądania funk-

cjonowały prawidłowo. Aby się o tym przekonać, zmień w skrypcie funkcję post na get (wiersz 4.

w kroku 11.). Program działający po stronie serwera obsługuje zarówno żądania GET, jak i POST.

Format JSON
Inny popularny format do przesyłania danych z serwera to JSON (ang. JavaScript
Object Notation, czyli notacja obiektowa języka JavaScript). Struktura formatu
JSON odpowiada obiektom języka JavaScript. Format ten — podobnie jak XML
(patrz ramka na stronie 495) — służy do przesyłania danych. Łańcuch znaków
zapisany w formacie JSON przypomina obiekty JavaScript: przeglądarki mogą
szybko i łatwo konwertować je na prawdziwe obiekty JavaScript. W odróżnieniu
od formatu JSON, dane zapisane w języku XML muszą być analizowane jako se-
ria „węzłów” — kod JavaScript musi je kolejno przejść, aby odczytać umieszczone
w nich dane. Ogólnie rzecz biorąc, ten proces trwa dłużej i wymaga napisania

R O Z D Z I AŁ 1 3 . W P R O W A D Z E N I E D O T E C H N O L O G I I A J A X

Format JSON

501

znacznie bardziej rozbudowanego kodu. Właśnie z tego powodu podczas przeka-
zywania danych przy użyciu technologii AJAX znacznie częściej wybieranym
formatem jest JSON.

Format JSON przypomina literały obiektowe języka JavaScript bądź pary nazwa –
wartość. Oto przykładowe dane w tym formacie:

{
 "firstName": "Franciszek",
 "lastName": "Nowak",
 "phone": "503-555-121"
}

Symbol { oznacza początek obiektu JSON, a znak } określa jego koniec. Między
tymi symbolami znajdują się pary nazwa – wartość, na przykład "firstName":
"Franciszek". Nazwa właściwości jest oddzielona do jej wartości znakiem dwu-
kropka. W odróżnieniu od zwyczajnych literałów obiektowych JavaScriptu, w for-
macie JSON nazwy właściwości muszą być zapisywane w cudzysłowach; w ten sam
sposób muszą być zapisywane także wszystkie łańcuchy znaków. Innymi słowy,
poniższy zapis nie jest prawidłowy:

firstName: 'Franciszek'

Natomiast ten jest:
"firstName": "Franciszek"

Podobnie jak w zwyczajnych literałach obiektowych JavaScriptu, także i w formacie
JSON poszczególne pary należy rozdzielać przecinkami, nie należy jednak umieszczać
tego znaku po ostatniej parze (bo niektóre wersje Internet Explorera zgłoszą błąd).

Pary nazwa – wartość możesz traktować jak zmienne. Nazwa to nazwa zmiennej,
a wartość to przechowywane w niej dane. We wcześniejszym fragmencie lastName
to odpowiednik zmiennej, w której zapisano łańcuch znaków 'Nowak'.

Kiedy serwer WWW reaguje na żądania ajaksowe, nie przesyła kodu JavaScript,
a jedynie tekst sformatowany w odpowiedni sposób. Do momentu przekształ-
cenia go na rzeczywisty obiekt JSON nie jest to gotowa do użytku jednostka kodu
JavaScript. Na szczęście jQuery udostępnia specjalną funkcję, $.getJSON(), która
obsługuje wszystkie szczegółowe operacje. Funkcja $.getJSON() wygląda i działa
bardzo podobnie jak funkcje $.get() i $.post(). Jej składnia przedstawia się
następująco:

$.getJSON(url, data, callback);

Funkcja ta przyjmuje te same trzy argumenty co funkcje $.post() i $.get()
— adres URL strony działającej po stronie serwera, dane przekazywane do tej
strony i nazwę wywoływanej zwrotnie funkcji. Różnica polega na tym, że funkcja
$.getJSON() przetwarza odpowiedź serwera (łańcuch znaków zapisany w formacie
JSON) i przekształca ją za pomocą skomplikowanego kodu JavaScript na gotowy
do użytku obiekt JavaScript.

Funkcja $.getJSON() działa podobnie jak $.post() i $.get(), ale dane przeka-
zane do funkcji zwrotnej są obiektem JavaScript. Aby użyć metody $.getJSON(),
trzeba tylko zrozumieć, jak przetwarzać takie dane w funkcjach zwrotnych. Załóż-
my, że chcesz użyć AJAX-a do zażądania informacji o danej osobie z zapisanego

C ZĘŚĆ I V  Z A A W A N S O W A N E Z A S T O S O W A N I A J Q U E R Y I JĘZ Y K A J A V A S C R I P T

Format JSON

502

na serwerze pliku contacts.php. Plik ten zwraca dane kontaktowe w formacie JSON
(patrz przykładowy obiekt JSON na poprzedniej stronie). Proste żądanie może wy-
glądać następująco:

$.getJSON('contacts.php','contact=123',processContacts);

Ten kod przesyła łańcuch znaków z zapytaniem (contact=123) do strony con-
tacts.php. Plik contacts.php korzysta z tych informacji do znalezienia danych kon-
taktowych w bazie i pobrania ich, a następnie przesyła je do przeglądarki, gdzie dane
trafiają do funkcji zwrotnej processContacts. Podstawowa struktura takiej funkcji
wygląda następująco:

function processContacts(data) {

}

Funkcja processContacts() przyjmuje jeden argument, data, który zawiera obiekt
JavaScript zwrócony przez serwer. Zobaczmy, jak funkcja ta może uzyskać dostęp do
informacji z tego obiektu.

Dostęp do danych z obiektów JSON
Są dwa sposoby na uzyskanie dostępu do obiektu JSON: składnia z kropką i notacja
tablicowa. Składnia z kropką (patrz strona 87) służy do wskazywania właściwości
obiektu. Kropkę należy umieścić między nazwą danego obiektu a potrzebną właści-
wością. Używałeś tej techniki do pobierania właściwości wielu różnych obiektów
języka JavaScript, między innymi łańcuchów znaków i tablic. Na przykład instruk-
cja 'abc'.length sprawdza właściwość length łańcucha znaków i zwraca liczbę liter
w tekście 'abc', czyli wartość 3.

Poniższy kod tworzy zmienną i zapisuje w niej literał obiektowy:
var bdate = {
 "person": "Roman",
 "date": "10/27/1980"
};

Zmienna bdate zawiera literał obiektowy, dlatego aby pobrać wartość właściwo-
ści person tego obiektu, należy użyć składni z kropką:

bdate.person // "Roman"

Poniższy kod pobiera datę urodzenia:
bdate.date // "10/27/1980"

Tak samo można korzystać z obiektów JSON zwracanych przez serwer WWW.
Przyjrzyj się poniższej instrukcji z metodą $.getJSON() i funkcją zwrotną:

$.getJSON('contacts.php','contact=123',processContacts);
function processContacts(data) {

}

Jeśli serwer zwróci dane JSON ze strony 500, obiekt JSON zostanie przypisany do
zmiennej data (to argument funkcji zwrotnej processContacts()), co odpowiada
uruchomieniu poniższego kodu:

R O Z D Z I AŁ 1 3 . W P R O W A D Z E N I E D O T E C H N O L O G I I A J A X

Format JSON

503

var data = {
 "firstName": "Franciszek",
 "lastName": "Nowak",
 "phone": "503-555-1212"
};

W wywoływanej zwrotnie funkcji można pobrać wartość właściwości firstName
w następujący sposób:

data.firstName // "Franciszek"

Aby pobrać nazwisko (właściwość lastName), użyj poniższej instrukcji:
data.lastName // "Nowak"

Załóżmy, że całe zadanie tego krótkiego ajaksowego skryptu polega na pobieraniu
danych kontaktowych i wyświetlaniu ich w znaczniku <div> o identyfikatorze info.
Kod tego programu może wyglądać następująco:

$.getJSON('contacts.php','contact=123',processContacts);
function processContacts(data) {
 var infoHTML='<p>Imię i nazwisko: ' + data.firstName;
 infoHTML+=' ' + data.lastName + '</br>';
 infoHTML+='Telefon: ' + data.phone + '</p>';
 $('#info').html(infoHTML);
}

Ostateczny efekt to dodany do strony akapit:
Imię i nazwisko: Franciszek Nowak
Telefon: 503-555-1212

Złożone dane JSON
Aby tworzyć także bardziej złożone kolekcje informacji, można używać literałów
obiektowych jako wartości w łańcuchach znaków zapisanych w formacie JSON.
Technika ta polega na zagnieżdżaniu literałów obiektowych w innych strukturach
tego typu (nie odkładaj jeszcze książki!).

Oto przykład. Załóżmy, że chcesz, aby serwer zwracał dane kontaktowe kilku osób
w formacie JSON. Skrypt przesyła do pliku contacts.php żądanie w postaci łańcucha
znaków z zapytaniem, który określa liczbę pobieranych zbiorów danych kontakto-
wych. Potrzebna instrukcja może wyglądać następująco:

$.getJSON('contacts.php','limit=2',processContacts);

Fragment limit=2 to przesyłana na serwer informacja, która określa liczbę zwra-
canych zbiorów danych. Przy tych ustawieniach serwer prześle dane dwóch osób.
Załóżmy, że pierwszą z nich będzie Franciszek Nowak z poprzedniego przykładu.
Drugi zbiór danych kontaktowych należy zapisać w następnym obiekcie JSON:

{
 "firstName": "Małgorzata",
 "lastName": "Kowal",
 "phone": "415-555-5235"
}

Serwer WWW może zwrócić łańcuch znaków z pojedynczym obiektem JSON, za-
wierającym oba opisane zbiory danych:

C ZĘŚĆ I V  Z A A W A N S O W A N E Z A S T O S O W A N I A J Q U E R Y I JĘZ Y K A J A V A S C R I P T

Format JSON

504

{
 "contact1": {
 "firstName": "Franciszek",
 "lastName": "Nowak",
 "phone": "503-555-1212"
 },
 "contact2": {
 "firstName": "Małgorzata",
 "lastName": "Kowal",
 "phone": "415-555-5235"
 }
}

Funkcja zwrotna ma jeden parametr o nazwie data (function processContacts
(data)). W momencie wywołania tej funkcji do zmiennej data zostanie przy-
pisany obiekt JSON, co odpowiada uruchomieniu poniższego kodu:

var data = {
 "contact1": {
 "firstName": "Franciszek",
 "lastName": "Nowak",
 "phone": "503-555-1212"
 },
 "contact2": {
 "firstName": "Małgorzata",
 "lastName": "Kowal",
 "phone": "415-555-5235"
 }
};

W funkcji zwrotnej dostęp do pierwszego obiektu z danymi kontaktowymi można
uzyskać w następujący sposób:

data.contact1

Aby pobrać imię pierwszej osoby, użyj poniższego kodu:
data.contact1.firstName

Jednak ponieważ chcesz przetworzyć dane kontaktowe wielu osób, możesz użyć
funkcji biblioteki jQuery, która umożliwia przejście w pętli po wszystkich obiek-
tach JSON. Służy do tego funkcja $.each(). Jej podstawowa struktura wygląda
następująco:

$.each(JSON,function(name,value) {

});

Do metody each() należy przekazać obiekt JSON i funkcję. Ta funkcja przyjmuje
nazwę i wartość każdego elementu z obiektu JSON. Poniższy kod używa przedsta-
wionego wcześniej obiektu JSON:

1 $.getJSON('contacts.php','limit=2',processContacts);
2 function processContacts(data) {
3 // Tworzenie zmiennej z pustym łańcuchem znaków.
4 var infoHTML='';
5
6 // Przejście w pętli po wszystkich obiektach z danych JSON.
7 $.each(data,function(contact, contactInfo) {
8 infoHTML+='<p>Dane kontaktowe: ' + contactInfo.firstName;
9 infoHTML+=' ' + contactInfo.lastName + '
';
10 infoHTML+='Telefon: ' + contactInfo.phone + '</p>';
11 }); // Koniec funkcji each
12

R O Z D Z I AŁ 1 3 . W P R O W A D Z E N I E D O T E C H N O L O G I I A J A X

Format JSON

505

13 // Dodaje gotowy kod HTML do strony.
14 $('#info').html(infoHTML);
15 }

Oto analiza tego kodu:

1. Wiersz 1. tworzy żądanie ajaksowe (wraz z daną limit=2) i określa funkcję
zwrotną (processContacts).

2. Wiersz 2. tworzy funkcję zwrotną, która przyjmuje obiekt JSON zwrócony
przez serwer i zapisuje go w zmiennej data.

3. Wiersz 4. tworzy pusty łańcuch znaków. Skrypt później zapisze w nim kod
HTML dołączany do strony.

4. Wiersz 7. to metoda $.each(), która przechodzi po obiektach w danych
w formacie JSON.

Metoda $.each() przyjmuje obiekt JSON jako pierwszy argument (data)
i funkcję anonimową jako argument drugi. Ilustruje to rysunek 13.10. Funkcja
anonimowa przyjmuje główne obiekty JSON (tu są to contact1 i contact2),
które obejmują łańcuch znaków z nazwą obiektu (argument contact w wier-
szu 7.) i jego wartość (argument contactInfo). W tym przykładzie zmienna
contactInfo przechowuje literał obiektowy z danymi kontaktowymi.

Rysunek 13.10. Aby przejść
w pętli po zawartości obiektu
JSON i wykonać operacje
na obiektach zagnieżdżo-
nych, można użyć funkcji each()
biblioteki jQuery (służy ona tak-
że do przechodzenia w pętli
po elementach tablic). Więcej
o tej przydatnej funkcji
dowiesz się na stronie
http://api.jquery.com/jQuery.
each/#objectcallback

http://api.jquery.com/jQuery.each/#objectcallback

C ZĘŚĆ I V  Z A A W A N S O W A N E Z A S T O S O W A N I A J Q U E R Y I JĘZ Y K A J A V A S C R I P T

Dodawanie do witryny
kanału Flickr

506

 5. Wiersze od 8. do 10. pobierają dane kontaktowe jednej osoby.

Pamiętaj, że metoda $.each() działa jak pętla, dlatego wiersze od 8. do 10. zo-
staną uruchomione dwukrotnie — jeden raz dla każdej osoby.

 6. Wiersz 14. aktualizuje stronę — dodaje do niej kod HTML:

Ostateczny efekt to dodanie do strony poniższego kodu HTML:
<p>Imię i nazwisko: Franciszek Nowak

Telefon: 503-555-1212</p>
<p>Imię i nazwisko: Małgorzata Kowal

Telefon: 415-555-5235</p>

Prezentacja JSONP
Ze względów bezpieczeństwa AJAX pozwala na przesyłanie żądań tylko do tej sa-
mej domeny. Oznacza to, że strona generująca żądania musi pochodzić z tego
samego serwera, na którym działa skrypt obsługujący te żądania. Politykę tę wy-
muszają przeglądarki WWW, by uniemożliwić jednej witrynie kontaktowanie się
z inną witryną (potencjalnie w złych zamiarach) — na przykład witryną naszego
banku. Istnieje jednak pewien sposób obejścia tego ograniczenia. Choć przeglądarka
nie jest w stanie przesłać żądania XML HTTP skierowanego do innej witryny,
to jednak może pobierać przechowywane na niej zasoby, takie jak obrazki, arkusze
stylów oraz zewnętrzne pliki JavaScript.

Technika JSONP (co stanowi skrót od słów JSON with padding — JSON z wypeł-
nieniem) zapewnia możliwość pobierania informacji z innych witryn. Ogólnie rzecz
biorąc, zamiast kierować do innej witryny normalne żądanie ajaksowe, pobieramy
z niej skrypt zawierający kod zapisany w formacie JSON. Rozwiązanie to przypo-
mina nieco dołączanie do stron zewnętrznych plików JavaScript z innych serwerów.

Technika ta nie pozwala jednak na pobieranie całkowicie dowolnych danych. Aby
można było z niej skorzystać, witryna odpowiadająca na żądania musi zostać odpo-
wiednio do tego przygotowana. Większość witryn nie zapewnia niezbędnych moż-
liwości, jednak wiele dużych witryn, na przykład Google Maps, Twitter, Flickr,
Facebook, Netflix czy też YouTube, udostępnia API (ang. Application Programming
Interface), czyli interfejs programowania aplikacji pozwalający na pobieranie danych,
takich jak mapy, zdjęcia, opisy filmów i tak dalej, przy użyciu funkcji $.getJSON()
biblioteki jQuery (patrz rysunek 13.11).

Dodawanie do witryny kanału Flickr
Flickr jest popularnym serwisem umożliwiającym publikowanie zdjęć i dzielenie się
nimi. Istnieje już od wielu lat i gromadzi miliony fotografii. Na wielu witrynach wy-
świetlane są zdjęcia zrobione przez ich autorów i opublikowane w serwisie Flickr
bądź też pochodzące z grupy Flickr (grupa jest kolekcją zdjęć przesłanych przez wiele
różnych osób i dotyczących konkretnego zagadnienia, takiego jak projektowanie stron
WWW, widoki i tym podobne).

R O Z D Z I AŁ 1 3 . W P R O W A D Z E N I E D O T E C H N O L O G I I A J A X

Dodawanie do witryny
kanału Flickr

507

Rysunek 13.11. Choć technologia AJAX zapewnia możliwość pobierania danych wyłącznie z tej samej domeny,
jednak technika określana jako JSONP pozwala na pobieranie danych w formacie JSON, poprzez pobranie
z odpowiednio przygotowanej witryny zewnętrznego pliku JavaScript. Za pomocą tej techniki możemy pobierać
komunikaty publikowane na witrynie Twitter, mapy z aplikacji Google Maps czy zdjęcia z serwisu Flickr (przedstawione
na tym rysunku) i umieszczać je bezpośrednio na swojej stronie

Flickr udostępnia kilka sposobów pobierania zdjęć oraz informacji na ich temat.
Największe możliwości zapewnia Flickr API, choć jednocześnie jest najtrudniejszy
w użyciu. Pozwala na wyszukiwanie zdjęć. Aby z niego skorzystać, konieczne jest
zarejestrowanie się w serwisie Flickr i pobranie specjalnego klucza (ang. API key; jest
to łańcuch złożony z liter i cyfr, który określa naszą tożsamość). Dodatkowo konieczne
jest także tworzenie złożonego kodu. Z kolei najprostszym sposobem jest skorzy-
stanie z Flickr Feed Service — kanałów Flickra. Kanały są sposobem pozwalającym
użytkownikom na dostęp do aktualnych informacji zgromadzonych na serwisie. Za-
pewne spotkałeś się z witrynami udostępniającymi kanały RSS, pozwalającymi na
pobieranie najnowszych artykułów i informacji opublikowanych na witrynie. Flickr
udostępnia podobne usługi udostępniające publikowane zdjęcia — można pobrać
listę 20 najnowszych zdjęć konkretnego użytkownika lub zdjęć opublikowanych
w określonej grupie.

C ZĘŚĆ I V  Z A A W A N S O W A N E Z A S T O S O W A N I A J Q U E R Y I JĘZ Y K A J A V A S C R I P T

Dodawanie do witryny
kanału Flickr

508

W tym podrozdziale wykorzystamy kanały, by pobrać kolekcję zdjęć z serwisu Flickr
i wyświetlić je na swojej stronie, a przy okazji dowiesz się, jak używać metody
$.getJSON() biblioteki jQuery, by pobierać dane JSONP z innej witryny.

Tworzenie adresu URL
Flickr udostępnia kilka różnych adresów URL pozwalających na pobieranie odmien-
nych rodzajów zdjęć (patrz strona https://www.flickr.com/services/feeds/). Przy-
kładowo adresu http://api.flickr.com/services/feeds/photos_public.gne można używać,
by pobierać zdjęcia publiczne z określonych kont serwisu Flickr (na przykład ze swoje-
go własnego konta, jeśli je posiadamy), jak również, by pobierać zdjęcia z określonej
grupy (takiej jak Web Design, zawierającej zdjęcia i obrazki mające inspirować pro-
jektantów do tworzenia pięknych stron WWW).

Kiedy już określimy, jaki rodzaj kanał nas interesuje oraz jaki jest jego podstawowy
adres URL, trzeba go będzie uzupełnić o pewne dodatkowe informacje. W tym
celu do adresu URL dodaje się łańcuch zapytania zawierający kilka informacji.
(Jak sobie zapewne przypominasz, była o tym mowa na stronie 487, łańcuch
zapytania jest umieszczany na końcu adresu URL i składa się ze znaku zapyta-
nia (?) oraz kilku par nazwa – wartość; oto przykład: https://api.flickr.com/services/
feeds/groups_discuss.gne?id=1003995@N21&lang=en-us&format=rss_200).

 Dodanie jednego lub kilku identyfikatorów. Aby pobrać zdjęcia z konkretnej
grupy albo jednego bądź kilku kont indywidualnych, należy dodać ciąg znaków
id, znak równości (=) oraz numer konta danej osoby lub grupy. Aby na przykład
pobrać kanał ze zdjęciami z grupy Web Design, należy użyć ogólnego adresu
URL kanału grupy i dodać do niego identyfikator tej grupy, która nas interesuje;
oto przykład:

https://api.flickr.com/services/feeds/groups_pool.gne?id=37996591093@N01

W przypadku kanałów ze zdjęciami pochodzącymi z kont konkretnych użyt-
kowników serwisu Flickr konieczne jest użycie adresu URL kanału publicznego
i uzupełnienie go o identyfikator lub identyfikatory wybranych użytkowników.
Aby za jednym zamachem pobrać zdjęcia z kanału Instytutu Smithsona (który
posiada swoje własne konto w serwisie Flickr) oraz kanału Biblioteki Kongresu,
konieczne byłoby dodanie do adresu URL kanału publicznego następujących
dwóch identyfikatorów:

https://api.flickr.com/services/feeds/photos_
public.gne?ids=8623220@N02,25053835@N03

Gdy trzeba podać większą liczbę identyfikatorów, należy oddzielić je od siebie
przecinkami. Trzeba przy tym pamiętać, że takie podawanie większej liczby iden-
tyfikatorów jest możliwe wyłącznie w przypadku pobierania zdjęć z kont indy-
widualnych. Pobieranie zdjęć z większej liczby grup w podobny sposób nie jest
możliwe.

Wskazówka: Jeśli znasz nazwę użytkownika — jakiejś osoby posiadającej konto w serwisie Flickr,

możesz znaleźć jej identyfikator na stronie http://idgettr.com/.

https://www.flickr.com/services/feeds/
http://api.flickr.com/services/feeds/photos_public.gne
https://api.flickr.com/services/feeds/groups_discuss.gne?id=1003995@N21&lang=en-us&format=rss_200
https://api.flickr.com/services/feeds/groups_pool.gne?id=37996591093@N01
https://api.flickr.com/services/feeds/photos_public.gne?ids=8623220@N02,25053835@N03
http://idgettr.com/
https://api.flickr.com/services/feeds/groups_discuss.gne?id=1003995@N21&lang=en-us&format=rss_200

R O Z D Z I AŁ 1 3 . W P R O W A D Z E N I E D O T E C H N O L O G I I A J A X

Dodawanie do witryny
kanału Flickr

509

 Dodanie formatu JSON. Usługi kanałów zdjęć udostępniane przez Flickr są bar-
dzo elastyczne i mogą zwracać informacje dotyczące zdjęć, zapisane w wielu
różnych formatach, takich jak RSS, Atom, CSV czy też JSON. Aby poinformo-
wać je, że interesuje nas format JSON, do łańcucha zapytania należy dodać ciąg
znaków &format=json. Aby na przykład pobrać dane z kanału Flickr Instytutu
Smithsona w formacie JSON, należałoby użyć następującego adresu URL:

https://api.flickr.com/services/feeds/photos_
public.gne?ids=25053835@N03&format=json

Spróbuj teraz wpisać powyższy adres w przeglądarce (jeśli jesteś na to zbyt leni-
wy, możesz skopiować i wkleić adres URL podany w pliku flickr_json.txt do-
stępnym w przykładach do książki, w katalogu R13). W rezultacie w przeglądar-
ce zostaną wyświetlone dane, a konkretnie literał obiektowy zawierający dane
z kanału Flickr. To są właśnie te dane, które pobierzesz z serwisu przy użyciu
metody $.getJSON() (opisanej na stronie 501). Teraz konieczne będzie na-
pisanie kodu JavaScript, który przetworzy ten obiekt i wykorzysta zapisane
w nim dane do wygenerowania małej, efektownej galerii zdjęć. (Struktura danych
kanałów Flickr zapisanych w formacie JSON została opisana na stronie 511,
natomiast na stronie 512 pokazano, jak można pobrać z niego wybrane in-
formacje i użyć ich w skrypcie).

 Dodanie do adresu URL odwołania zwrotnego JSONP. I w końcu, aby strona
należąca do naszej witryny mogła pobrać dane kanału Flickr, konieczne jest do-
danie do adresu URL jeszcze jednego parametru: &jsoncallback=?. Przypo-
mnij sobie, że ze względów bezpieczeństwa nie można tak po prostu przesłać
żądania XMLHTTP na adres należący do innej domeny. Aby ominąć ten pro-
blem, używany jest właśnie parametr &jsoncallback=?, który informuje serwis
Flickr, że interesują nas dane JSONP, i pozwala metodzie $.getJSON() potrak-
tować żądanie w taki sposób, jakby było ono skierowane do zwyczajnego,
zewnętrznego pliku JavaScript. Innymi słowy, aby pobrać kanał z najnow-
szymi zdjęciami opublikowanymi przez Instytut Smitshona, w wywołaniu
metody $.getJSON() należy podać następujący adres URL:

https://api.flickr.com/services/feeds/photos_
public.gne?ids=25053835@N03&format=json&jsoncallback=?

Kilka innych opcji publicznych kanałów Flickr

Serwis Flickr daje możliwość dodawania do każdego publikowanego zdjęcia znacz-
ników (ang. tags), czyli skojarzenia z nim słów lub krótkich zwrotów opisujących
dane zdjęcie. Przykładowo do zdjęcia zachodu słońca można dodać znacznik
sunset . Do każdego zdjęcia można dodać większą liczbę takich znaczników,

a zatem nasze zdjęcie zachodu słońca może mieć znaczniki sunset, orange,
beach .

Usługi obsługi kanałów serwisu Flickr udostępniają opcje pozwalające przeglą-
dać kanały w poszukiwaniu zdjęć zawierających określone znaczniki. Oto one.

 tags. Parametr tag pozwala dodać do adresu URL kanału jeden lub kilka,
oddzielonych od siebie przecinkami znaczników, na przykład &tags=fireworks,
night. Aby odszukać zdjęcia ogni sztucznych w nocy, należy użyć następują-
cego adresu URL:

https://api.flickr.com/services/feeds/photos_public.gne?ids=25053835@N03&format=json
https://api.flickr.com/services/feeds/photos_
public.gne?ids=25053835@N03&format=json&jsoncallback=?

C ZĘŚĆ I V  Z A A W A N S O W A N E Z A S T O S O W A N I A J Q U E R Y I JĘZ Y K A J A V A S C R I P T

Dodawanie do witryny
kanału Flickr

510

https://api.flickr.com/services/feeds/photos_public.gne?tags=fireworks,
night&format=json&jsoncallback=?

 tagmode. Zazwyczaj podczas poszukiwania grupy znaczników Filckr zwraca
tylko te zdjęcia, w których zostały zastosowane wszystkie podane znaczniki. Przy-
kładowo załóżmy, że do adresu dodaliśmy parametr ?tags=chipmunk,baseball,
winter. W takim przypadku znajdziemy wyłącznie zdjęcia burunduków
grających w baseball zimą. Gdybyśmy jednak chcieli wyszukać zdjęcia burun-
duków lub gry w baseball lub zdjęcia zimowe (innymi słowy, zdjęcia, w których
użyto przynajmniej jednego z interesujących nas znaczników), musielibyśmy
dodać do adresu URL jeszcze jeden parametr — &tagmode=any. Oto przykład:

https://api.flickr.com/services/feeds/photos_public.gne?tags=chipmunk,
baseball,winter&tagmode=any&format=json&jsoncallback=?

Łączenie opcji
Wyszukiwanie zdjęć można dodatkowo usprawnić, łącząc opcje. Przykładowo do
parametru tag można także dodać parametr ID, dzięki czemu odszukane zosta-
ną wyłącznie odpowiednie zdjęcia nadesłane przez konkretnego użytkownika
serwisu. Załóżmy, że wraz z grupą przyjaciół lubicie publikować w serwisie
Flickr zdjęcia burunduków i właśnie chciałbyś pobrać ostatnie 20 opublikowa-
nych zdjęć tych zwierząt. Możesz to zrobić, filtrując je przy użyciu jednego lub
większej liczby parametrów:

https://api.flickr.com/services/feeds/photos_public.gne?ids=25053835
@N03,8623220@N02&tags=chipmunk&format=json&jsoncallback=?

Stosowanie metody $.getJSON()
Skorzystanie z funkcji $.getJSON() w celu pobierania danych kanału z serwisu
Flickr daje dokładnie te same efekty jak pobieranie danych w formacie JSON z wła-
snej witryny. Podstawowy sposób użycia tej funkcji jest taki sam. Poniżej przedsta-
wione zostały czynności wstępne, niezbędne do pobrania kanału Instytutu Smithsona:

1 var flickrURL = "https://api.flickr.com/services/feeds/
photos_public.gne?ids=25053835@N03&format=json&jsoncallback=?"

2 $.getJSON(flickrURL, function(data) {
3 // przetwarzamy pobrane dane w formacie JSON
4 }); // koniec funkcji get

W 1. wierszu powyższego przykładu tworzona jest zmienna o nazwie flickrURL,
zawierająca adres URL (utworzony zgodnie z opisanymi wcześniej regułami). W wier-
szu 2. generujemy żądanie, przesyłając je na przygotowany wcześniej adres URL,
i określamy funkcję anonimową, służącą do przetwarzania pobranych danych. Po
przesłaniu żądania kod pobiera dane wysłane z serwera — w tym przypadku zostaną
one przekazane do funkcji anonimowej i zapisane w zmiennej data. Już niebawem
nauczysz się, jak można takie dane przetwarzać, jednak najpierw musisz dowiedzieć
się, jak wyglądają.

https://api.flickr.com/services/feeds/photos_public.gne?tags=fireworks,night&format=json&jsoncallback=?
https://api.flickr.com/services/feeds/photos_public.gne?tags=chipmunk,baseball,winter&tagmode=any&format=json&jsoncallback=?
https://api.flickr.com/services/feeds/photos_public.gne?ids=25053835@N03,8623220@N02&tags=chipmunk&format=json&jsoncallback=?

R O Z D Z I AŁ 1 3 . W P R O W A D Z E N I E D O T E C H N O L O G I I A J A X

Dodawanie do witryny
kanału Flickr

511

Prezentacja danych kanału Flickr w formacie JSON
Zgodnie z informacjami podanymi na stronie 500, format JSON jest tekstowym
sposobem zapisu literałów obiektowych języka JavaScript. Czasami postać takich li-
terałów może być bardzo prosta, oto przykład:

{
 "firstName" : "Jan",
 "lastName" : "Kowalski"
}

W tym przykładzie firstName można porównać do klucza, skojarzonego z wartością
'Jan' — zwyczajnym łańcuchem znaków. Jednak taką wartością może być także
kolejny obiekt (patrz rysunek 13.10, na stronie 505), więc często można się spotkać
ze złożonymi, zagnieżdżonymi strukturami danych, przypominającymi nieco ro-
syjskie „matrioszki”, lalki ukryte wewnątrz innych lalek. Właśnie w taki sposób wy-
gląda kanał Flickr z danymi zdjęć. Oto niewielki fragment takich danych; przedstawia
dane dotyczące dwóch zdjęć:

1 {
2 "title": "Uploads from Smithsonian Institution",
3 "link": "http://www.flickr.com/photos/smithsonian/",
4 "description": "",
5 "modified": "2011-08-11T13:16:37Z",
6 "generator": "http://www.flickr.com/",
7 "items": [
8 {
9 "title": "East Island, June 12, 1966.",
10 "link": "http://www.flickr.com/photos/smithsonian/5988083516/",
11 "media": {"m":"http://farm7.static.flickr.com/6029/5988083516_

bfc9f41286_m.jpg"},
12 "date_taken": "2011-07-29T11:45:50-08:00",
13 "description": "Short description here",
14 "published": "2011-08-11T13:16:37Z",
15 "author": "nobody@flickr.com (Smithsonian Institution)",
16 "author_id": "25053835@N03",
17 "tags": "ocean birds redfootedbooby"
18 },
19 {
20 "title": "Phoenix Island, April 15, 1966.",
21 "link": "http://www.flickr.com/photos/smithsonian/5988083472/",
22 "media": {"m":"http://farm7.static.flickr.com/6015/5988083472_

c646ef2778_m.jpg"},
23 "date_taken": "2011-07-29T11:45:48-08:00",
24 "description": "Another short description",
25 "published": "2011-08-11T13:16:37Z",
26 "author": "nobody@flickr.com (Smithsonian Institution)",
27 "author_id": "25053835@N03",
28 "tags": ""
29 } // ...
30]
31 }

Obiekt JSON generowany przez serwis Flickr zawiera nieco informacji o samym ka-
nale: są one umieszczone na samym początku i obejmują takie dane jak title, link
i tak dalej. Element title (umieszczony w wierszu 2.) zawiera nazwę kanału. W tym
przypadku jest to Uploads from Smithsonian Institution ; z kolei element link
zawiera adres URL głównej strony Instytutu Smithsona na serwisie Flickr. Infor-
macji tych można użyć na przykład jako nagłówka wyświetlanego nad galerią zdjęć.

http://www.flickr.com/photos/smithsonian/
http://www.flickr.com/
http://www.flickr.com/photos/smithsonian/5988083516/
http://farm7.static.flickr.com/6029/5988083516_%EF%83%A5bfc9f41286_m.jpg
http://farm7.static.flickr.com/6029/5988083516_%EF%83%A5bfc9f41286_m.jpg
http://www.flickr.com/photos/smithsonian/5988083472/
http://farm7.static.flickr.com/6015/5988083472_%EF%83%A5c646ef2778_m.jpg
http://farm7.static.flickr.com/6015/5988083472_%EF%83%A5c646ef2778_m.jpg
mailto:nobody@flickr.com

C ZĘŚĆ I V  Z A A W A N S O W A N E Z A S T O S O W A N I A J Q U E R Y I JĘZ Y K A J A V A S C R I P T

Przykład — dodawanie
zdjęć z Flickr

512

Aby uzyskać dostęp do tych informacji, konieczne jest skorzystanie z zapisu z kropką,
opisanego na stronie 87. Załóżmy, że użyliśmy kodu przedstawionego w poprzed-
nim punkcie rozdziału (na stronie 510): funkcji anonimowej, przetwarzającej dane
JSON przekazane do niej w zmiennej data (patrz 2. wiersz kodu na stronie 510).
Aby w takim przypadku pobrać wartość właściwości title obiektu data, musimy
użyć wyrażenia w postaci:

data.title

Najważniejszym elementem danych kanału Flickr jest właściwość items (wiersz 7.),
zawierająca dodatkowe obiekty, z których każdy przechowuje informacje dotyczące
jednego zdjęcia. Przykładowo wiersze od 8. do 18. zawierają informacje o pierwszym
zdjęciu, natomiast wiersze od 19. do 29. — o drugim. Wewnątrz każdego z tych obiek-
tów można znaleźć kolejne właściwości, takie jak tytuł zdjęcia (wiersz 9.), odnośnik do
strony tego zdjęcia (wiersz 10.), datę zrobienia zdjęcia (wiersz 12.), jego opis (wiersz 13.,
w tym przypadku jest to Short description here , czyli: Tu jest umieszczony
krótki opis — pracownicy Instytutu Smitshona musieli być tego dnia trochę leniwi)
i tak dalej.

Kolejną ważną informacją dotyczącą każdego zdjęcia jest element media — zawiera
on kolejny obiekt. Oto przykład:

{
 "m":"http://farm7.static.flickr.com/6029/5988083516_bfc9f41286_m.jpg"
}

Litera m na początku jest skrótem od angielskiego słowa medium — średni. Wła-
ściwość ta zawiera adres URL zdjęcia. Zdjęcia na serwisie Flickr są zazwyczaj do-
stępne w kilku różnych rozmiarach, takich jak średni (ang. medium), miniaturka
(ang. thumbnail) lub mały (ang. small; w tym przypadku jest to mały, kwadratowy
obrazek). Jeśli chcemy wyświetlać zdjęcia z serwisu Flickr na własnej stronie, to wła-
śnie ten adres URL jest informacją, której potrzebowaliśmy. Tego adresu możemy
użyć w znaczniku , by wskazać położenie zdjęcia na serwerze Flickr. Zobaczysz,
jak to należy zrobić, w przykładzie przedstawionym w kolejnym podrozdziale.

Przykład — dodawanie zdjęć
z Flickr na własnej stronie

W tym przykładzie dowiesz się, jak trzeba połączyć w jedną całość wszystkie czynno-
ści związane z pobieraniem kanału zdjęć Instytutu Smithsona z serwisu Flickr, wy-
świetlaniem na własnej stronie miniaturek pobranych zdjęć i dodaniem do każdej
z nich odnośnika, który pozwoli użytkownikowi przejść na stronę danego zdjęcia.

Uwaga: Informacje na temat pobierania przykładów dołączonych do tej książki można znaleźć na

stronie 46.

 1. W edytorze tekstów otwórz plik flickr.html umieszczony w katalogu R13.

Zaczniesz od utworzenia kilku zmiennych, w których będą zapisane kompo-
nenty adresu URL koniecznego do pobrania danych kanału z serwisu Flickr.

R O Z D Z I AŁ 1 3 . W P R O W A D Z E N I E D O T E C H N O L O G I I A J A X

Przykład — dodawanie
zdjęć z Flickr

513

2. Kliknij pusty wiersz wewnątrz funkcji $(document).ready() i wpisz:
var URL = "https://api.flickr.com/services/feeds/photos_public.
gne?jsoncallback=?";

Ten adres odwołuje się do publicznego kanału i zawiera jeden magiczny
fragment — ?jsoncallback=? — informujący serwis Flickr, że w odpowiedzi
powinien przesłać dane JSONP. Innymi słowy, powyższy kod nakazuje serwi-
sowi Flickr przesłanie pliku JavaScript zawierającego informacje o zdjęciach.

Teraz utworzysz obiekt, który będzie zawierał dodatkowe informacje przeka-
zywane do serwisu Flickr.

Każda z informacji zapisanych w tym obiekcie będzie jednym z elementów długie-
go adresu URL, opisanego na stronie 509. Zapisanie każdego z elementów tego
adresu w osobnej właściwości obiektu ułatwia wprowadzanie ewentualnych
zmian w kodzie.

Wskazówka: Jeśli dysponujesz kontem w serwisie Flickr, do powyższego adresu możesz dodać jego

identyfikator. Jeśli go nie znasz, możesz to sprawdzić na witrynie http://idgettr.com/.

W następnym kroku przygotujesz obiekt z dodatkowymi informacjami.

3. Dodaj kolejny wiersz poniżej tego, który wpisałeś w poprzednim kroku,
i napisz w nim:

var searchInfo = {

};

Te trzy wiersze kodu zawierają pusty literał obiektowy języka JavaScript.
Zgodnie z informacjami podanymi na stronie 500, w żądaniach AJAX moż-
na przesyłać dodatkowe dane, których serwer może użyć do modyfikowania
postaci odpowiedzi. W tym przypadku chcesz podać numer użytkownika
serwisu Flickr, aby odszukać wyłącznie jego zdjęcia.

4. Wewnątrz obiektu dodaj jedną parę nazwa – wartość (wyróżnioną po-
grubieniem):

var searchInfo = {

 id: "25053835@N03"

};

API serwisu Flickr oczekuje identyfikatora użytkownika. W tym przypadku
identyfikator ten należy do Instytutu Smithsona. Zwróć uwagę, że nazwa
właściwości musi być zapisana małymi literami — id. Aby pobrać kanał zdjęć
innego użytkownika, wystarczy zmienić wartość właściwości id (jeśli masz
swoje konto w serwisie Flickr, możesz tu podać własny identyfikator).

Dodatkowo musisz poinformować serwis, by przesyłał dane w formacie JSON.

Wskazówka: Jeśli chcesz pobrać zdjęcia z jakieś grupy serwisu Flickr, takiej jak grupa Web Design,

zmień adres URL podany w kroku 2. na następujący: https://api.flickr.com/services/feeds/

groups_pool.gne?jsoncallback=?;, a w kroku 4. podaj identyfikator grupy.

https://api.flickr.com/services/feeds/photos_public.%EF%83%A5gne?jsoncallback=?
https://api.flickr.com/services/feeds/photos_public.%EF%83%A5gne?jsoncallback=?
http://idgettr.com/
https://api.flickr.com/services/feeds/groups_pool.gne?jsoncallback=?;
https://api.flickr.com/services/feeds/groups_pool.gne?jsoncallback=?;

C ZĘŚĆ I V  Z A A W A N S O W A N E Z A S T O S O W A N I A J Q U E R Y I JĘZ Y K A J A V A S C R I P T

Przykład — dodawanie
zdjęć z Flickr

514

5. Na końcu wiersza zawierającego właściwość id wpisz przecinek, naciśnij
klawisz Enter i wpisz: format : "json":

var searchInfo = {

 id: "25053835@N03",

 format : "json"

};

Jeśli nie dodasz właściwości format, serwis prześle w odpowiedzi dane w forma-
cie XML.

W końcu nadszedł czas, aby zająć się kodem JavaScript i skorzystać z metody
$.getJSON().

6. Dodaj następny wiersz i wpisz w nim:
$.getJSON(URL,searchInfo,function(data) {

}); // koniec funkcji getJSON

To ogólna struktura wywołania funkcji $.getJSON(): prześle ona żądanie na ad-
res URL podany w kroku 2., dodając do niego kryteria wyszukiwania określone
w krokach od 3. do 5. oraz pobierze zwrócone dane. Dane te zostaną następnie
przekazane do funkcji anonimowej i zapisane w zmiennej data. Wewnątrz tej
funkcji będziesz już mógł odwoływać się do pobranych danych i używać ich do
tworzenia strony. Zaczniemy od pobrania tytułu kanału i umieszczenia go
w znaczniku <h1>, który już jest dostępny w kodzie strony.

7. Do kodu z poprzedniego kroku dodaj wiersz wyróżniony pogrubioną czcionką:
$.getJSON(URL,searchInfo,function(data) {

 $('h1').text(data.title);
}); // koniec funkcji getJSON

Zastosowaliśmy w nim prosty selektor jQuery — $('h1') — oraz funkcję
text(), aby pobrać znacznik <h1> dostępny na stronie i zastąpić tekst umiesz-
czony wewnątrz niego. Dane kanału w formacie JSON są zapisane w zmiennej
data. Aby uzyskać dostęp do ich elementów, konieczne jest zastosowanie zapi-
su z kropką (patrz strona 87), a zatem wyrażenie data.title pobiera tytuł ka-
nału. Gdybyś już teraz zapisał stronę i wyświetlił ją w przeglądarce, zobaczyłbyś
pogrubiony nagłówek o treści Uploads from Smithsonian Institution.

W kolejnym punkcie utworzysz nową zmienną, w której zostanie zapisany łań-
cuch znaków zawierający kod HTML, jaki później dodasz do strony.

8. Dodaj kolejny wiersz wyróżniony pogrubioną czcionką, umieszczając go po-
niżej kodu wpisanego w poprzednim kroku:

$.getJSON(URL,searchInfo,function(data) {
 $('h1').text(data.title);
 var photoHTML = '';
}); // koniec funkcji getJSON

Obecnie łańcuch ten jest pusty, jednak już wkrótce dodasz do niego kod
HTML niezbędny do wyświetlenia na stronie zdjęć z serwisu Flickr. W celu
utworzenia tego kodu HTML przeglądniesz w pętli tablicę items, zawierają-
cą obiekty zwrócone z kanału Flickr. Dla każdego zwróconego zdjęcia dodasz
do zmiennej photoHTML kolejny fragment kodu HTML.

R O Z D Z I AŁ 1 3 . W P R O W A D Z E N I E D O T E C H N O L O G I I A J A X

Przykład — dodawanie
zdjęć z Flickr

515

9. Poniżej wiersza kodu dodanego w poprzednim kroku dodaj fragment wy-
różniony pogrubioną czcionką:

$.getJSON(ajaxURL,searchInfo,function(data) {
 $('h1').text(data.title);
 var photoHTML = '';
 $.each(data.items,function(i,photo) {

 }); // koniec funkcji each
}); // koniec funkcji getJSON

Funkcja .each()(opisana na stronie 167) służy do przeglądnięcia całej zawar-
tości kolekcji jQuery. Metoda $.each() jest podobna, choć działa nieco inaczej.
Jest to ogólna pętla pozwalająca przejrzeć całą zawartość tablicy (patrz strona 77)
lub grupy obiektów. W jej wywołaniu przekazywana jest tablica lub literał obiek-
towy oraz funkcja anonimowa. Metoda $.each() pobiera kolejno każdy element
tablicy lub obiektu i dla każdego z nich wywołuje funkcję anonimową. Z kolei do
tej funkcji anonimowej przekazywane są dwa argumenty (w naszym przypadku
są to i oraz photo), zawierające odpowiednio indeks elementu oraz sam ele-
ment. Indeks jest numerem elementu przetwarzanego w pętli i jest liczony
tak samo jak indeksy tablic (patrz strona 80), czyli pierwszy element ma indeks
o wartości 0. Drugim argumentem wywołania funkcji anonimowej (w naszym
przykładzie nosi on nazwę photo) jest obiekt zawierający faktyczne dane zdję-
cia, takie jak jego nazwa, opis, adres URL i tak dalej (zgodnie z informacjami
podanymi na stronie 512).

W kanałach Flickr element data.items reprezentuje tablicę obiektów z danymi
o poszczególnych zdjęciach, a zatem funkcja $.each() będzie po kolei przeka-
zywać każdy z tych obiektów do funkcji anonimowej, przy czym każdy z obiek-
tów zostanie umieszczony w zmiennej photo. Innymi słowy, powyższy kod
przeglądnie w pętli wszystkie zdjęcia pobrane w kanale i coś z nimi zrobi. W na-
szym przypadku wykonywane operacje sprowadzą się do utworzenia sekwencji
miniaturek będących jednocześnie odnośnikami do stron poszczególnych zdjęć
w serwisie Flickr. Naszym celem jest wygenerowanie prostego kodu HTML, któ-
ry pozwoli wyświetlić każde ze zdjęć i dodać do niego odnośnik. Oto przykład:

Do wygenerowania takiego kodu potrzebujemy tylko dwóch informacji — adresu
URL strony zdjęcia w serwisie Flickr oraz ścieżki do pliku zdjęcia. W kolejnym
kroku wygenerujesz długi łańcuch znaków, dokładnie przypominający powyż-
szy kod HTML, w którym dla każdego zdjęcia zmieniać się będzie jedynie adres
URL strony oraz miniaturki zdjęcia.

10. Wewnątrz metody $.each() dodaj poniższy kod wyróżniony pogrubioną
czcionką:

$.each(data.items,function(i,photo) {
 photoHTML += '';
 photoHTML += '';
 photoHTML += '';
}); // koniec funkcji each

http://www.flickr.com/photos/smithsonian/5988083516/
http://farm7.static.flickr.com/6029/5988083516_bfc9f41286_s.jpg

C ZĘŚĆ I V  Z A A W A N S O W A N E Z A S T O S O W A N I A J Q U E R Y I JĘZ Y K A J A V A S C R I P T

Przykład — dodawanie
zdjęć z Flickr

516

Powyższy kod rozpoczyna się od dodania do zmiennej photoHTML łańcucha za-
wierającego otwierający znacznik . Każda kolejna instrukcja dodaje do
tego łańcucha kolejny fragment (aby sobie przypomnieć znaczenie operatora +=,
zajrzyj na stronę 72). Kluczowymi elementami tych instrukcji są odwołania
photo.link oraz photo.media.m. Jeśli zajrzysz do danych zapisanych w forma-
cie JSON i przedstawionych na stronie 511, przekonasz się, że dane każdego
ze zdjęć zawierają różne właściwości, takie jak title (nazwa zdjęcia) bądź
description (krótki opis danego zdjęcia). Właściwość link zawiera adres URL
strony danego zdjęcia w serwisie Flickr, natomiast właściwość media — obiekt
posiadający właściwość m, zawierającą ścieżkę dostępu do pliku zdjęcia w wersji
o średniej wielkości. Cały ten kod generuje HTML w dokładnie takiej postaci,
jaka została przedstawiona w kroku 6. Teraz trzeba wyświetlić ten kod na stronie.

11. Dodaj kolejny fragment kodu wyróżniony pogrubioną czcionką:
$.each(data.items,function(i,photo) {
 photoHTML += '';
 photoHTML += '';
 photoHTML += '';
}); // koniec funkcji each
$('#photos').append(photoHTML);

Zwróć uwagę, że ten wiersz kodu jest umieszczony poza pętlą. Przecież nie
chcesz dodawać kodu HTML do strony aż do momentu, gdy zostanie on w cało-
ści wygenerowany wewnątrz pętli. Wywołanie $('#photos') pobiera istniejący
na stronie znacznik <div>, natomiast funkcja append() (opisana dokładniej na
stronie 158) dodaje przekazany kod HTML na samym końcu tego znacznika.

12. Zapisz stronę i wyświetl ją w przeglądarce.

Na stronie powinno pojawić się 20 miniaturek. (Jeśli nic na niej nie zobaczysz,
sprawdź dokładnie kod i skorzystaj z konsoli JavaScript przeglądarki, zgodnie
z informacjami podanymi na stronie 51, by odszukać wszelkie błędy składnio-
we). Nasz problem polega na tym, że miniaturki zdjęć są bardzo małe i nie są
wyświetlane na stronie w formie estetycznej tabelki. Dzieje się tak dlatego, że
w kanałach Flickr podawane są jedynie odnośniki do zdjęć średniej wielkości.

Flickr przechowuje jednak także ładne, kwadratowe miniaturki wszystkich zgro-
madzonych zdjęć. Wyświetlenie na stronie takich miniaturek o tym samym
kształcie i wymiarach pozwoliłoby utworzyć estetyczną, uporządkowaną galerię.
Na szczęście, pobranie tych miniaturek nie przysparza większych proble-
mów. Flickr korzysta ze spójnego sposobu określania nazw zdjęć — zdjęcie
o średniej wielkości ma na przykład adres http://farm7.static.flickr.com/6029/
5988083516_bfc9f41286_m.jpg, natomiast miniaturka tego samego zdjęcia
— http://farm7.static.flickr.com/6029/5988083516_bfc9f41286_s.jpg. Jak wi-
dać, jedyną różnicą jest inna końcówka nazwy pliku: w przypadku zdjęć średniej
wielkości jest to _m, w małych, kwadratowych miniaturkach (o wymiarach
75×75 pikseli) jest to _s, małe zdjęcia, których dłuższa krawędź ma prawie 100
pikseli mają końcówkę _t, końcówka _o oznacza oryginalne zdjęcie (czyli takie,
jakie zostało przesłane na serwer Flickr przez użytkownika), natomiast duże
zdjęcia (których dłuższa krawędź ma co najwyżej 1024 piksele długości) mają
końcówkę _b. Oznacza to, że gdy zmienimy nieznacznie nazwę pliku (na

R O Z D Z I AŁ 1 3 . W P R O W A D Z E N I E D O T E C H N O L O G I I A J A X

Przykład — dodawanie
zdjęć z Flickr

517

przykład zamieniając ciąg znaków _m na ciąg _s), możemy wyświetlać ob-
razki innej wielkości. Tak się składa, że JavaScript udostępnia wygodną meto-
dę pozwalającą na zamienianie fragmentów łańcuchów znaków.

 13. W kodzie skryptu zmień photo.media.m na photo.media.m.replace('_m',
'_s'). Końcowa postać kodu powinna wyglądać tak, jak na poniższym
przykładzie:

$(document).ready(function() {
 var URL = "https://api.flickr.com/services/feeds/
 photos_public.gne?jsoncallback=?";
 var searchInfo = {
 id : "25053835@N03",
 format : "json"
 };
 $.getJSON(URL,searchInfo,function(data) {
 $('h1').text(data.title);
 var photoHTML = '';
 $.each(data.items,function(i,photo) {
 photoHTML += '';
 photoHTML += '';
 photoHTML += '<img src="'
 + photo.media.m.replace('_m','_s') + '">';
 }); // koniec funkcji each
 $('#photos').append(photoHTML);
 }); // koniec funkcji get JSON
}); // koniec funkcji ready

Metoda replace()języka JavaScript (opisana na stronie 585) operuje na łańcu-
chach znaków; wymaga ona przekazania dwóch argumentów — poszukiwa-
nego łańcucha znaków (w naszym przypadku jest to '_m') oraz zamiennika
(u nas jest to '_s').

 14. Zapisz stronę i wyświetl ją w przeglądarce.

Teraz powinieneś zobaczyć na stronie 20 równo rozmieszczonych, kwadra-
towych miniaturek (patrz rysunek 13.11). Możesz kliknąć jedną z nich, by
wyświetlić stronę danego zdjęcia. Działającą wersję tego przykładu można znaleźć
w pliku complete_flickr.html, w katalogu R13.

Uwaga: Kanały Flickr udostępniają co najwyżej 20 zdjęć. Z żadnego kanału nie można pobrać więcej niż

20 zdjęć. A co zrobić, jeśli będziemy chcieli pobrać z kanału 10 zdjęć? Przykład rozwiązania takiego

problemu możesz znaleźć w pliku complete_flickr_limit_phostos.html dostępnym w katalogu R13.

https://api.flickr.com/services/feeds/%EF%83%A5photos_public.gne?jsoncallback=?
https://api.flickr.com/services/feeds/%EF%83%A5photos_public.gne?jsoncallback=?

C ZĘŚĆ I V  Z A A W A N S O W A N E Z A S T O S O W A N I A J Q U E R Y I JĘZ Y K A J A V A S C R I P T

518

Tworzenie aplikacji
do obsługi listy zadań

Biblioteki jQuery i jQuery UI udostępniają narzędzia do tworzenia zaledwie w kilku
prostych krokach profesjonalnie wyglądających aplikacji internetowych. Pierwsza
z nich może zadbać o wybieranie elementów strony, dodawanie do niej nowych
elementów oraz aktualizowanie DOM. Z kolei biblioteka jQuery UI udostępnia
wspaniale wyglądające widżety, sposoby interakcji z użytkownikiem oraz efekty
animacji, rozwiązując tym samym wiele najczęściej występujących problemów
związanych z opracowaniem interfejsu użytkownika. Korzystając z obu tych bi-
bliotek, można uniknąć żmudnych oraz czasochłonnych zadań i skoncentrować się
wyłącznie na tworzeniu dynamicznej, interaktywnej aplikacji. W tym rozdziale
przedstawiony został proces pisania prostej aplikacji do zarządzania listą zadań.

Przegląd aplikacji
Lista zadań, którą napiszemy w tym rozdziale, będzie pozwalała użytkownikom
na wykonywanie następujących operacji.

 Dodawanie nowych zadań do listy. W tym celu dodamy do niej widżet przyci-
sku jQuery UI (nr 1 na rysunku 14.1), a następnie po kliknięciu wyświetlimy
okno dialogowe jQuery UI.

 Oznaczanie zadania jako wykonanego. Każde zadanie na liście będzie mieć
pole wyboru z lewej strony (numer 2 na rysunku 14.1). Kliknięcie tego pola
będzie automatycznie usuwać zadanie z listy Zadania do wykonania i prze-
nosić na listę Zadania wykonane.

 Przeciąganie zadań z listy Zadania do wykonania na listę Zadania wy-
konane i na odwrót (numer 3 na rysunku 14.1). Choć klikanie pola wyboru
niewątpliwie spełni swoją rolę, to niby czemu mamy się ograniczać do tylko
jednego sposobu oznaczania zadań jako wykonanych? Korzystając z widżetu

14
ROZDZIAŁ

C ZĘŚĆ I V  Z A A W A N S O W A N E Z A S T O S O W A N I A J Q U E R Y I JĘZ Y K A J A V A S C R I P T

Dodanie przycisku

520

Rysunek 14.1. Biblioteki jQuery oraz jQuery UI sprawiają, że napisanie prostej listy zadań do zrobienia jest
relatywnie łatwe. Pozwalają one na rozwiązywanie złożonych problemów związanych z tworzeniem inter-
fejsów użytkownika, takich jak opracowanie okien dialogowych, list z możliwością sortowania oraz animo-
wanie wybranych elementów stron. Dzięki nim będziemy mogli skoncentrować się wyłącznie na zaimple-
mentowaniu możliwości funkcjonalnych aplikacji

Sortable jQuery UI, możemy także pozwolić użytkownikom na oznaczanie
zdań jako wykonanych poprzez przeciąganie ich na listę Zadania wykonane.
Co więcej, możemy także pozwolić na przeciąganie zadań z powrotem na listę
Zadania do wykonania.

 Usuwanie zadań z listy po kliknięciu przycisku Usuń (numer 4 na rysun-
ku 14.1). Aby zapewnić użytkownikom możliwość całkowitego usunięcia
zadania, dodamy przycisk Usuń, którego kliknięcie całkowicie usunie zada-
nie ze strony. Zastosujemy przy tym jeden z efektów jQuery UI, by cała operacja
wyglądała interesująco.

Ponieważ biblioteka jQuery UI udostępnia większość widżetów i mechanizmów
interakcji, pozostaje jedynie zaimplementowanie podstawowej logiki działania
aplikacji. Zadanie to wykonamy krok po kroku, zgodnie z przedstawionym po-
wyżej planem. Zaczniemy od dodania przycisku, a następnie dokończymy pozo-
stałą część aplikacji. Zadanie programistyczne podczas rozwiązywania warto po-
dzielić na mniejsze elementy, które można łatwo przetestować. Podobnie będzie
w tym przykładzie — najpierw zrobimy jedną rzecz, upewnimy się, że działa prawi-
dłowo, i dopiero potem przejdziemy do kolejnej.

Dodanie przycisku
Najpierw dodamy do strony przycisk i sformatujemy go przy użyciu jQuery UI.
W tym przykładzie będziemy pracować nad dwoma plikami dostępnymi w kata-
logu R14; są to index.html oraz todo.js. Cały kod JavaScript będzie umieszczany
w pliku todo.js, natomiast kod HTML niezbędny do utworzenia przycisku oraz
okna dialogowego trafi do pliku index.html.

Uwaga: Informacje na temat pobierania przykładów do książki można znaleźć na stronie 46.

R O Z D Z I AŁ 1 4 . T W O R Z E N I E A P L I K A C J I D O O B SŁU G I L I S T Y Z A D AŃ

Dodanie przycisku

521

 1. Otwórz w edytorze tekstu plik index.html dostępny w katalogu R14.
Plik zawiera już odwołania do potrzebnych plików CSS, jQuery oraz jQuery UI.
Jednak nie ma w nim jeszcze odwołania do skryptu todo.js — czyli pliku, w któ-
rym zapiszesz kod JavaScript tworzonej aplikacji.

 2. W wierszu bezpośrednio poniżej <script src="js/jqeury-ui.min.js">
</script> dodaj następujący wiersz kodu :

<script src="todo.js"></script>

Bardzo ważne jest to, by plik todo.js został dołączony do strony jako ostatni,
gdyż wymaga on zarówno biblioteki jQuery, jak i jQuery UI. Jeśli wczytasz
go przed którąkolwiek z tych bibliotek, podczas wyświetlania strony przeglą-
darka zgłosi błąd syntaktyczny.
Teraz zajmiesz się dodaniem przycisku. Użytkownik będzie mógł go kliknąć
w celu dodania do listy nowego zadania.

 3. W treści pliku odszukaj komentarz <!-- Tu dodaj przycisk. --> i zastąp
go poniższym wierszem kodu HTML:

<button id="add-todo">Dodaj nowe zadanie</button>

W tym kodzie nie ma nic szczególnego — dodajesz do strony zwyczajny ele-
ment <button>. Gdybyś teraz wyświetlił stronę w przeglądarce, przekonałbyś
się, że wygląda on jak zwyczajny przycisk do wysyłania formularza — bez-
barwny i nieinteresujący. Już zaraz przekształcisz go w przycisk jQuery UI.

 4. W edytorze tekstów otwórz plik todo.js, a następnie wewnątrz funkcji
$(document).ready(function(e) { wpisz następujący wiersz kodu:

$("#add-todo").button();

Powyższy kod spowoduje zastosowanie w przycisku formatowania określonego
przez aktualnie używamy temat graficzny jQuery UI (patrz strona 407). Mo-
żesz go dodatkowo uatrakcyjnić, dodając do niego ikonę jQuery UI.

 5. Wewnątrz funkcji button() dodaj literał obiektowy definiujący ikonę,
która będzie wyświetlona na przycisku (kod literału został wyróżniony
pogrubioną czcionką):

$("#add-todo").button({
 icons: {
 primary: "ui-icon-circle-plus"
 }
});

Powyższy kod umieści z lewej strony napisu widocznego na przycisku niewiel-
ką ikonę ze znakiem „+”. Zgodnie z informacjami podanymi na stronie 390,
jQuery UI pozwala na wyświetlanie na przyciskach dwóch ikon: jednej po lewej
stronie (ikona główna — primary), a drugiej po prawej (ikona pomocnicza —
secondary). W przypadku tego przycisku jedna ikona w zupełności wystarczy.

 6. Zapisz oba pliki, todo.js oraz index.html, a następnie wyświetl stronę
index.html w przeglądarce.
Teraz przycisk powinien już wyglądać tak samo jak widżet przycisku jQuery UI
widoczny na rysunku 14.1. Jeśli tak nie wygląda, oznacza to, że przygotowany
kod JavaScript nie działa. Dokładnie go sprawdź, używając konsoli JavaScript,
by upewnić się, czy nie ma komunikatów o błędach.

C ZĘŚĆ I V  Z A A W A N S O W A N E Z A S T O S O W A N I A J Q U E R Y I JĘZ Y K A J A V A S C R I P T

Dodanie okna
dialogowego

522

Dodanie okna dialogowego
A zatem mamy już przycisk, który jednak nic nie robi. Docelowo kliknięcie tego
przycisku powinno powodować wyświetlenie okna dialogowego — jego zaim-
plementowanie będzie Twoim kolejnym zadaniem. Najpierw dodasz kod HTML
okna dialogowego.

 1. W pliku index.html odszukaj komentarz <!-- Tutaj dodaj okienko
dialogowe. --> i zastąp go poniższym kodem HTML:

<div id="new-todo" title="Dodaj zadanie">

 <form>
 <p>
 <label for="task">Nazwa zadania:</label>
 <input type="text" name="task" id="task">
 </p>
 </form>
</div>

Zgodnie z tym, czego dowiedziałeś się na stronie 331, w okno dialogowe możesz
zamienić dowolny fragment kodu HTML. Tu użyjemy elementu <div>, we-
wnątrz którego znajduje się formularz z jednym polem tekstowym. Podczas do-
dawania zadania użytkownicy będą wpisywali w tym polu nazwę zadania.
Aby przekształcić ten kod HTML w okno dialogowe, będziesz musiał użyć kodu
JavaScript.

 2. Wróć do pliku todo.js. Poniżej kodu, który dodałeś w kroku 5. na stronie 521,
wpisz:

$("#new-todo").dialog();

Zapisz plik index.html i odśwież stronę w przeglądarce. Powinno się na niej
pojawić okno dialogowe (patrz górny zrzut na rysunku 14.2). Jednak jest ono
wyświetlane od razu, a nie po kliknięciu przycisku. To standardowe zacho-
wanie okien dialogowych tworzonych przy użyciu biblioteki jQuery UI. Aby
ukryć to okno, będziesz musiał przekazać w wywołaniu funkcji dialog()
odpowiednie opcje.

 3. W wywołaniu funkcji dialog() umieść obiekt zawierający dwie właściwości:
$("#new-todo").dialog({
 modal : true,
 autoOpen : false
});

Zgodnie z tym, czego się dowiedziałeś na stronie 335, opcja modal zmusza
użytkownika do zamknięcia okna dialogowego, zanim będzie mógł wykonać na
stronie jakąkolwiek inną operację. I właśnie o to chodzi — kiedy użytkownik
kliknie przycisk Dodaj nowe zadanie, wypełnienie okna dialogowego powinno
być jedyną rzeczą, na której użytkownik ma się skoncentrować.

Z kolei przypisanie właściwości autoOpen wartości false sprawi, że okno
dialogowe nie będzie już wyświetlane natychmiast po wczytaniu strony. Teraz
będzie początkowo ukryte i trzeba wyświetlić je programowo, w odpowiedzi na
kliknięcie przycisku!

R O Z D Z I AŁ 1 4 . T W O R Z E N I E A P L I K A C J I D O O B SŁU G I L I S T Y Z A D AŃ

Dodanie okna
dialogowego

523

Rysunek 14.2. Okna dialogowe
jQuery UI są automatycznie wy-
świetlane zaraz po wczytaniu
strony. To doskonałe rozwiązanie
w przypadku prezentowania
ważnych informacji, które użyt-
kownicy muszą zobaczyć bezpo-
średnio po wejściu na stronę.
Jednak w większości innych sy-
tuacji, takich jak dodawanie ele-
mentów do listy zadań, nie jest
już takie dobre. Zwykle będziesz
chciał, by okno dialogowe było
ukryte, aż do momentu wykona-
nia jakiejś akcji przez użytkowni-
ka — na przykład takiej jak klik-
nięcie przycisku „Dodaj nowe
zadanie”

 4. Dodaj funkcję obsługującą zdarzenia click, dopisując do wywołania funkcji
.button() wywołanie .click():

$("#add-todo").button({
 icons: {
 primary: "ui-icon-circle-plus"
 }
}).click(function() {
 $('#new-todo').dialog('open');
});

Wywołania funkcji jQuery można łączyć w sekwencje — w tym celu na koń-
cu jednej z nich wystarczy dopisać kropkę, a za nią umieścić wywołanie ko-
lejnej funkcji. W tym przypadku kod najpierw wybiera element o identyfikatorze
add-todo (czyli przycisk), potem wywołuje funkcję jQuery UI button() i w koń-
cu dodaje do przycisku funkcję, która będzie obsługiwać zdarzenia click.
Dodana funkcja obsługująca zdarzenia wywołuje z kolei funkcję open() okna
dialogowego (patrz strona 338). Innymi słowy, kliknięcie przycisku powinno
teraz powodować wyświetlenie okna dialogowego.
Nadszedł czas, żeby przetestować działanie kodu.

C ZĘŚĆ I V  Z A A W A N S O W A N E Z A S T O S O W A N I A J Q U E R Y I JĘZ Y K A J A V A S C R I P T

Dodanie okna
dialogowego

524

 5. Zapisz plik todo.js, po czym wyświetl w przeglądarce stronę index.html.
Kliknij przycisk Dodaj nowe zadanie.
Teraz okno dialogowe powinno być wyświetlane wyłącznie po kliknięciu
przycisku (u dołu rysunku 14.2). Co więcej, cały obszar poniżej okna dialo-
gowego powinien zostać nieco zaciemniony — przykryty przez prążkowaną,
półprzezroczystą warstwę. To wizualne oznaczenie informuje użytkownika,
że zostało wyświetlone modalne okno dialogowe, co z kolei znaczy, że dopó-
ki go nie zamknie, nie będzie mógł zrobić nic innego. Jednak aktualnie nie
ma jak zamknąć tego okna dialogowego!
Na szczęście za pomocą jQuery UI dodawanie przycisków do okien dialogo-
wych jest bardzo proste.

 6. Wróć do pliku todo.js. Do listy opcji okna dialogowego dodaj kolejną —
buttons, jej wartością ma być pusty literał obiektowy:

$("#new-todo").dialog({
 modal : true,
 autoOpen : false,
 buttons : {

 }
});

Opcja buttons pozwala określać przyciski, które jQuery UI dynamicznie do-
da do okna dialogowego. Oprócz tego, do każdego z nich można dodać funk-
cję, dzięki czemu coś się stanie, kiedy użytkownik kliknie dany przycisk.
Tworzymy kod aplikacji wolno, krok po kroku, ponieważ dzieje się w nim
całkiem dużo. Teraz na przykład dysponujesz nowym obiektem (właściwo-
ścią buttons) umieszczonym wewnątrz innego obiektu (literału obiektowego
z opcjami, przekazywanego w wywołaniu funkcji dialog()).
Najpierw dodaj przycisk z pustą funkcją.

 7. Do literału obiektowego wpisanego w poprzednim kroku dodaj nową wła-
ściwość (wyróżnioną pogrubioną czcionką):

$("#new-todo").dialog({
 modal : true,
 autoOpen : false,
 buttons : {
 "Dodaj zadanie" : function () {

 }
 }
});

Ten kod powoduje dodanie do okna dialogowego przycisku z napisem Dodaj
zadanie. Kiedy użytkownik kliknie ten przycisk, zostanie wykonana funkcja.
Obecnie funkcja jest pusta, więc nic się nie stanie. Funkcję tę zaimplemen-
tujesz do końca w następnej części przykładu. A teraz dodasz do okna dialo-
gowego drugi przycisk.

 8. Za zamykającym nawiasem klamrowym funkcji umieszczonej we wła-
ściwości "Dodaj zadanie" wpisz przecinek i dodaj kolejną właściwość
z funkcją anonimową:

$("#new-todo").dialog({
 modal : true,
 autoOpen : false,

R O Z D Z I AŁ 1 4 . T W O R Z E N I E A P L I K A C J I D O O B SŁU G I L I S T Y Z A D AŃ

Dodawanie zadań

525

 buttons : {
 "Dodaj zadanie" : function () {

 },
 "Anuluj" : function () {
 $(this).dialog('close');
 }
 }
});

Ten nowy fragment kodu dodaje do okna dialogowego przycisk Anuluj. Co
więcej, przycisk już coś robi. Wyrażenie $(this) odwołuje się do elementu,
który wywołał funkcję, czyli do samego okna dialogowego. Kiedy użytkownik
kliknie przycisk Anuluj, zostaje wywołana funkcja close() widżetu okna
dialogowego (patrz strona 340). Powoduje ona natychmiastowe zamknięcie
tego okna.
Nadszedł czas, by zobaczyć efekt wykonanej pracy.

 9. Zapisz plik todo.js i odśwież stronę index.html w przeglądarce. Kliknij
przycisk Dodaj nowe zadanie.
Okno dialogowe powinno teraz zawierać dwa przyciski (patrz rysunek 14.3).
Kliknij przycisk Dodaj zadanie — oczywiście nic się nie powinno stać, gdyż ob-
sługa przycisku nie została jeszcze zaimplementowana. Kiedy jednak klikniesz
drugi przycisk, czyli Anuluj, okno powinno zostać zamknięte.
W następnej części przykładu zajmiesz się pisaniem kodu, który pozwoli na
dodawanie zadań do listy.

Rysunek 14.3. Wystarczyło kilka
wierszy kodu, aby przygotować
wszystkie komponenty prostego
interfejsu użytkownika aplikacji
do zarządzania listą zadań

Dodawanie zadań
Nasza aplikacja do zarządzania listą zadań wygląda już całkiem dobrze, jednak nie
dzieje się w niej zbyt dużo. Nadszedł zatem czas, byś zajął się kodem umożliwiają-
cym dodawanie zadań. Zostanie on umieszczony w funkcji skojarzonej z przyci-
skiem Dodaj zadanie, czyli w pustej funkcji anonimowej, którą dopisałeś w kro-
ku 5. na stronie 524. Implementację tego kodu wykonasz w opisanych poniżej
czterech krokach.

C ZĘŚĆ I V  Z A A W A N S O W A N E Z A S T O S O W A N I A J Q U E R Y I JĘZ Y K A J A V A S C R I P T

Dodawanie zadań

526

 1. Pobierz nazwę zadania, którą użytkownik wpisał w polu tekstowym
w oknie dialogowym.
Wartość ta jest przechowywana w polu tekstowym, a to oznacza, że możesz ją
łatwo pobrać, używając funkcji val() jQuery (patrz strona 283).

 2. Utwórz element , który następnie dodasz do treści strony.
Każde zadanie będzie reprezentowane przez jeden element listy wypunktowanej.
Poniżej przedstawiona została struktura kodu HTML takiego elementu:

 %
 x
 Upiec ciasteczka

Pierwszy element reprezentuje obszar, który użytkownik może kliknąć,
by oznaczyć zadanie jako wykonane. Drugi element reprezentuje przy-
cisk do usunięcie zadania. I w końcu ostatni element zawiera nazwę
zadania podaną przez użytkownika w oknie dialogowym. Taki kod HTML mo-
żesz skonstruować, łącząc ze sobą literały łańcuchowe zawierające odpowiednie
znaczniki i dodając do nich wpisaną przez użytkownika nazwę zadania.

Uwaga: Postać obu przycisków określisz, stosując odpowiednie style CSS. Dzięki temu znak procenta

(%) oraz x umieszczone w kodzie po wyświetleniu strony zostaną zamienione odpowiednio na znacznik

charakterystyczny dla pól wyboru oraz przycisk z ikoną krzyżyka. Tajemnica tych przycisków tkwi w za-

stosowaniu specjalnej czcionki, w której zamiast liter są ikony.

 3. Dodaj do listy zadań do wykonania nowy element listy, znacznik .

Biblioteka jQuery sprawia, że bardzo łatwo można zamienić łańcuch znaków
na element DOM, a następnie dodać go do strony (szczegółowe informacje na
ten temat można znaleźć w rozdziale 4.). Ponieważ dysponujemy potężnym ze-
stawem efektów jQuery UI, możesz skorzystać z nich, by dodawać nowe zada-
nia w sposób atrakcyjny wizualnie.

 4. Zamknij okno dialogowe.

Ta operacja jest bardzo prosta. Wykonałeś ją już wcześniej, przy okazji imple-
mentowania przycisku do zamykania okna dialogowego, w kroku 8. opisanym
na stronie 524.

Skoro już znasz podstawowe kroki, jakie należy zaimplementować, czas zabrać się
za pisanie kodu. Najpierw pobierzesz dane wpisane przez użytkownika, czyli nazwę
zadania wpisaną w oknie dialogowym.

 1. Odszukaj funkcję skojarzoną z przyciskiem Dodaj zadanie okna dialo-
gowego (została ona podana we właściwości buttons literału obiektowego
przekazywanego w wywołaniu funkcji dialog()), a następnie wpisz w niej
poniższy kod:

"Dodaj zadanie" : function () {
 var taskName = $('#task').val();
},

Powyższa instrukcja tworzy nową zmienną, taksName, i zapisuje w niej wartość
pola tekstowego umieszczonego w oknie dialogowym. Pamiętasz zapewne struk-
turę kodu tworzącego okno dialogowe, została ona przedstawiona w kroku 1.

R O Z D Z I AŁ 1 4 . T W O R Z E N I E A P L I K A C J I D O O B SŁU G I L I S T Y Z A D AŃ

Dodawanie zadań

527

na stronie 522. Kod ten zawiera między innymi pole tekstowe o określonym
identyfikatorze. A zatem wywołanie $('#task').val() pobiera wartość tego
pola — czyli to, co użytkownik wpisał jako nazwę zadania.
Istnieje także możliwość, że użytkownik kliknie przycisk Dodaj zadanie,
mimo że pole tekstowe będzie puste. Ponieważ nie chcemy dodawać do naszej
listy pustych zadań, zatem powinieneś się upewnić, że wartość zmiennej
taskName będzie inna od pustego łańcucha znaków.

 2. Poniżej wiersza kodu dodanego w poprzednim kroku wpisz trzy kolejne
(wyróżnione pogrubioną czcionką):

"Dodaj zadanie" : function () {
 var taskName = $('#task').val();
 if (taskName === '') {
 return false;
 }
},

Ten kod jedynie upewnia się, że zmienna taskName zawiera coś innego niż
pusty łańcuch znaków (został on zapisany przy użyciu dwóch znaków apo-
strofu, z których pierwszy oznacza początek łańcucha, a drugi jego koniec),
a użytkownik nie kliknął przycisku Dodaj zadanie bez podania tytułu zadania.
Instrukcja return false powoduje zakończenie funkcji, co z kolei sprawia,
że okno dialogowe pozostanie widoczne. A zatem użytkownik musi wpisać
nazwę zadania lub zamknąć okno dialogowe (co może także zrobić, klikając
niewielki przycisk „X” widoczny w jego prawym, górnym rogu).
Teraz zajmiesz się tworzeniem kodu HTML reprezentującego zadanie.

 3. Dodaj kolejną zmienną, a następnie skonstruuj i zapisz w niej łańcuch
znaków; do tego celu posłużą trzy kolejne wiersze kodu (wyróżnione po-
grubioną czcionką):

"Dodaj zadanie" : function () {
 var taskName = $('#task').val();
 if (taskName === '') {
 return false;
 }
 var taskHTML = '%';
 taskHTML += 'x';
 taskHTML += '';
},

Do utworzenia zmiennej taskHTML i zapisania w niej całego, długiego łańcucha
znaków wystarczyłby jeden wiersz kodu. Jednak w ten sposób powstałaby in-
strukcja, którą trudno przeanalizować. Podzielenie długiego łańcucha znaków
na części i zapisanie go w kilku kolejnych wierszach pozwala poprawić czytel-
ność kodu. Operator += służy do dołączenia podanego łańcucha znaków do łań-
cucha, który już jest zapisany w zmiennej (patrz strona 72).
Zauważ, że jeszcze nie dodałeś do tego łańcucha nazwy zadania podanej przez
użytkownika i przechowywanej w zmiennej taskName. Zrobisz to już za chwilę.

 4. Dodaj kolejną zmienną i zapisz w niej obiekt jQuery zawierający obiekt
utworzony na podstawie kodu HTML (nowy kod został wyróżniony po-
grubioną czcionką):

"Dodaj zadanie" : function () {
 var taskName = $('#task').val();
 if (taskName === '') {

C ZĘŚĆ I V  Z A A W A N S O W A N E Z A S T O S O W A N I A J Q U E R Y I JĘZ Y K A J A V A S C R I P T

Dodawanie zadań

528

 return false;
 }
 var taskHTML = '%';
 taskHTML += 'x';
 taskHTML += '';
 var $newTask = $(taskHTML);
},

Biblioteka jQuery umożliwia przekształcenie łańcucha znaków, takiego jak
<h1>To jest nagłówek</h1> , na element DOM. Innymi słowy, taskHTML

jest zmienną zawierającą łańcuch znaków. Łańcuch ten nie jest jednak „praw-
dziwym” kodem HTML; natomiast przekazanie łańcucha zawierającego
znaczniki HTML w wywołaniu funkcji $() spowoduje przekształcenie go na
element DOM. A nawet jeszcze lepiej — funkcja $() przekształca łańcuch
znaków na obiekt jQuery, dzięki czemu można na nim wywoływać standar-
dowe funkcje tej biblioteki. Choć znak $ na początku zmiennej $newTask nie
jest konieczny, jednak umieszczanie go na początku nazw zmiennych sta-
nowi praktykę powszechnie stosowaną przez programistów używających
jQuery. Ten znak dolara stanowi wizualną podpowiedź informującą, że dana
zmienna zawiera obiekt jQuery i można jej używać do wywoływania wszystkich
metod biblioteki, takich jak .show() czy też .addClass().
W następnym kroku dodasz nazwę zadania podaną przez użytkownika.

 5. Do kodu funkcji obsługującej przycisk Dodaj zadanie dopisz kolejny wiersz:
"Dodaj zadanie" : function () {
 var taskName = $('#task').val();
 if (taskName === '') {
 return false;
 }
 var taskHTML = '%';
 taskHTML += 'x';
 taskHTML += '';
 var $newTask = $(taskHTML);
 $newTask.find('.task').text(taskName);
},

Metoda find() poszukuje elementu odpowiadającego podanemu selektoro-
wi wewnątrz aktualnie wybranego elementu (patrz strona 555). W tym
przypadku metoda operuje na elemencie przechowywanym w zmiennej
$newTask i poszukuje w nim innego elementu, należącego do klasy task —
czyli elementu , w którym powinna zostać zapisana nazwa zadania
(patrz krok 3.). Następnie wywołanie funkcji text() zapisuje zawartość zmiennej
taskName w odnalezionym elemencie.
Ale dlaczego masz zadawać sobie tyle trudu, zamiast po prostu dodać wartość
zmiennej taskName do łańcucha znaków tworzonego w kroku 4. w następujący
sposób:

taskHTML += '' + taskName + '';

Gdybyś postąpił w ten sposób, złośliwy użytkownik mógłby utworzyć zada-
nie o następującej nazwie: <script>alert('ha, ha, ha... włamałem się
do tej listy');</script>. Ten złośliwy kod zostałby dodany bezpośrednio
do strony i wykonany. Natomiast funkcja text() jQuery zamienia wszystkie
znaczniki HTML na ich bezpieczne odpowiedniki, czyli zamienia <script>
na <script>.

R O Z D Z I AŁ 1 4 . T W O R Z E N I E A P L I K A C J I D O O B SŁU G I L I S T Y Z A D AŃ

Dodawanie zadań

529

Jeśli nawet użytkownik nie ma żadnych złych intencji, takie rozwiązanie po-
zwoli mu wpisać w nazwie zadania całkowicie prawidłowy tekst, taki jak „Dodać
do strony głównej znacznik <h1>”, bez spowodowania awarii aplikacji.
W końcu nadszedł czas, by umieścić nowe zadanie na stronie.

 6. Do kodu funkcji dodaj kolejne dwa wiersze (wyróżnione pogrubioną
czcionką):

"Dodaj zadanie" : function () {
 var taskName = $('#task').val();
 if (taskName === '') {
 return false;
 }
 var taskHTML = '%';
 taskHTML += 'x';
 taskHTML += '';
 var $newTask = $(taskHTML);
 $newTask.find('.task').text(taskName);
 $newTask.hide();
 $('#todo-list').prepend($newTask);
},

Ponieważ $newTask jest obiektem jQuery, można wywoływać na jego rzecz
funkcje biblioteki. W dodanym fragmencie kodu najpierw ukrywasz nowe
zadanie, dzięki czemu później będziesz mógł je wyświetlić, używając efektu
animacji. Po ukryciu elementu kolejna instrukcja najpierw wybiera element
listy — jest to lista wypunktowana o identyfikatorze todo-list — a następ-
nie dodaje na jej początku nowy (wciąż ukryty) element (więcej informacji na
temat działania metody prepend() można znaleźć na stronie 159).
W kolejnym kroku wyświetlisz nowy element listy i ukryjesz okno dialogowe.

 7. Do kodu funkcji dodaj kolejne dwa wiersze (zmiany zostały wyróżnione
pogrubioną czcionką):

"Dodaj zadanie" : function () {
 var taskName = $('#task').val();
 if (taskName === '') {
 return false;
 }
 var taskHTML = '%';
 taskHTML += 'x';
 taskHTML += '';
 var $newTask = $(taskHTML);
 $newTask.find('.task').text(taskName);
 $newTask.hide();
 $('#todo-list').prepend($newTask);
 $newTask.show('clip',250).effect('highlight',1000);
 $(this).dialog('close');
},

Pierwsza z dodanych instrukcji operuje na dodanym do listy ukrytym ele-
mencie i wyświetla go przy użyciu metody show(). Dla dodatkowego popra-
wienia atrakcyjności strony zastosowane zostały dwa efekty wizualne jQuery UI.
Pierwszy z nich, clip (patrz strona 463), sprawia, że element wydaje się po-
większać. Kiedy element będzie już widoczny, wywołujemy metodę effect(),
każąc jej odtworzyć efekt highlight, który na chwilkę wyświetla element na
żółto, przyciągając uwagę użytkownika (i nieodmiennie powodując zachwyt
osób korzystających z aplikacji).

C ZĘŚĆ I V  Z A A W A N S O W A N E Z A S T O S O W A N I A J Q U E R Y I JĘZ Y K A J A V A S C R I P T

Dodawanie zadań

530

Ostatni wiersz kodu zamyka okno dialogowe (ten sam kod zastosowałeś już
wcześniej, w kroku 8. na stronie 524, dodając go do przycisku Anuluj). Teraz
trzeba sprawdzić, jak to wszystko działa.

 8. Zapisz plik todo.js, a następnie odśwież w przeglądarce stronę index.html.
Kliknij przycisk Dodaj nowe zadanie, wpisz nazwę zadania i kliknij przy-
cisk Dodaj zadanie.
Nowe zadanie powinno się pojawić poniżej nagłówka Zadania do wykonania.
Jeśli jednak nie widać go, sprawdź kod i zajrzyj do konsoli JavaScript prze-
glądarki, by zobaczyć, czy nie ma w niej komunikatów o błędach.
Spróbuj dodać kolejne zadanie. Przy tej okazji zauważysz zapewne kolejny,
niewielki problem — w polu tekstowym w oknie dialogowym pozostała na-
zwa poprzedniego zadania. Aby dodać nowe, musisz najpierw zaznaczyć ten
tekst i go usunąć. Na szczęście ten problem można rozwiązać bardzo łatwo.

 9. W literale obiektowym przekazywanym w wywołaniu funkcji dialog(),
za właściwością buttons wpisz przecinek i dodaj poniższy fragment kodu:

close: function() {
 $('#new-todo input').val('');
}

Pełny kod funkcji dialog() powinien mieć następującą postać:
$("#new-todo").dialog({
 modal: true,
 autoOpen: false,
 buttons : {
 "Dodaj zadanie" : function() {
 var taskName = $('#task').val();
 if (taskName === '') {
 return false;
 }
 var taskHTML = '%';
 taskHTML += 'x';
 taskHTML += '';
 var $newTask = $(taskHTML);
 $newTask.find('.task').text(taskName);
 $newTask.hide();
 $('#todo-list').prepend($newTask);
 $newTask.show('clip',250).effect('highlight',1000);
 $(this).dialog('close');
 },
 "Anuluj" : function() {
 $(this).dialog('close');
 }
 },
 close: function() {
 $('#new-todo input').val('');
 }
});

To naprawdę całkiem sporo kodu. Upewnij się, że ten ostatni fragment
umieściłeś poza obiektem buttons. Opcja close widżetu okna dialogowego
jQuery UI pozwala na wykonanie podanej funkcji w momencie, gdy użyt-
kownik zamknie okno dialogowe. W tym przypadku wykonywane operacje
ograniczą się do wyczyszczenia pola tekstowego, kiedy zatem użytkownik
następnym razem otworzy okno dialogowe, pole będzie puste i gotowe do
wpisania nazwy kolejnego zadania. (Zawartość pola można by także usunąć
w ramach obsługi kliknięcia przycisku Dodaj zadanie, jednak chodziło tu o za-
prezentowanie opcji close).

R O Z D Z I AŁ 1 4 . T W O R Z E N I E A P L I K A C J I D O O B SŁU G I L I S T Y Z A D AŃ

Oznaczanie zadania jako
wykonanego

531

Oznaczanie zadania jako wykonanego
Jedną z czynności, które podczas korzystania z listy zadań dają najwięcej satys-
fakcji, jest oznaczanie zadań jako wykonanych. Niestety nasza aplikacja jeszcze
nie udostępnia tej jakże przyjemnej operacji. W tym podrozdziale naprawisz to
niedopatrzenie. Ogólnie rzecz biorąc, zadanie jest całkiem proste: użytkownik
zaznacza puste pole wyboru z lewej strony nazwy i zadanie — czyli element listy
— jest przenoszone z jednej listy na drugą.

Delegowanie zdarzeń
Aby oznaczyć zadanie jako wykonane, użytkownik musi kliknąć pole wyboru
umieszczone w danym elemencie listy. Zazwyczaj funkcje obsługujące zdarzenia są
określane poprzez wybranie odpowiedniego elementu i skojarzenie z nim funkcji;
operację tę można wykonać w następujący sposób:

$('.done').click(function () {
 // Operacja wykonywana po kliknięciu elementu.
});

Jednak sposób obsługi zdarzeń w tworzonej liście zadań będzie nieco inny. Bez-
pośrednio po wyświetleniu strony w przeglądarce lista zadań jest pusta — nie ma
żadnych zadań ani żadnych pól wyboru, które użytkownik mógłby kliknąć. Gdy-
byśmy spróbowali określić funkcję obsługującą zdarzenia click bezpośrednio po
wczytaniu strony, nic by się nie stało. Ponieważ w tym momencie na stronie nie
ma żadnych zadań ani żadnych pól wyboru, nie byłoby na niej żadnych elemen-
tów, w których można by zastosować tę funkcję. Oczywiście można by wywoły-
wać metodę click() podczas tworzenia każdego nowego zadania, jednak biblio-
teka jQuery udostępnia znacznie lepsze rozwiązanie, nazywane delegowaniem
zdarzeń (patrz strona 200).

Ogólnie rzecz biorąc, mechanizm delegowania zdarzeń pozwala wybrać jakiś in-
ny element strony — element już istniejący, w którym będą umieszczane elementy
dynamicznie dodawane do strony po jej wczytaniu. To właśnie ten element kon-
tenera będzie odbierał zdarzenia skierowane do elementów umieszczonych we-
wnątrz niego, w naszym przypadku będą to zdarzenia click. Kiedy takie zdarze-
nie zostanie odebrane, kontener sprawdzi, czy faktycznie było ono skierowane do
odpowiedniego elementu (w naszym przypadku do pola wyboru w którymś z zadań)
i jeśli było, wykona odpowiednią funkcję.

W tym przypadku pusta lista wypunktowana znajduje się na stronie od momentu
jej pobrania:

<ul id="todo-list">

Kiedy użytkownik tworzy nowe zadanie, aplikacja dynamicznie dodaje je do tej listy:
<ul id="todo-list">

 %
 x
 Upiec ciasto

C ZĘŚĆ I V  Z A A W A N S O W A N E Z A S T O S O W A N I A J Q U E R Y I JĘZ Y K A J A V A S C R I P T

Oznaczanie zadania jako
wykonanego

532

Aby zareagować na kliknięcie elementu należącego do klasy done, należy
delegować funkcję obsługującą zdarzenia do istniejącej już listy wypunktowanej.

 1. W pliku todo.js za kodem funkcji dialog(), lecz wciąż wewnątrz wywo-
łania funkcji $(document).ready(), wpisz następujące wywołanie:

$("#todo-list").on('click', '.done', function() {

});

Tak wygląda ogólna struktura delegowanej funkcji obsługi zdarzeń. Najpierw
wybierasz element listy wypunktowanej. Następnie wywoływana jest metoda
on() jQuery, do której przekazujesz trzy argumenty. Pierwszym z nich jest łań-
cuch znaków zawierający nazwę zdarzenia, 'click'. Drugim argumentem jest
selektor określający element wewnątrz listy wypunktowanej, który musi zostać
kliknięty. W tym przypadku chodzi o element klasy done. I w końcu
ostatnim argumentem wywołania jest funkcja — kod, który ma zostać wykona-
ny, kiedy użytkownik kliknie pole wyboru oznaczające zadanie jako wykonane.

 2. Wewnątrz funkcji obsługującej zdarzenia dodaj poniższy wiersz kodu
(wyróżniony pogrubioną czcionką):

$("#todo-list").on('click', '.done', function() {
 var $taskItem = $(this).parent('li');
});

Pamiętaj, że zadaniem tej funkcji jest przeniesienie zadania z listy Zadania do
wykonania na listę Zadania wykonane. W chwili, gdy użytkownik kliknie
pole wyboru, dla jQuery istnieje jedynie znacznik umieszczony
gdzieś na liście, jednak nas interesuje cały znacznik . Możesz go pobrać,
korzystając z metody parent() jQuery, która umożliwia pobranie elementu
rodzica aktualnie wybranego elementu.
W kodzie dodanym w tym kroku wyrażenie $(this) odwołuje się do elementu
klikniętego przez użytkownika, czyli: %. A za-
tem całe wywołanie $(this).parent('li') pobiera najbliższego przodka
znacznika , którym jest znacznik . Innymi słowy, wybiera ono
dokładnie ten element, o który chodziło.
Element ten jest następnie zapisywany w zmiennej $taskItem, a w kolejnym
kroku go ukryjesz.

Uwaga: Wyczerpujące informacje na temat różnic pomiędzy this i $(this) można znaleźć na

stronie 169.

 3. Wewnątrz tej samej funkcji dodaj poniższy fragment kodu (wyróżniony
pogrubioną czcionką):

$("#todo-list").on('click', '.done', function() {
 var $taskItem = $(this).parent('li');
 $taskItem.slideUp(250, function() {

 });
});

Metoda slideUp() jest zabawnym sposobem ukrycia elementu (patrz strona
216). Jednak jej wywołanie nie usuwa elementu ze strony. Po zakończeniu jej
wywołania element wciąż jest dostępny na stronie, choć został ukryty przy użyciu

R O Z D Z I AŁ 1 4 . T W O R Z E N I E A P L I K A C J I D O O B SŁU G I L I S T Y Z A D AŃ

Oznaczanie zadania jako
wykonanego

533

odpowiednich stylów CSS. Zgodnie z informacjami zamieszczonymi na stronie
211, wszystkie funkcje jQuery tworzące efekty animacji (takie jak hide(),
show() czy też slideUp()) pozwalają na podawanie argumentów. W tym przy-
padku pierwszym z argumentów jest liczba — 250 — określająca czas trwania
animacji; w naszym przypadku zajmie ona 250 milisekund.
Drugim argumentem jest funkcja zwrotna. Jest to funkcja, która zostanie wy-
wołana po zakończeniu odtwarzania animacji. Pamiętasz zapewne, że po za-
kończeniu wywołania funkcji slideUp() znacznik reprezentujący za-
kończone zadanie wciąż znajduje się na liście Zadania do wykonania, tyle że
jest niewidoczny. Musisz zatem przenieść go na drugą listę. Kod, który to zrobi,
umieścisz właśnie w funkcji zwrotnej.

 4. Wewnątrz funkcji zwrotnej dodaj poniższy fragment kodu (wyróżniony
pogrubioną czcionką):

$("#todo-list").on('click', '.done', function() {
 var $taskItem = $(this).parent('li');
 $taskItem.slideUp(250, function() {
 var $this = $(this);
 $this.detach();
 });
});

Pierwszy z dwóch nowych wierszy kodu jedynie pobiera element listy —
$(this) — i zapisuje go w kolejnej zmiennej. Robisz to dlatego, że każde
wywołanie funkcji jQuery — $() — zmusza przeglądarkę do wykonania pew-
nej pracy. Ponieważ na tym elemencie będziesz musiał wykonać kilka operacji,
zatem zamiast niepotrzebnie za każdym razem wywoływać funkcję jQuery,
lepiej będzie zapisać wynik jej wywołania w zmiennej. (Rozwiązanie to, opisane
bardziej szczegółowo na stronie 544, stanowi jedną z ogólnie przyjętych najlep-
szych praktyk związanych ze stosowaniem biblioteki jQuery).
Drugi z dodanych wierszy kodu wywołuje metodę detach(), która usuwa
wybrany element lub elementy z drzewa DOM, choć pozostawia je na stro-
nie. Innymi słowy, wybrany element jest usuwany z listy, lecz wciąż znaj-
duje się w pamięci przeglądarki. Co więcej, wciąż jest zapisany w zmiennej
$this. Dzięki temu w następnym kroku będziesz mógł przenieść go w inne
miejsce strony — a konkretnie, na drugą listę!

Uwaga: Wyczerpujące informacje na temat metody detach() można znaleźć na stronie http://

api.jquery.com/detach/.

 5. Dokończ kod funkcji zwrotnej, dopisując wewnątrz niej kolejne dwa
wiersze kodu (wyróżnione pogrubioną czcionką):

$("#todo-list").on('click', '.done', function() {
 var $taskItem = $(this).parent('li');
 $taskItem.slideUp(250, function() {
 var $this = $(this);
 $this.detach();
 $('#completed-list').prepend($this);
 $this.slideDown();
 });
});

http://api.jquery.com/detach/
http://api.jquery.com/detach/

C ZĘŚĆ I V  Z A A W A N S O W A N E Z A S T O S O W A N I A J Q U E R Y I JĘZ Y K A J A V A S C R I P T

Oznaczanie zadania jako
wykonanego

534

Metodę prepend() poznałeś już wcześniej (w kroku 6. na stronie 529). Za jej
pomocą wstawisz kod HTML wewnątrz innego elementu. W tym przypadku
odłączony element listy — $this — zostaje zapisany na początku listy Zadania
wykonane (listy wypunktowanej o identyfikatorze completed-list). I w koń-
cu, ponieważ przenoszony element został ukryty przez wywołanie metody
slideUp(), zatem teraz możesz go wyświetlić w nowym położeniu — w tym
celu wywoływana jest metoda slideDown() (patrz strona 216).

 6. Zapisz plik todo.js, a następnie odśwież stronę index.html w przeglądarce.
Aby ją przetestować, najpierw dodaj kilka zadań, a następnie kliknij pole
wyboru umieszczone z lewej strony nazwy zadania, aby oznaczyć je jako
wykonane.
Teraz powinieneś już bez problemu dodawać zadania i oznaczać je jako wy-
konane (patrz rysunek 14.4). Jeśli przykładowa aplikacja nie działa, dokładnie
sprawdź kod i zajrzyj do konsoli JavaScript, by zobaczyć, czy nie zostały w niej
wyświetlone jakieś komunikaty o błędach.

Rysunek 14.4. Pole wyboru oraz przycisk, który pozwala oznaczyć zadanie jako wykonane oraz je usunąć,
zmieniają wygląd po wskazaniu ich myszą. Możliwości tej nie zapewnia jednak kod JavaScript, lecz style CSS.
A konkretnie, pseudoklasa :hover pozwalająca na zmianę wyglądu elementu, na którym znajduje się wskaźnik
myszy. Aby sprawdzić, jak tworzony jest ten efekt, zajrzyj do pliku todo.css umieszczonego w podkatalogu
css katalogu R14

A teraz kolejna sprawa — może warto byłoby mieć możliwość zmiany kolej-
ności zadań na liście? Dzięki temu można by dodać kilka zadań, a następnie
uporządkować je w takiej kolejności, w jakiej powinny zostać wykonane, na
przykład: „Kupić książkę kucharską”, „Upiec ciasteczka”, „Zjeść ciasteczka”.
Przy użyciu widżetu Sortable jQuery UI takie możliwości funkcjonalne
można uzyskać bardzo szybko i łatwo. A skoro już przy tym jesteśmy, równie
łatwo możesz zapewnić użytkownikom możliwość dowolnego przenoszenia
zadań między oboma listami, zatem będzie można oznaczyć zadanie jako
wykonane poprzez przeciągnięcie go na listę Zadania wykonane.

 7. Otwórz plik index.html w edytorze tekstów i odszukaj wewnątrz niego
znaczniki obu list: Zadania do wykonania oraz Zadania wykonane.
Do obu dodaj atrybut class="sortlist", tak by miały następującą postać:

<ul id="todo-list" class="sortlist">

R O Z D Z I AŁ 1 4 . T W O R Z E N I E A P L I K A C J I D O O B SŁU G I L I S T Y Z A D AŃ

Oznaczanie zadania jako
wykonanego

535

oraz
<ul id="completed-list" class="sortlist">

Przypisując tę samą nazwę klasy obu listom, będziesz mógł w prosty sposób
zapewnić możliwość porządkowania elementów na każdej z nich.

 8. Zapisz plik index.html, po czym otwórz w edytorze plik todo.js. Na sa-
mym końcu funkcji $(document).ready(), lecz wciąż wewnątrz niej, wpisz
następujące wywołanie:

$('.sortlist').sortable();

W ten sposób obie listy zapewniają już możliwość porządkowania elementów.
Jeśli chcesz sprawdzić, jak to działa, zapisz oba pliki, a następnie odśwież
stronę index.html w przeglądarce. Zauważysz jednak, że choć faktycznie moż-
na zmieniać kolejność elementów na liście, jednak nie da się przeciągać ele-
mentów jednej listy na drugą. Bardzo łatwo można jednak połączyć ze sobą
dwa widżety Sortable.

 9. Wewnątrz wywołania funkcji sortable() wstaw następujący literał obiek-
towy:

$('.sortlist').sortable({
 connectWith : '.sortlist'
});

Opcja connectWith (opisana szczegółowo na stronie 452) umożliwia połą-
czenie dwóch list. Ponieważ w naszej aplikacji obie listy należą do tej samej
klasy, aby zatem je połączyć, wystarczy podać selektor tej klasy. W ten spo-
sób użytkownik będzie już mógł dowolnie przeciągać elementy pomiędzy
oboma listami. Jednak zanim definitywnie zakończysz pracę nad listami,
dodasz do nich jeszcze kilka ostatnich, drobnych usprawnień wizualnych.

 10. Do tego samego literału obiektowego dodaj trzy kolejne właściwości (wy-
różnione pogrubioną czcionką):

$('.sortlist').sortable({
 connectWith : '.sortlist',
 cursor : 'pointer',
 placeholder : 'ui-state-highlight',
 cancel : '.delete,.done'
});

Nie zapomnij o przecinku za opcją connectWith. Opcja cursor (opisana na
stronie 425) zmienia postać wskaźnika myszy podczas przeciągania elemen-
tów, a opcja placeholder (patrz strona 454) wyróżnia miejsce listy, gdzie
użytkownik może upuścić przeciągany element. I w końcu opcja cancel (patrz
strona 451) określa te elementy umieszczone wewnątrz elementu sortowal-
nego, które nie mogą posłużyć jako „uchwyty” do przeciągania. W naszym
przypadku użytkownik nie będzie mógł przeciągać zadania, używając pola
wyboru oznaczającego zadanie jako wykonane ani przycisku do usunięcia
zadania.

 11. Zapisz pliki index.html oraz todo.js, po czym odśwież plik index.html
w przeglądarce.
Dodaj do listy kilka różnych zadań. Spróbuj je przeciągać pomiędzy obiema
listami. Teraz powinieneś już oznaczyć zadanie jako wykonane poprzez samo
przeciągnięcie go na listę Zadania wykonane (patrz rysunek 14.1).

C ZĘŚĆ I V  Z A A W A N S O W A N E Z A S T O S O W A N I A J Q U E R Y I JĘZ Y K A J A V A S C R I P T

Usuwanie zadań

536

Usuwanie zadań
Pozostała do zaimplementowania już tylko jedna możliwość, czyli usuwanie za-
dań. Jest ona całkiem ważna, gdyż może się zdarzyć, że użytkownik przez po-
myłkę doda zadanie, które nie powinno się znaleźć na liście. Poza tym, jeśli lista
wykonanych zadań stanie się zbyt długa, użytkownik może zdecydować się na
usunięcie kilku z nich.

 1. W pliku todo.js, za kodem funkcji sortable(), lecz wciąż wewnątrz funkcji
$(document).ready() wpisz następujący fragment kodu:

$('.sortlist').on('click', '.delete', function() {

});

Także w tym przypadku zastosowałeś delegowanie zdarzeń. W momencie wczy-
tywania strony listy są puste i nie ma w nich żadnych przycisków, dlatego też do
usuwania zadań używasz techniki delegowania. W tym przypadku wywołanie
$('.sortlist') powoduje pobranie obu list wypunktowanych dostępnych na
stronie (gdyż użytkownicy powinni mieć możliwość usuwania zadań z obu list),
a wywołanie metody on() informuje jQuery, że należy obsługiwać zdarzenia
kliknięcia skierowane do elementów klasy delete. W odpowiedzi na kliknięcie
takiego elementu ma zostać wywołana przekazana funkcja.
W kolejnym punkcie zajmiesz się zaimplementowaniem kodu tej funkcji.

 2. Znajdź kod między znacznikami <script> w sekcji nagłówkowej strony
i usuń kod wyróżniony pogrubieniem:

$('.sortlist').on('click', '.delete', function() {
 $(this).parent('li').effect('puff', function() {
 $(this).remove();
 });
});

W tym kodzie dzieje się całkiem sporo, lecz powinieneś już być przyzwyczajony
do takich rozwiązań. Poniżej zostały opisane wszystkie wykonywane operacje.
 Wyrażenie $(this).parent('li') pobiera element kliknięty przez użyt-

kownika (reprezentowany przez $this), a następnie wśród jego przodków
odnajduje znacznik . Innymi słowy, wyrażenie to pobiera element zada-
nia, które należy usunąć.

 Metoda effect() biblioteki jQuery UI odtwarza w elemencie określony
efekt wizualny. W tym przypadku odtwarzamy efekt o nazwie puff, który
powoduje że element się powiększa, stopniowo wygasa i w końcu znika.

 W wywołaniu metody effect() została umieszczona funkcja zwrotna,
która będzie wywołana po zakończeniu efektu. W naszym przypadku funkcja
pobiera element listy, na którym operowała metoda effect() — czyli ele-
ment listy pobrany przy użyciu wyrażenia $(this) — a następnie usuwa
go całkowicie ze strony, wywołując metodę remove() jQuery (patrz strona
160). Metoda remove(), w odróżnieniu od detach() (opisanej na stronie
533), całkowicie usuwa wskazany element strony.

 3. Zapisz plik i odśwież w przeglądarce stronę index.html.
Teraz powinieneś już bez problemu dodawać, przenosić i usuwać zadania, a cała
strona powinna wyglądać tak, jak na rysunku 14.1. Gdybyś miał jakieś proble-
my z wykonaniem tego przykładu, poniżej znajdziesz cały kod pliku todo.js.

R O Z D Z I AŁ 1 4 . T W O R Z E N I E A P L I K A C J I D O O B SŁU G I L I S T Y Z A D AŃ

Usuwanie zadań

537

$(document).ready(function(e) {
 $("#add-todo").button({
 icons: {
 primary: "ui-icon-circle-plus"
 }
 }).click(function() {
 $("#new-todo").dialog('open');
 });

 $("#new-todo").dialog({
 modal: true,
 autoOpen: false,
 buttons : {
 "Dodaj zadanie" : function() {
 var taskName = $('#task').val();
 if (taskName === '') {
 return false;
 }
 var taskHTML = '%';
 taskHTML += 'x';
 taskHTML += '';
 var $newTask = $(taskHTML);
 $newTask.find('.task').text(taskName);
 $newTask.hide();
 $('#todo-list').prepend($newTask);
 $newTask.show('clip',250).effect('highlight',1000);
 $(this).dialog('close');
 },
 "Anuluj" : function() {
 $(this).dialog('close');
 }
 },
 close: function() {
 $('#new-todo input').val('');
 }
 });

 $("#todo-list").on('click','.done', function() {
 var $taskItem = $(this).parent('li');
 $taskItem.slideUp(250, function() {
 var $this = $(this);
 $this.detach();
 $('#completed-list').prepend($this);
 $this.slideDown();
 });
 });

 $('.sortlist').sortable({
 connectWith : '.sortlist',
 cursor : 'pointer',
 placeholder : 'ui-state-highlight',
 cancel : '.delete,.done'
 });

 $('.sortlist').on('click','.delete',function() {
 $(this).parent('li').effect('puff', function() {
 $(this).remove();
 });
 });
}); // Koniec funkcji ready.

Uwaga: Pełną, działającą kopię aplikacji napisanej w tym rozdziale znajdziesz w plikach complete-index.

html oraz complete-todo.js, umieszczonych w katalogu R14.

C ZĘŚĆ I V  Z A A W A N S O W A N E Z A S T O S O W A N I A J Q U E R Y I JĘZ Y K A J A V A S C R I P T

Dalsze kroki

538

Dalsze kroki
Gratuluję — właśnie napisałeś swoją pierwszą aplikację internetową! Jednak tę
aplikację można poprawić na kilka różnych sposobów. Być może już nawet masz
przygotowaną listę ewentualnych usprawnień. W tym podrozdziale zamieszczo-
na została lista potencjalnych poprawek wraz z odnośnikami do źródeł informa-
cji, które mogą Ci się przydać podczas ich implementowania.

Edycja zadań
Aktualnie aplikacja nie zapewnia użytkownikowi możliwości poprawy ewentu-
alnych błędów typograficznych w nazwach zadań. Jeśli ktoś wpisze „Uwiec cia-
steczka”, będzie musiał usunąć zadanie i utworzyć je od nowa. Problem edycji
zadań można rozwiązać na dwa sposoby.

Pierwszym z nich jest dodanie do każdego z zadań przycisku Edytuj. Jego klik-
nięcie będzie powodować wyświetlenie okna dialogowego z polem tekstowym
zawierającym nazwę zadania — czyli tekst umieszczony wewnątrz znacznika
 klasy task.

Można także dodać do strony kolejne okno dialogowe, takie jak przedstawione
na stronie 522. Kliknięcie przycisku Edytuj powodowałoby wyświetlenie tego
okna dialogowego i umieszczenie nazwy zadania w polu tekstowym, a zamknięcie
okna dialogowego — aktualizację nazwy zadania.

Innym rozwiązaniem może być skorzystanie z właściwości HTML o nazwie con-
tentEditable. Jej użycie zapewnia możliwość edycji zawartości dowolnego ele-
mentu HTML. Przykładowo poniżej został przedstawiony kod HTML zapew-
niający możliwość edycji nazw zdań w naszej przykładowej aplikacji:

Właściwość tę można nawet zastosować dynamicznie, używając metody prop()
jQuery:

$('.task').prop('contentEditable', true);

Jednak z zastosowaniem właściwości contentEditable wiąże się jeden problem.
Widżet Sortable jQuery UI nie pozwala na zaznaczanie tekstu w sortowalnych
elementach, a zatem nawet po zastosowaniu właściwości contentEditable
użytkownik nie będzie mógł zaznaczyć tekstu do edycji. Problem ten można
ominąć, nakazując jQuery UI ignorowanie elementów klasy task poprzez prze-
kazanie odpowiedniej opcji w wywołaniu funkcji sortable(). Dokładnie w taki
sam sposób postąpiłeś z polem wyboru do oznaczania zadania jako wykonanego
oraz przyciskiem do usuwania zadania w kroku 10. na stronie 535; a tu wystarczy
dodać selektor .task tak, jak pokazano na poniższym przykładzie:

cancel: '.delete,.done,.task'

Jeśli jednak zastosujesz to rozwiązanie, w elementach zadań nie pozostanie zbyt
wiele miejsc, za które użytkownik będzie mógł je przeciągać. W takim przypadku
powinieneś dodać do elementu zadania jakiś wyraźnie widoczny element,
którego użytkownik mógłby używać do przeciągania. Aby skorzystać z tego roz-
wiązania, wystarczy użyć opcji handle widżetu Sortable (patrz strona 453).

R O Z D Z I AŁ 1 4 . T W O R Z E N I E A P L I K A C J I D O O B SŁU G I L I S T Y Z A D AŃ

Dalsze kroki

539

Potwierdzanie usunięcia
Obecnie kiedy użytkownik kliknie przycisk usuwający zadanie, zostaje ono usu-
nięte raz na zawsze. Mógłbyś jednak dodać modalne okno dialogowe, zawierają-
ce prośbę o potwierdzenie usunięcia. Jeśli użytkownik kliknie przycisk Tak, za-
danie zostanie usunięte, jeśli przycisk Nie, zadanie pozostanie na liście.

Zapisywanie listy
Jednak największym problemem naszej aplikacji jest to, że nie zapamiętuje ona
zadań w momencie zamykania okna przeglądarki. Innymi słowy, lista ma charakter
całkowicie tymczasowy i nie zostanie odtworzona po zamknięciu i ponownym
uruchomieniu przeglądarki bądź też po wyświetleniu strony na innym kompute-
rze. Istnieje kilka sposobów pozwalających na zapamiętanie stanu listy zadań.

Magazyn lokalny

Wszystkie nowoczesne przeglądarki udostępniają mechanizm określany jako ma-
gazyn lokalny (ang. local storage). Pozwala on na zapisywanie danych na kompu-
terze użytkownika i odczytanie ich po ponownym wyświetleniu strony. Mógłbyś
skorzystać z magazynu lokalnego, by zapisywać aktualny stan listy zadań po każdej
zmianie ich stanu. W takim przypadku, kiedy użytkownik wróci na stronę, powi-
nieneś sprawdzić, czy są zapisane jakieś dane w magazynie lokalnym, a jeśli są,
musisz odpowiednio zaktualizować stronę.

Więcej informacji na temat magazynu lokalnego można znaleźć na witrynie Mozilla
Developer Network: https://developer.mozilla.org/en-US/docs/Web/Guide/API/DOM/
Storage. Dostępna jest nawet wtyczka jQuery ułatwiająca korzystanie z tego mecha-
nizmu: https://github.com/julien-maurel/jQuery-Storage-API.

Zapis na serwerze

Kolejną możliwością jest zapisanie listy zadań na serwerze. To rozwiązanie ma
tę zaletę, że takiej listy zadań można używać na dowolnym komputerze. Z dru-
giej strony jego wadą jest konieczność utworzenia jakiegoś systemu kontroli do-
stępu do listy, w przeciwnym razie każdy będzie mógł wejść na stronę i wyświetlić
Twoje zadania (a nawet je usunąć).

Książka ta nie jest poświęcona zagadnieniom programowania aplikacji działają-
cych po stronie serwera. Jednak do przekazania zadań na serwer będziesz musiał
użyć kodu JavaScript. Zapewne będzie to kod korzystający z technologii AJAX,
opisanej w poprzednim rozdziale.

Najprostszym rozwiązaniem byłoby pobranie wszystkich elementów list i zasto-
sowanie metody .each() do pobrania nazwy każdego z zadań. Następnie mógł-
byś utworzyć obiekt jQuery zawierający listę wszystkich zadań, zarówno tych do
wykonania, jak i już wykonanych. W końcu, abyś mógł je przesłać na serwer,
musiałbyś serializować ten obiekt, czyli zapisać go w postaci łańcucha znaków.
Poniżej został zamieszczony kod funkcji, która realizuje wszystkie te operacje:

https://developer.mozilla.org/en-US/docs/Web/Guide/API/DOM/Storage
https://github.com/julien-maurel/jQuery-Storage-API

C ZĘŚĆ I V  Z A A W A N S O W A N E Z A S T O S O W A N I A J Q U E R Y I JĘZ Y K A J A V A S C R I P T

Dalsze kroki

540

function getData() {
 var todoData = {
 toDo : [],
 completed : []
 };
 $('#todo-list').each(function() {
 var task = $(this).find('.task').text();
 todoData.toDo.push(task);
 });
 $('#completed-list').each(function() {
 var task = $(this).find('.task').text();
 todoData.completed.push(task);
 });
 return $.param(todoData);
}

Tę funkcję mógłbyś wywoływać za każdym razem, kiedy będziesz chciał pobrać
wszystkie zadania w postaci nadającej się do przesłania na serwer. Odczytanie
tych zadań i zrobienie z nimi czegoś użytecznego należałoby już do programu
wykonywanego na serwerze.

Inne pomysły
Jeśli masz więcej pomysłów na poprawienie zamieszczonej tu przykładowej listy
zadań, warto, byś je dokładniej wypróbował. Ten projekt doskonale nadaje się do
sprawdzenia nowych umiejętności stosowania języka JavaScript oraz bibliotek
jQuery i jQuery UI. Bezustannie rozwijaną wersję tego projektu można znaleźć
na serwisie GitHub, na stronie https://github.com/sawmac/jquery-todo.

https://github.com/sawmac/jquery-todo

Wskazówki,
sztuczki i rozwiązywanie
problemów

Rozdział 15. Wykorzystywanie wszystkich możliwości jQuery

Rozdział 16. Zaawansowane techniki języka JavaScript

Rozdział 17. Diagnozowanie i rozwiązywanie problemów

V
CZĘŚĆ

Wykorzystywanie
wszystkich możliwości
jQuery

iblioteka jQuery w ogromnym stopniu ułatwia pisanie programów w języku
JavaScript oraz pozwala szybko i łatwo wzbogacać tworzone strony w wyszu-
kane możliwości interakcji. W tej książce przedstawionych zostało kilka

przykładów jej wykorzystania, takich jak walidacja formularzy lub dynamiczne
podmienianie prezentowanych obrazków. Kiedy jednak sami zaczniemy jej uży-
wać, okaże się, że stosowanie nie zawsze jest proste, a pełne wykorzystanie wszyst-
kich możliwości, jakie daje, wymaga sporej wiedzy. W tym rozdziale poznasz bardziej
zaawansowane sposoby korzystania z jQuery — dowiesz się, jak używać dokumen-
tacji, korzystać z gotowych możliwości interakcji poprzez stosowanie wtyczek
i w końcu poznasz kilka przydatnych sztuczek.

Przydatne informacje i sztuczki związane z jQuery

Biblioteka jQuery ułatwia programowanie. Istnieją także pewne rozwiązania i metody,
które dodatkowo ułatwiają pisanie programów wykorzystujących tę bibliotekę.
W tym podrozdziale zamieszczono kilka bardziej zaawansowanych informacji do-
tyczących samej biblioteki, dzięki którym będziesz mógł w większym stopniu wy-
korzystywać jej możliwości.

$() to to samo, co jQuery()
W wielu artykułach i wpisach na blogach poświęconych jQuery można znaleźć frag-
menty kodu, takie jak przedstawiony niżej:

jQuery('p').css('color','#F03');

B

15
ROZDZIAŁ

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Informacje i sztuczki
związane z jQuery

544

Choć doskonale znasz wyrażenie w postaci $('p'), które pobiera wszystkie znacz-
niki <p> dostępne na danej stronie, to jednak możesz się zastanawiać, czym jest
funkcja jQuery(). Okazuje się, że jest ona tożsama z funkcją $(). Powyższy frag-
ment kodu można by równie dobrze zapisać tak:

$('p').css('color','#F03');

W rzeczywistości $() jest jedynie nazwą zastępczą funkcji jQuery() i obie można
stosować zamiennie. John Resig, twórca jQuery, uświadomił sobie, że programiści
będą używać funkcji jQuery() bardzo często, zatem, zamiast ich zmuszać do ciągłego
wpisywania długiego wywołania jQuery(), uznał, że znacznie wygodniejsza będzie
nazwa $().

W praktyce możemy używać obu tych wywołań — zarówno jQuery(), jak i $() —
decyzja należy do nas. Ponieważ jednak wpisanie wywołania $() jest znacząco szybsze,
zatem w większości przypadków zapewne będziesz korzystał właśnie z niego (jak czyni
większość programistów).

Uwaga: W innej popularnej bibliotece JavaScript — Prototype (http://prototypejs.org) — także

użyto funkcji $(). Jeśli zatem zdarzy się, że na swojej witrynie będziesz korzystał z obu tych bibliotek,

lepszym rozwiązaniem będzie stosowanie funkcji jQuery(). Co więcej, jQuery udostępnia specjalną

funkcję opracowaną z myślą o właśnie takich sytuacjach; nosi ona nazwę .noConflict(). Więcej

informacji na jej temat można znaleźć na stronie http://api.jquery.com/jQuery.noConflict/.

Zapisywanie pobranych elementów w zmiennych
Za każdym razem, gdy przy użyciu funkcji $() pobierasz jakieś elementy strony
— korzystając z takiego wywołania jak $('#tooltip') — wywoływana jest funkcja
jQuery. Każde takie wywołanie zmusza przeglądarkę użytkownika do wykonania
sporego fragmentu kodu, a to niejednokrotnie może doprowadzić do niepotrzebne-
go spowolnienia działania programu. Załóżmy na przykład, że chcielibyśmy pobrać
jakiś element strony i zmodyfikować go, wywołując kilka funkcji jQuery. Możemy
to zrobić w następujący sposób:

$('#tooltip').html('<p>Mrówkojad</p>');
$('#tooltip').fadeIn(250);
$('#tooltip').animate({left : "100px"},250);

Ten fragment kodu pobiera element o identyfikatorze tooltip i umieszcza w nim
znacznik <p>. Następnie ponownie pobiera ten sam element i stopniowo wyświetla
go na stronie. Ostatnia instrukcja powyższego fragmentu po raz trzeci pobiera ten
sam element i wywołuje funkcję animate(), która przesuwa go do miejsca o współ-
rzędnej poziomej o wartości 100. Każde z tych wywołań — $('#tooltip') — powo-
duje wykonanie funkcji jQuery. A ponieważ każda z instrukcji operuje na tym
samym elemencie strony, zatem wystarczyłoby go pobrać tylko raz.

Jednym z rozwiązań tego problemu (opisanym na stronie 156 książki) jest technika
łączenia wywołań w sekwencję. Najpierw pobieramy potrzebny element, a następ-
nie dodajemy do niego wywołania kolejnych funkcji:

$('#tooltip').html('<p>Mrówkojad</p>').fadeIn(250).animate({left :
"100px"},250);

http://prototypejs.org
http://api.jquery.com/jQuery.noConflict/

R O Z D Z I AŁ 1 5 . W Y K O R Z Y S T Y W A N I E W S Z Y S T K I C H M OŻL I W OŚC I J Q U E R Y

Informacje i sztuczki
związane z jQuery

545

Jednak czasami utworzenie takiej sekwencji wywołań prowadzi do powstania nie-
czytelnego kodu. Jednym ze sposobów rozwiązania tego problemu jest dodanie
nowego wiersza za wywołaniem każdej z metod składających się na sekwencję.
Ponieważ język JavaScript nie zwraca wielkiej uwagi na znaki odstępu i nowego
wiersza, można to zrobić na przykład w następujący sposób:

$('#tooltip').html('<p>Mrówkojad</p>')
 .fadeIn(250)
 .animate({left:"100px"},250);

Choć wywołania funkcji .html, .fadeIn oraz .animate znajdują się w odrębnych
wierszach, w rzeczywistości tworzą sekwencję będącą jedną instrukcją.

Innym rozwiązaniem jest zatem jednokrotne wywołanie funkcji jQuery i zapisa-
nie uzyskanych wyników w zmiennej, co umożliwi ich wielokrotne użycie. A tak
można zmodyfikować przedstawiony powyżej fragment kodu:

1 var tooltip = $('#tooltip')
2 tooltip.html('<p>Mrówkojad</p>');
3 tooltip.fadeIn(250);
4 tooltip.animate({left : "100px"},250);

W wierszu 1. wywołujemy funkcję jQuery, która pobiera element o identyfikatorze
tooltip, a następnie zapisujemy zwrócony wynik w zmiennej tooltip. Po wywo-
łaniu funkcji i zapisaniu pobranego elementu w zmiennej ponowne wywoływanie
funkcji jQuery nie będzie już potrzebne. Wystarczy, że skorzystamy ze zmiennej
(która zawiera obiekt jQuery) i użyjemy jej do wywoływania kolejnych funkcji.

Przy zastosowaniu takiego rozwiązania wielu programistów decyduje się na doda-
wanie na początku nazwy zmiennej znaku $, co przypomina o tym, że zawiera ona
obiekt jQuery, a nie daną jakiegoś innego typu, takiego jak łańcuch znaków, liczba,
tablica czy też literał obiektowy. Oto przykład:

var $tooltip = $('#tooltip');

Technika zapisywania elementów pobieranych przy użyciu jQuery w zmiennych
jest bardzo często stosowana podczas obsługi zdarzeń. Jak sobie zapewne przypo-
minasz (była o tym mowa na stronie 169), wewnątrz funkcji obsługującej zdarzenia
używane jest wyrażenie $(this); ono pozwala odwołać się do znacznika, do którego
zdarzenie zostało skierowane. Jednak każde użycie tego wyrażenia powoduje wy-
wołanie funkcji jQuery, a zatem jego wielokrotne stosowanie wewnątrz tej samej
funkcji jest niepotrzebnym marnowaniem mocy komputera. Zamiast tego można
zapisać wartość tego wyrażenia w zmiennej, a następnie używać jej, kiedy trzeba,
w dalszej części kodu funkcji:

$('a').click(function() {
 var $this = $(this); // zapisanie odwołania do znacznika <a>
 $this.css('outline','2px solid red');
 var href = $this.attr('href');
 window.open(href);
 return false;
}); // koniec funkcji click

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Informacje i sztuczki
związane z jQuery

546

Jak najrzadsze dodawanie treści
W rozdziale 4. poznałeś funkcje jQuery umożliwiające dodawanie nowych treści do
elementów stron WWW. I tak funkcja .text() (patrz strona 158) pozwala na za-
stąpienie tekstu umieszczonego wewnątrz elementu, a funkcja .html() (patrz strona
157) na zmianę umieszczonego wewnątrz elementu kodu HTML. Gdybyśmy na
przykład chcieli umieścić komunikat o błędzie w znaczniku o identyfikatorze
passwordError, moglibyśmy to zrobić przy użyciu następującego wywołania:

$('#passwordError').text('Hasło musi mieć co najmniej 7 znaków długości.');

Jeszcze inne funkcje pozwalają dodawać nowe treści za elementem (funkcja append(),
opisana na stronie 158) lub przed nim (prepend(), patrz strona 159).

Dodawanie i modyfikacja treści umożliwiają wyświetlanie nowych komunikatów
o błędach, prezentowanie etykiet ekranowych (patrz strona 345), tworzenie wyróż-
nionych cytatów (patrz strona 171), jednak wszystkie te operacje stanowią duże wy-
zwanie dla przeglądarki. Za każdym razem gdy dodajemy do strony nowe treści,
przeglądarka musi wykonać bardzo wiele pracy — w końcu każda taka operacja wy-
maga utworzenia nowego DOM-u (patrz strona 145), a to z kolei wiąże się z koniecz-
nością wykonania wielu, niezauważalnych czynności. Dlatego też częste modyfi-
kowanie zawartości strony może doprowadzić do spadku wydajności jej działania.

W tym przypadku nie liczy się wielkość dodawanych treści — znacznie większy wpływ
na wydajność strony ma sama liczba wprowadzanych modyfikacji. Załóżmy na
przykład, że chcemy wykorzystać na stronie etykiety: kiedy użytkownik umieści
wskaźnik myszy w określonym obszarze strony, ma się na niej pojawić dodatkowy
element (taki jak znacznik <div>) z dodatkową treścią. W tym celu musimy dodać
do strony znacznik etykiety oraz jego zawartość. A tak można by to zrobić:

1 // dodajemy element div na końcu elementu
2 $('#elemForTooltip').append('<div id="tooltip"></div');
3 // dodajemy do niego nagłówek
4 $('#tooltip').append('<h2>Tytuł etykiety</h2>');
5 // oraz treść etykiety
6 $('#tooltip').append('<p>Treść etykiety.</p>');

Powyższy kod będzie działał zgodnie z oczekiwaniami. W wierszu 2. dodajemy do
wskazanego elementu nowy znacznik <div>; w wierszu 4. do znacznika <div> —
nagłówek, a w wierszu 6. — akapit z treścią etykiety. Jednak w trakcie tego procesu
DOM strony został zmodyfikowany aż trzy razy, gdyż trzykrotnie została wywołana
funkcja append(). Wszystkie te czynności w dużym stopniu obciążają przeglądarkę,
dlatego też ograniczenie operacji modyfikujących DOM strony może w znaczącym
stopniu poprawić wydajność jej działania.

W tym przykładzie możemy zmniejszyć liczbę wykonywanych operacji dodawania
do strony nowej zawartości do jednej — wystarczy w zmiennej zapisać cały kod HTML
etykiety, a dopiero potem dodać go do strony. Poniżej pokazano, jak to zrobić:

1 var tooltip = '<div id="tooltip"><h2>Tytuł etykiety</h2> 
 <p>Treść etykiety.</p></div';
2 $('#elemForTooltip').append(tooltip);

R O Z D Z I AŁ 1 5 . W Y K O R Z Y S T Y W A N I E W S Z Y S T K I C H M OŻL I W OŚC I J Q U E R Y

Informacje i sztuczki
związane z jQuery

547

Uwaga: Symbol  umieszczony na końcu pierwszego wiersza kodu oznacza, że dalszą część kodu na-

leży wpisywać w tym samym wierszu. To naprawdę długi wiersz kodu, którego nie można w całości

wydrukować w książce, dlatego też został tutaj zapisany w dwóch wierszach. Trzeba także pamię-

tać o tym, że łańcuchy znaków są jedynym przypadkiem, w którym JavaScript zwraca uwagę na

odstępy i znaki nowego wiersza. Jednego łańcucha znaków nie można zapisać w dwóch kolejnych

wierszach kodu:

var longString = "Teraz nadszedł czas, by wszyscy ludzie dobrej
woli pomogli swojemu krajowi";

W takim przypadku wystąpi błąd.

W tym przykładzie w wierszu 1. tworzymy zmienną zawierającą cały kod HTML,
a następnie w wierszu 2. dodajemy ją do strony. W ten sposób wykonywana jest tyl-
ko jedna operacja dodawania i w zależności od używanej przez użytkownika przeglą-
darki ta wersja kodu może działać nawet do 20 razy szybciej niż poprzednia, wyko-
rzystująca trzy wywołania funkcji append().

Oznacza to, że jeśli chcemy wstawić nowy fragment kodu HTML w jakimś miejscu
strony, należy to zrobić w ramach jednej, a nie kilku operacji (a przynajmniej ich
liczbę należy jak najbardziej ograniczyć).

Optymalizacja selektorów
Elastyczność jQuery oznacza, że ten sam cel można uzyskać na kilka różnych spo-
sobów. Przykładowo jeden element strony można pobrać na kilka sposobów, choćby
przy użyciu selektora CSS lub metod służących do poruszania się po drzewie DOM
(opisanych na stronie 554). Techniki opisane w tym punkcie rozdziału pozwolą przy-
spieszyć wykonywane operacje selekcji elementów strony i poprawić wydajność na-
szych programów pisanych w JavaScripcie.
 Zawsze, gdy to tylko możliwe, warto używać selektorów z identyfikatorami

elementów. Najszybszym sposobem pobrania elementu strony jest użycie se-
lektora identyfikatora. Już od samego powstania języka JavaScript przeglądarki
udostępniały metodę pozwalającą na pobieranie elementu na podstawie jego
identyfikatora i nawet dziś jest to najszybszy sposób odwołania się do elementu
strony. Jeśli zatem zwracamy uwagę na wydajność działania naszej strony, mo-
żemy zrezygnować ze stosowania selektorów elementów potomnych, a zamiast
tego określać identyfikatory we wszystkich elementach, do których będziemy
się odwoływali w skrypcie.

 Należy stosować selektor identyfikatora na początku selektora elementów
potomnych. Stosowanie selektorów identyfikatorów wiąże się z jednym pro-
blemem. Otóż w ten sposób można pobrać tylko jeden element. A co zrobić, gdy
chcemy pobrać wszystkie znaczniki <a> umieszczone wewnątrz jakiegoś znacz-
nika <div> lub akapitu tekstu? Jeśli strona została skonstruowana w taki spo-
sób, że wszystkie pobierane elementy znajdują się wewnątrz elementu o pew-
nym identyfikatorze, warto go podać na samym początku selektora elementów
potomnych. Załóżmy na przykład, że chcemy pobrać wszystkie znaczniki <a>
umieszczone na stronie. Co więcej, tak się składa, że wszystkie one są umiesz-
czone wewnątrz znacznika <div> o identyfikatorze main. W takim przypadku
zastosowanie selektora

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Korzystanie
z dokumentacji jQuery

548

$('#main a')

zapewni lepszą wydajność niż zastosowanie selektora:
$('a')

 Warto korzystać z funkcji .find(). Biblioteka jQuery udostępnia funkcję po-
zwalającą na wyszukiwanie elementów wewnątrz zwróconych wyników selekcji.
Rozwiązanie to działa w sposób przypominający selektor elementów potom-
nych, który odnajduje znaczniki umieszczone wewnątrz innych znaczników.
Więcej informacji na temat tej funkcji można znaleźć na stronie 555, jednak
najprościej rzecz ujmując, jej stosowanie polega na pobraniu konkretnych ele-
mentów w standardowy sposób i dodaniu wywołania funkcji .find(), wewnątrz
którego przekazywany jest dodatkowy selektor. Innymi słowy, wywołanie funkcji
jQuery w postaci $('#main a') można by zapisać tak:

$('#main').find('a');

W rzeczywistości okazuje się, że w niektórych przypadkach zastosowanie
funkcji .find() jest dwukrotnie szybsze od wykorzystania selektora elementu
podrzędnego!

Uwaga: Na stronie http://jsperf.com/sawmac-selector-test można znaleźć test pozwalający na spraw-

dzenie wydajności działania funkcji .find().

 Należy unikać zbytniej szczegółowości. Być może jesteś przyzwyczajony do
stosowania reguł szczegółowości wykorzystywanych w CSS w celu tworzenia
reguł stylów ustalających postać precyzyjnie określanych elementów strony. Przy-
kładowo reguła z selektorem #main .sidebar .note ul.nav li a jest bardzo
szczegółowa; gdybyśmy użyli jej w wywołaniu jQuery, okazałoby się, że wyko-
nanie zajmuje dużo czasu. O ile to tylko możliwe, należy stosować krótsze
i bardziej precyzyjne selektory elementów podrzędnych, takie jak $('.sidebar
.nav a'), bądź też skorzystać z funkcji .find() (opisanej w poprzednim punk-
cie): $('#main').find('.sidebar').find('.nav a').

Korzystanie z dokumentacji jQuery

Na witrynie jQuery umieszczono bardzo szczegółową dokumentację wszystkich
funkcji biblioteki, jest ona dostępna na stronie http://api.jquery.com/ (patrz rysu-
nek 15.1). Można tam także znaleźć przydatne odnośniki do poradników, jak zacząć
korzystanie z jQuery, gdzie szukać dodatkowej pomocy i tak dalej; jednak przede
wszystkim są tam dostępne szczegółowe opisy API biblioteki. API to skrót od angiel-
skich słów Application Programming Interface — interfejs programowania aplikacji
— co po prostu oznacza zbiór funkcji udostępnianych przez bibliotekę, takich jak
funkcje do obsługi zdarzeń przedstawione w rozdziale 5. (.click(), .hover() i tak
dalej), funkcje CSS opisane w rozdziale 4. (.css(), .addClass() i .removeClass())
oraz przede wszystkim główna funkcja jQuery — $() — która umożliwia pobieranie
potrzebnych elementów strony.

http://jsperf.com/sawmac-selector-test
http://api.jquery.com/

R O Z D Z I AŁ 1 5 . W Y K O R Z Y S T Y W A N I E W S Z Y S T K I C H M OŻL I W OŚC I J Q U E R Y

Korzystanie
z dokumentacji jQuery

549

Rysunek 15.1. Główna strona dokumentacji jQuery zawiera odnośniki do wielu przydatnych informacji. Z lewej
strony okna widoczna jest kolumna z listą wszystkich funkcji jQuery. W niektórych przypadkach są one pogru-
powane według zagadnień, na przykład funkcje związane z technologią AJAX, funkcje do obsługi zdarzeń
(Events) i tak dalej

Dział dokumentacji witryny jQuery zawiera informacje o wszystkich funkcji bi-
blioteki. Na stronie głównej wyświetlona jest ich lista. Jest to bardzo przydatne,
gdy znamy nazwę funkcji, gdyż lista jest uporządkowana alfabetycznie; jednak
może onieśmielać osoby, które nie znają tak dobrze jQuery. Dlatego zapewne
większość będzie wolała wybierać jedną z kategorii wyświetlonych na pasku nawi-
gacyjnym umieszczonym z lewej strony. Poniżej przedstawiono kilka najbardziej
przydatnych kategorii.

 Kategoria Selectors (selektory; http://api.jquery.com/category/selectors/). Ta
kategoria zawiera informacje o najbardziej użytecznych funkcjach jQuery.
Warto tu zaglądać często, gdyż zawiera informacje o wielu różnych sposobach
pobierania elementów. Wiele z nich poznałeś już w rozdziale 4., jeśli jednak zaj-
rzysz do tej sekcji dokumentacji, możesz ich poznać jeszcze więcej.

Ponieważ funkcji jQuery związanych z selektorami jest bardzo dużo, zatem
zobaczysz, że w pasku bocznym zostały one podzielone na dodatkowe kategorie,
takie jak Basic (proste selektory), Forms (selektory pól formularzy), Attribute
(selektory atrybutów) i tak dalej.

http://api.jquery.com/category/selectors/

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Korzystanie
z dokumentacji jQuery

550

 Kategoria Attributes (atrybuty; http://api.jquery.com/category/attributes). Zajrzyj
na tę stronę, by znaleźć informacje o funkcjach jQuery służących do odczyty-
wania i ustawiania wartości atrybutów elementów HTML: na przykład doda-
wania klasy, do jakiej znacznik ma należeć, odczytu wartości konkretnego atry-
butu (przykładowo atrybutu href znacznika <a>) czy też pobierania wartości
zapisanej w elemencie formularza.

Uwaga: Czasami tę samą funkcję można znaleźć w kilku różnych sekcjach dokumentacji. Przykładem

może być funkcja .val(), używana do odczytu lub ustawienia wartości pola formularza, która została

wymieniona zarówno w kategorii Attributes (atrybuty), jak i Forms (formularze).

 Kategoria Traversing (poruszanie się po zawartości strony; http://api.jquery.com/
category/traversing/). Zawiera funkcje służące do manipulowania zbiorami
elementów strony. Przykładowo funkcja .find() pozwala na poszukiwanie
elementów w wynikach zwróconych przez funkcję jQuery. Możliwość ta
jest bardzo przydatna, gdy na przykład chcemy pobrać element strony (taki jak
), wykonać na nim jakieś operacje (dodać klasę, stopniowo wyświetlić i tym
podobne), a następnie odszukać wewnątrz niego jakiś inny element (przykła-
dowo znacznik umieszczony we wcześniej pobranym znaczniku) i na
nim także wykonać jakieś operacje. Biblioteka jQuery udostępnia wiele funkcji
służących do poruszania się po elementach HTML tworzących stronę, a nie-
które spośród nich zostaną przedstawione w dalszej części tego rozdziału.

 Kategoria Manipulation (manipulacja; http://api.jquery.com/category/manipul-
-ation/). Za każdym razem, gdy zechcemy dodać coś do strony bądź z niej coś
usunąć, konieczne jest przeprowadzenie pewnych zmian w drzewie DOM. Na tej
stronie znajdziesz wszystkie funkcje umożliwiające wprowadzanie zmian w za-
wartości strony, w tym także te, o których dowiedziałeś się w rozdziale 4. (patrz
strona 157), czyli .html() pozwalająca dodawać do strony kod HTML, .text()
pozwalająca dodawać do strony zwyczajny tekst i tak dalej. Jest to bardzo ważna
kategoria funkcji, gdyż działanie większości programów pisanych w języku
JavaScript w znaczniej mierze bazuje właśnie na dynamicznym modyfikowaniu
zawartości strony.

 Kategoria CSS (http://api.jquery.com/category/css/). W tej kategorii znajdują się
funkcje służące do odczytywania i ustawiania właściwości związanych z CSS,
na przykład dodawanie i usuwanie klas ze znaczników, bezpośrednie podawanie
wartości właściwości CSS, odczytywanie i ustawianie wysokości, szerokości
oraz położenia elementów. Informacje o niektórych tych funkcjach można
znaleźć na stronie 163.

 Kategoria Events (zdarzenia, http://api.jquery.com/category/events/). W roz-
dziale 5. dowiedziałeś się, jak można używać jQuery, by odpowiadać na czyn-
ności wykonywane przez użytkownika na stronie, takie jak przesuwanie wskaź-
nika myszy w obszarze jakiegoś elementu bądź kliknięcie przycisku. Na tej
stronie znajdziesz informacje o wielu funkcjach jQuery powiązanych z obsługą
zdarzeń. Informacje o kilku zaawansowanych funkcjach należących do tej ka-
tegorii możesz znaleźć na stronie 190.

http://api.jquery.com/category/attributes
http://api.jquery.com/category/traversing/
http://api.jquery.com/category/manipulation/
http://api.jquery.com/category/manipulation/
http://api.jquery.com/category/css/
http://api.jquery.com/category/events/
http://api.jquery.com/category/traversing/

R O Z D Z I AŁ 1 5 . W Y K O R Z Y S T Y W A N I E W S Z Y S T K I C H M OŻL I W OŚC I J Q U E R Y

Korzystanie
z dokumentacji jQuery

551

 Kategoria Effects (efekty, http://api.jquery.com/category/effects/). W tej kategorii
znajdziesz informacje o funkcjach jQuery związanych z efektami wizualnymi,
takimi jak .slideDown(), .fadeIn() czy też .animate(), które poznałeś w roz-
dziale 6.

 Kategoria Forms (formularze, http://api.jquery.com/category/forms/). Do tej
kategorii należą funkcje związane z… tu prosimy o werble… formularzami!
Przede wszystkim znajdziemy tu wszystkie zdarzenia związane z elementami
formularzy, a oprócz nich także funkcję .val() (pobierającą lub ustawiającą
wartość pola formularza) oraz kilka innych funkcji ułatwiających przesyłanie
formularzy przy użyciu technologii AJAX (więcej informacji na ten temat
można znaleźć w rozdziale 13.).

 Kategoria Ajax (http://api.jquery.com/category/ajax/). Do tej kategorii należą
funkcje związane z dynamicznym aktualizowaniem strony na podstawie
informacji przesyłanych na serwer WWW lub pobieranych z tego serwera.
Opisane zostały w rozdziale 13.

 Kategoria Utilities (funkcje narzędziowe, http://api.jquery.com/category/utilities/).
Biblioteka jQuery udostępnia także kilka funkcji, które mają ułatwiać często
wykonywane zadania programistyczne, takie jak odnajdywanie elementu w ta-
blicy, wykonanie pewnych operacji na każdym elemencie tablicy lub właściwości
obiektu (funkcja $.each() opisana na stronie 167) oraz kilka innych funkcji
dla zaawansowanych. Prawdopodobnie nie będziesz musiał korzystać z żadnej
z tych funkcji na tym etapie swojej programistycznej kariery (nie da się ich
wykorzystać do żadnych odlotowych efektów ani nie są nam w stanie pomóc
w aktualizowaniu treści strony), kiedy jednak zdobędziesz więcej wiedzy i do-
świadczenia, warto ponownie zajrzeć na tę stronę dokumentacji.

Na liście w lewej kolumnie strony dostępne są także inne kategorie, zawie-
rające rzadziej stosowane funkcje, o których jednak warto wiedzieć.

 Kategoria Data (dane, http://api.jquery.com/category/data/). Kategoria ta za-
wiera funkcje związane z dodawaniem danych do elementów strony. Biblioteka
jQuery udostępnia funkcję .data() służącą do dodawania danych do ele-
mentów — można ją sobie wyobrazić jako narzędzie do dodawania do ele-
mentów par nazwa – wartość, zupełnie jakby były one miniaturową bazą da-
nych. Zarówno ta, jak i inne funkcje należące do tej kategorii mogą się przydać
podczas tworzenia aplikacji internetowych, w których trzeba przechowywać
dane i ich używać. Całkiem przystępne wprowadzenie do zagadnień stosowania
tych funkcji można znaleźć na stronie http://tutorialzine.com/2010/11/jquery-
data-method/.

 Kategoria Deffered objects (obiekty odroczone, http://api.jquery.com/category/
deferred-object/). Nie musisz szukać dalej, wystarczy, że zajrzysz do krótkiego
opisu tej kategorii, by przekonać się, że odroczone obiekty jQuery to złożone
narzędzie. (A opis ten stwierdza, że jest to obiekt pozwalający na tworzenie se-
kwencji wywołań, umożliwiający rejestrowanie wielu funkcji zwrotnych w spe-
cjalnych kolejkach, wywoływanie tych kolejek oraz modyfikowanie stanu —
powodzenia lub niepowodzenia — wszelkich operacji zarówno synchronicznych,
jak i asynchronicznych). Najprościej rzecz ujmując, pozwalają one na tworzenie

http://api.jquery.com/category/effects/
http://api.jquery.com/category/forms/
http://api.jquery.com/category/ajax/
http://api.jquery.com/category/utilities/
http://api.jquery.com/category/data/
http://tutorialzine.com/2010/11/jquery-data-method/
http://tutorialzine.com/2010/11/jquery-data-method/
http://tutorialzine.com/2010/11/jquery-data-method/
http://api.jquery.com/category/deferred-object/
http://api.jquery.com/category/deferred-object/

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Korzystanie
z dokumentacji jQuery

552

kolejek funkcji kontrolujących kolejność, w jakiej będą wywoływane. Jeśli
chciałbyś się dowiedzieć czegoś więcej na ich temat, zajrzyj na tę stronę do-
kumentacji jQuery.

 Kategoria Dimenstions (wymiary, http://api.jquery.com/category/dimensions/).
Zgromadzono w niej funkcje służące do określania wymiarów — szerokości
i wysokości — elementów stron. Te same funkcje można także znaleźć w wy-
mienionej wcześniej kategorii CSS.

 Kategoria Internals (mechanizmy wewnętrzne, http://api.jquery.com/category/
internals/). Należy do niej tylko kilka funkcji o bardzo różnym stopniu przy-
datności. Przykładowo właściwość .jquery zwraca numer wersji biblioteki.

// wyświetlamy okienko informacyjne z numerem wersji biblioteki
alert($().jquery); // na przykład 1.6.2

Można żyć długo i szczęśliwie, i ani razu nie użyć żadnej z tych funkcji.
 Kategoria Offset (współrzędne, http://api.jquery.com/category/offset/) zawiera

funkcje związane z określaniem położenia elementów na stronie, wyliczanego
względem całego dokumentu lub elementu nadrzędnego. Funkcje te są używane
podczas odczytywania oraz ustawiania położenia elementów.

Czytanie dokumentacji na stronie jQuery
Każda funkcja jQuery została opisana na odrębnej stronie, na której znajdują się in-
formacje o tym, co robi i jak działa. Na rysunku 15.2 przestawiony został fragment
strony poświęconej funkcji css(). Na stronie widoczna jest nazwa funkcji (w tym
przypadku jest nią css()) oraz lista kategorii i podkategorii, do których dana funkcja
należy. Zarówno nazwę kategorii, jak i podkategorii można kliknąć, by przejść na
stronę z listą wszystkich należących do niej funkcji.

W niektórych przypadkach funkcja ma dwa lub nawet trzy zastosowania i działa ina-
czej, w zależności od typów przekazanych do niej argumentów. W takim przypadku
opis każdego z zastosowań zostanie podany osobno, poniżej nagłówka zawierającego
nazwę funkcji. Przykładowo na rysunku 15.2 widać, że funkcja css() może przyj-
mować jeden lub dwa argumenty (na rysunku zostały one oznaczone cyframi 1 i 2).

Pierwszy ze sposobów używania funkcji (patrz cyfra 1) został przedstawiony jako
css(propertyName). W tym przypadku propertyName oznacza, że do funkcji należy
przekazać jeden argument, który powinien być nazwą właściwości CSS. W efekcie
jQuery zwróci wartość tej właściwości pobraną ze wskazanego elementu (zwróć uwagę
na słowa Returns: String — zwraca: łańcuch znaków — zakreślone na rysunku
15.2). Informacje zamieszczone na stronie pozwalają się zorientować, że do funk-
cji należy przekazać jeden argument, a wynikiem wywołania jest łańcuch znaków.
Załóżmy na przykład, że chcemy pobrać szerokość znacznika <div> o identyfikatorze
tooltip; możemy w tym celu użyć następującego wywołania:

var tipWidth = $('#tooltip').css('width'); // pobieramy wartość właściwości width

W tym przypadku do funkcji przekazywana jest nazwa właściwości 'width', w efek-
cie zwraca ona łańcuch znaków. (Choć w tym konkretnym przypadku, ze względu
na odczytywanie szerokości, zwrócony łańcuch znaków będzie zawierał liczbę —
szerokość elementu w pikselach, na przykład '300').

http://api.jquery.com/category/dimensions/
http://api.jquery.com/category/
http://api.jquery.com/category/offset/

R O Z D Z I AŁ 1 5 . W Y K O R Z Y S T Y W A N I E W S Z Y S T K I C H M OŻL I W OŚC I J Q U E R Y

Korzystanie
z dokumentacji jQuery

553

Rysunek 15.2. Strona dokumentacji dotycząca konkretnej funkcji jQuery przedstawia listę wszystkich możli-
wych sposobów jej wywołania. W tym przypadku zostały one podane pod nagłówkiem Contents (zawartość);
jak widać, do funkcji css() można przekazać bądź to pojedynczy argument (cyfra 1), bądź dwa argumenty (cy-
fra 2). W zależności od wybranego sposobu wywołania funkcja działa inaczej. Kliknij jeden z przedstawionych
przykładów wywołania, a zostaniesz przeniesiony do miejsca strony, w którym został on dokładniej opisany

Uwaga: Biblioteka jQuery udostępnia także inną wersję tej funkcji — css(propertyNames) —

która także zwraca wartości właściwości CSS elementu. Jednak zamiast pobierać nazwę jednej wła-

ściwości i zwracać jedną wartość, funkcja ta pobiera tablicę (patrz strona 77) zawierającą nazwy

właściwości i zwraca obiekt (patrz strona 165), w którym znajdują się pary nazwa – wartość. Pary

te składają się z nazwy właściwości CSS z tablicy przekazanej w wywołaniu oraz wartości odpo-

wiedniego elementu HTML strony.

Drugi sposób użycia funkcji css() (oznaczony cyfrą 2) został przedstawiony jako
css(propertyName, value). A zatem zakłada on przekazanie w wywołaniu funkcji
dwóch argumentów — nazwy właściwości CSS oraz wartości. W przypadku zasto-
sowania tego sposobu wywołania funkcja css() ustawia wartość podanej właściwo-
ści CSS elementu. Gdybyś chciał na przykład ustawić szerokość znacznika <div>
o identyfikatorze tooltip, pierwszym argumentem wywołania musiałaby być nazwa
właściwości 'widht', a drugim — liczba określająca zamierzoną szerokość elementu:

$('#tooltip').css('width',300); // ustawiamy szerokość elementu div na 300 pikseli

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Poruszanie się po DOM

554

Dokumentacja zawiera także informacje o dwóch innych sposobach stosowania
funkcji css() w celu ustawiania wartości właściwości CSS. Oto one.

 .css(propertyName, function) — w tym przypadku istnieje możliwość
dynamicznego wyznaczenia wartości, która zostanie przypisana właściwości
CSS. Rozwiązanie to jest przydatne, gdy dysponujemy kolekcją elementów
strony i chcemy, by w każdym z nich właściwość miała nieco inną wartość.
Jako przykład można by podać sekwencję znaczników <div>, które chcemy
rozmieścić na stronie (określając wartość właściwości left) tak, by były widoczne
jeden obok drugiego.

 .css(properties) — ten sposób wywołania został opisany na stronie 163;
oznacza on, że w wywołaniu funkcji jest przekazywany literał obiektowy, dzięki
czemu, za jednym zamachem, można ustawić wartości wielu właściwości CSS.

Ważne jest, by uzmysłowić sobie, że funkcje jQuery mogą pobierać różne argu-
menty i — w zależności od nich — działać na różne sposoby; co więcej, jest to roz-
wiązanie często stosowane. Przykładowo funkcja css() może zarówno pobierać, jak
i ustawiać wartości właściwości CSS. Zauważysz zapewne, że funkcje jQuery bar-
dzo często działają jako oba akcesory, czyli pozwalają na pobieranie danych (akcesor
„get”) i ich ustawianie (akcesor „set”).

Strona z dokumentacją zawsze zawiera listę wszystkich możliwych zastosowań da-
nej funkcji i zazwyczaj przedstawia działające przykłady jej użycia. Dokumentacja
jQuery jest dobrze utrzymana i, jak na dokumentację techniczną, całkiem przystępna,
a także zrozumiała. Warto poświęcić trochę czasu na jej przeglądnięcie i przeczytanie
informacji przynajmniej o tych funkcjach, których najczęściej używamy.

Poruszanie się po DOM
Już wiesz, w jaki sposób można pobierać elementy stron, korzystając z funkcji jQuery
i selektorów CSS; i tak wywołanie $('p') pobiera wszystkie akapity na stronie. Po
pobraniu elementów można z nimi coś zrobić, na przykład dodać do nich jakąś kla-
sę lub ją usunąć, zmienić właściwość CSS albo ukryć element. Jednak czasami może
się zdarzyć, że będziemy chcieli pobrać inne elementy strony powiązane w jakiś spo-
sób z pobranym wcześniej. W terminologii JavaScript takie operacje są określane
jako poruszanie się (albo trawersowanie) po DOM (modelu obiektów dokumentu).

Takie operacje poruszania się po DOM są często wykonywane podczas obsługi zda-
rzeń, gdy procedura obsługi jest skojarzona z jednym elementem, a chcemy coś zro-
bić z innym. Przykładowo załóżmy, że na naszej stronie znajduje się znacznik <div>
o identyfikatorze gallery, wewnątrz którego umieszczona jest grupa miniaturek
zdjęć. Po kliknięciu znacznika <div> chcemy wykonać jakieś operacje na miniatur-
kach: poruszyć, zmniejszyć, zwiększyć lub coś w tym stylu… Procedura obsługi
zdarzeń została dołączona do znacznika <div> w następujący sposób:

$('#gallery').click(function() {

}); // koniec funkcji click

R O Z D Z I AŁ 1 5 . W Y K O R Z Y S T Y W A N I E W S Z Y S T K I C H M OŻL I W OŚC I J Q U E R Y

Poruszanie się po DOM

555

Wewnątrz tej procedury musimy dodać kod, który coś zrobi z miniaturkami. A za-
tem, choć użytkownik klika znacznik <div>, jednak my chcemy wykonać jakieś
operacje na miniaturkach. W powyższym przykładzie odwołaliśmy się do znacznika
<div>, a wtedy wewnątrz funkcji obsługującej zdarzenia wyrażenie $(this) będzie
się odwoływać do tego znacznika (jeśli to dla Ciebie coś nowego, możesz zajrzeć na
stronę 169, gdzie znajdziesz więcej informacji na temat tego wyrażenia). Wewnątrz
funkcji pobranym elementem jest <div>, jednak my musimy znaleźć obrazki umiesz-
czone wewnątrz tego znacznika. Na szczęście jQuery udostępnia rozwiązanie tego
problemu — jest nim funkcja .find(). Służy ona do wygenerowania nowych wyni-
ków jQuery poprzez przeszukanie zawartości aktualnie pobranego elementu i odna-
lezienie w niej znaczników pasujących do podanego selektora. A zatem wszystkie
obrazki umieszczone wewnątrz znacznika <div> możemy odszukać, używając na-
stępującego wywołania (wyróżnionego pogrubioną czcionką):

$('#gallery').click(function() {
 $(this).find('img');
}); // koniec funkcji click

Wywołanie $(this).find('img') tworzy nową kolekcję pobranych elementów;
wyrażenie $(this) odwołuje się najpierw do znacznika <div>, a następnie wywoła-
nie .find('img') odnajduje wszystkie znaczniki umieszczone wewnątrz po-
branego wcześniej znacznika <div>. Oczywiście taki kod nie wykonuje żadnych
operacji na pobranych znacznikach, można jednak uzupełnić go o wywołanie do-
wolnej z funkcji generujących efekty wizualne, które poznałeś w poprzednim rozdziale.
Można użyć następującego kodu:

$('#gallery').click(function() {
 $(this).find('img').fadeTo(500,.3).fadeTo(250,1);
}); // koniec funkcji click

Zgodnie z informacjami zamieszczonymi na stronie 214, wymagane jest podanie
informacji o czasie trwania efektu oraz docelowej wartości nieprzezroczystości. Po-
wyższe wywołanie najpierw wygasza wszystkie obrazki do 30% nieprzezroczy-
stości w czasie 500 milisekund, a następnie, w ciągu 250 milisekund zmienia ich
nieprzezroczystość z powrotem do poziomu 100% (aby przekonać się, jak wygląda
taki efekt, wystarczy wyświetlić w przeglądarce plik find.html dostępny w przykła-
dach dołączonych do książki, w katalogu R15).

W rzeczywistości poruszanie się po DOM jest tak często wykonywaną operacją, że
jQuery udostępnia wiele funkcji (http://api.jquery.com/category/manipulation/)
ułatwiających pobieranie elementów, a następnie odnajdywanie innych, które są
z nimi w jakiś sposób powiązane. Aby lepiej zrozumieć ich działanie, posłużymy
się przykładem prostego fragmentu kodu HTML przedstawionego na rysunku 15.3.
Zawiera on znacznik <div> o identyfikatorze gallery, a wewnątrz niego cztery
obrazki umieszczone w odnośnikach.

Zgodnie z informacjami podanymi na stronie 151, do przedstawienia powiązań
pomiędzy elementami stron WWW można wykorzystać relacje rodzinne. Przykła-
dowo znacznik <div> przedstawiony na rysunku 15.3 jest rodzicem znaczników
<a>, a z kolei one są rodzicami umieszczonych wewnątrz znaczników . Jedno-
cześnie znaczniki <a> są dziećmi znacznika <div> oraz rodzeństwem w stosunku do
pozostałych znaczników <a>. I analogicznie, każdy znacznik jest dzieckiem
znacznika <a>, wewnątrz którego jest umieszczony; a ponieważ w znacznikach
<a> nie ma innych znaczników, żaden ze znaczników nie ma rodzeństwa.

http://api.jquery.com/category/manipulation/

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Poruszanie się po DOM

556

Rysunek 15.3. Często zdarza się, że pobierając ja-
kieś elementy przy użyciu jQuery — na przykład w
celu dodania procedury obsługi zdarzeń do znacznika
<a> przedstawionego na tym rysunku — będziemy
chcieli wykonać także jakieś operacje na innych ele-
mentach, które są z nimi w jakiś sposób powiązane
(wyświetlić ramkę wokół elementu <div> lub zmodyfi-
kować znacznik i tym podobne). Właśnie w ta-
kich przypadkach mogą pomóc funkcje służące do
poruszania się po DOM

Poniżej przedstawionych zostało kilka funkcji służących do poruszania się po DOM,
dostępnych w bibliotece jQuery.

 Funkcja .find() odnajduje konkretny element wewnątrz aktualnie pobranego
elementu. W tym przypadku należy zacząć do standardowego pobrania elementu,
a następnie dodać wywołanie funkcji .find() i przekazać do niej odpowiedni
selektor; oto przykład:

$('#gallery').find('img')

Powyższe wywołanie pobiera wszystkie znaczniki umieszczone wewnątrz
znacznika <div> z identyfikatorem gallery. Oczywiście, ten sam efekt można
uzyskać, stosując selektor elementu potomnego w postaci $('#gallery img').
Jak już wspominaliśmy, funkcja .find() jest najczęściej stosowana w sytu-
acjach, kiedy już wcześniej został pobrany jakiś element strony, na którym wy-
konaliśmy jakieś operacje — takie jak dodanie procedury obsługi zdarzenia
— a teraz chcemy pobrać inne, powiązane z nim elementy.

Funkcja .find() używana jest do pobierania elementów potomnych (znaczników
umieszczonych wewnątrz innych) aktualnie pobranego elementu. Jeśli zatem
w przypadku zilustrowanym na rysunku 15.3 aktualnie pobranym elementem
będzie <div>, funkcji .find() możemy użyć, by pobrać znaczniki <a> lub .

Uwaga: Zajrzyj na stronę 536, by dowiedzieć się o ogromnych zaletach związanych z wydajnością

działania skryptów, jakie zapewnia stosowanie funkcji .find(). Zazwyczaj stanowi ona szybszy sposób

pobierania elementów niż stosowanie selektora elementów potomnych.

 Funkcja .children() jest nieco podobna do funkcji .find(). Także w jej wy-
wołaniu można podać selektor, jednak ogranicza ona zakres pobieranych ele-
mentów jedynie do bezpośrednich potomków (dzieci) aktualnie pobranego
elementu. Załóżmy, że na stronie znajduje się znacznik <div>, a wewnątrz nie-
go grupa kolejnych znaczników <div>. Kliknięcie głównego znacznika <div>
powinno spowodować wyświetlenie pozostałych, które są początkowo ukryte,
i dodanie do nich czerwonego obramowania. Załóżmy, że zastosowaliśmy funkcję
.find(), by zrealizować to zadanie przy użyciu następującego fragmentu kodu:

R O Z D Z I AŁ 1 5 . W Y K O R Z Y S T Y W A N I E W S Z Y S T K I C H M OŻL I W OŚC I J Q U E R Y

Poruszanie się po DOM

557

$('#mainDiv').click(function() {
 $(this).find('div').show().css('outline','red 2px solid');
});

Jednak takie rozwiązanie nie zadziałałoby prawidłowo, gdyby w znacznikach
<div> umieszczonych wewnątrz znacznika głównego znajdowały się kolejne
znaczniki <div>. W takim przypadku użycie powyższego kodu doprowadziłoby
do zmiany wyglądu wszystkich znaczników <div> umieszczonych wewnątrz
głównego, podczas gdy nam chodziło o wyróżnienie wyłącznie jego dzieci (po-
tomków bezpośrednich). Problem ten rozwiązuje zastąpienie funkcji .find()
funkcją .children():

$('#mainDiv').click(function() {
 $(this).children('div').show().css('outline','red 2px solid');
});

Ta wersja kodu odnajduje wyłącznie te znaczniki <div>, które są dziećmi znacz-
nika głównego i pomija wszystkie jego dalsze dzieci.

 Funkcja .parent(). W odróżnieniu od funkcji .find(), która poszukuje ele-
mentów wewnątrz pobranego znacznika, funkcja .parent() podróżuje w górę
DOM i odnajduje znaczniki przodków. Taka możliwość może się przydać, gdy-
byśmy na przykład dodali procedurę obsługi zdarzeń do znaczników <a> z ry-
sunku 15.3, lecz chcieli wykonać jakieś operacje na znaczniku <div> (choćby
dodać do niego obramowanie lub kolor tła). W takim przypadku wystarczyłoby
wywołać funkcję .parent(), by pobrać znacznik <div> i wykonać na nim za-
mierzone czynności; oto przykład:

$('#gallery a').hover(
 function() {
 var $this = $(this);
 // dodanie obramowania do odnośnika
 $this.css('outline','2px solid red');
 // dodanie koloru tła do znacznika div
 $this.parent().css('backgroundColor','rgb(110,138,195)');
 },
 function() {
 var $this = $(this);
 // usunięcie obramowania odnośnika
 $this.css('outline','');
 // usunięcie koloru tła znacznika div
 $this.parent().css('backgroundColor','');
 }
); // koniec funkcji hover

W tym przykładzie wskazanie odnośnika myszą powoduje wyświetlenie jego
obramowania, a następnie pobranie jego rodzica (znacznika <div>) i zmianę jego
koloru tła. Po usunięciu wskaźnika myszy z obszaru odnośnika usuwane są jego
obramowanie oraz kolor tła jego rodzica (więcej informacji na temat zdarzenia
hover można znaleźć na stronie 192). Aby przekonać się, jak w praktyce działa
ten fragment kodu, wystarczy wyświetlić w przeglądarce plik parent.html umiesz-
czony w przykładach do książki, w katalogu R15.

 Funkcja .closest() odnajduje najbliższego przodka pasującego do podanego
selektora. W odróżnieniu od funkcji .parent(), która odnajduje bezpośredniego
przodka (rodzica) elementu, funkcja .closest() pozwala na podanie selektora
i odnajduje najbliższego przodka, który do niego pasuje. W przykładzie przed-
stawionym na rysunku 15.3 każdy obrazek jest umieszczony wewnątrz znacz-
nika <a>; innymi słowy, ten znacznik <a> jest rodzicem obrazka. W jaki sposób

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Poruszanie się po DOM

558

możemy pobrać znacznik <div>, wewnątrz którego znajdują się te odnośniki
(czyli bardziej odległego przodka w hierarchii kodu HTML)? Otóż, możemy
w tym celu zastosować właśnie funkcję .closest():

1 $('#gallery img').click(function() {
2 var $this = $(this);
3 $this.css('outline','2px red solid');
4 $this.closest('div').css('backgroundColor','white');
5 }); // koniec funkcji click

Użyta wierszu 3. zmienna $this odwołuje się do znacznika . Wywołanie
.closest('div') oznacza natomiast, że chcemy znaleźć najbliższego przodka
będącego znacznikiem <div>. Najbliższym — bezpośrednim — przodkiem
obrazka jest znacznik <a>, jednak nie jest to <div>, dlatego jQuery go pominie
i sprawdzi kolejnego przodka, i tak dalej, aż do momentu odszukania znacznika
<div>.

 Funkcja .siblings(). Funkcja ta może się przydać, kiedy chcemy odszukać
element znajdujący się na tym samym poziomie struktury kodu HTML, co
element aktualnie pobrany. Załóżmy, że cały czas posługujemy się przykładowym
kodem przedstawionym na rysunku 15.3. Tym razem chcemy, by w momencie
kliknięcia jednego z odnośników wszystkie pozostałe zostały nieznacznie wyga-
szone, a następnie ponownie rozjaśnione. Skorzystamy przy tym ze zdarzenia
click, które będzie się odwoływać do klikniętego odnośnika, jednak chcemy
zmodyfikować wygląd wszystkich pozostałych odnośników umieszczonych we-
wnątrz tego samego znacznika <div>. Innymi słowy, zaczynamy od klikniętego
odnośnika, jednak chcemy pobrać całe jego rodzeństwo. Możemy to zrobić przy
użyciu następującego fragmentu kodu:

1 $('#gallery a').click(function() {
2 $(this).siblings().fadeTo(500,.3).fadeTo(250,1);
3 }); // koniec funkcji click

Wyrażenie $(this) zastosowane w powyższym przykładzie odwołuje się do klik-
niętego odnośnika, a zatem wywołanie funkcji .siblings() pozwoli pobrać
wszystkie inne znaczniki <a> umieszczone w tym samym znaczniku <div>.
Także funkcja .siblings() umożliwia przekazanie jednego argumentu — selek-
tora — w ten sposób pozwala na ograniczenie liczby pobieranych elementów.
Przykładowo załóżmy, że wewnątrz znacznika <div> przedstawionego na ry-
sunku 15.3 przed grupą odnośników znajduje się nagłówek oraz jeden akapit
tekstu. Ponieważ zarówno ten nagłówek, jak i akapit umieszczone są wewnątrz
znacznika <div> razem ze wszystkimi znacznikami <a>, także stanowią rodzeń-
stwo odnośników. Innymi słowy, po zastosowaniu przedstawionego wcześniej
fragmentu kodu kliknięcie odnośnika spowodowałoby odtworzenie efektów także
na tym nagłówku i akapicie. Aby zastosować efekty wyłącznie w odnośnikach,
powinniśmy zmodyfikować drugi wiersz powyższego kodu w następujący sposób:

$(this).siblings('a').fadeTo(500,.3).fadeTo(250,1);

Selektor 'a' umieszczony w wywołaniu funkcji .siblings() sprawi, że zwróci
ona tylko znaczniki będące rodzeństwem aktualnie pobranego elementu, które
jednocześnie są znacznikami <a>. Aby przekonać się, jak w praktyce działa ten
przykład, wystarczy wyświetlić w przeglądarce plik siblings.html umieszczony
w katalogu R15.

R O Z D Z I AŁ 1 5 . W Y K O R Z Y S T Y W A N I E W S Z Y S T K I C H M OŻL I W OŚC I J Q U E R Y

Poruszanie się po DOM

559

K L I N I K A Z A A W A N S O W A N E G O U Ż Y T K O W N I K A

Przerywanie poruszania się po DOM przy użyciu funkcji .end()
Abyś mógł zrobić jak najwięcej, pisząc jak najmniej kodu,
jQuery pozwala na tworzenie sekwencji wywołań. Tech-
nika ta została opisana na stronie 156, jednak ogólnie
rzecz ujmując, polega ona na pobraniu elementów, wy-
konaniu na nich pewnej operacji, a następnie wykonaniu
kolejnych poprzez dodawanie jednej funkcji za drugą.
Gdybyśmy chcieli pobrać wszystkie akapity na stronie,
następnie je wygasić i ponownie wyświetlić, moglibyśmy
to zrobić przy użyciu następującego kodu:

$('p').fadeOut(500).fadeIn(500);

W taki sposób można łączyć dowolnie wiele funkcji, w tym
także funkcje do poruszania się po DOM opisane na po-
przednich stronach. Załóżmy na przykład, że chcemy po-
brać znacznik <div>, dodać od niego obramowanie,
a następnie pobrać wszystkie znaczniki <a> umieszczone
wewnątrz tego elementu <div> i zmienić ich kolor.
Wszystko to możemy zrobić za pomocą następującego
wywołania:

$('div').css('outline','2px red
solid').find('a').css('color','purple');

Oto efekt rozłożenia tej instrukcji na fragmenty:

 1. $('div') pobiera wszystkie znaczniki <div>.

 2. .css('outline','2px red solid') dodaje do

tego elementu czerwone obramowanie o szerokości

2 pikseli.

 3. .find('a') pobiera wszystkie odnośniki

umieszczone wewnątrz pobranego wcześniej

znacznika <div>.

 4. .css('color','purple') zmienia kolor tekstu

tych odnośników na fioletowy.

Gdy dodamy do takiej sekwencji wywołanie funkcji słu-
żącej do poruszania się po DOM, zmieniamy aktualnie
pobrane elementy. W powyższym przykładzie początkowo
pobrany był znacznik <div>, jednak później, w połowie
sekwencji pobraliśmy wszystkie odnośniki umieszczone
w tym znaczniku <div>. Czasami może się zdarzyć, że
będziemy chcieli powrócić do początkowego stanu kolekcji
pobranych elementów. Innymi słowy, najpierw będziemy
chcieli pobrać pewną grupę znaczników, następnie ją
zmienić, by w końcu powrócić do początkowej grupy.
Przykładowo załóżmy, że użytkownik może kliknąć znacz-
nik <div>, którego poziom nieprzezroczystości wynosi
50%, a w odpowiedzi chcemy zmienić jego nieprzezro-
czystość do 100%, zmienić kolor nagłówka umieszczone-
go wewnątrz tego znacznika <div> i dodać kolor tła do
każdego akapitu (znacznika <p>) umieszczonego

w tym znaczniku. Jedno zdarzenie — kliknięcie — musi
doprowadzić do wykonania kilku operacji odnoszących
się do różnych elementów strony. Jednym ze sposo-
bów wykonania tego zadania byłoby zastosowanie na-
stępującego kodu:

$('div').click(function() {
 var $this = $(this);
 $(this).fadeTo(250,1);
 // rozjaśniamy znacznik <div>

 $(this).find('h2').css('color','#F30');
 $(this).find('p')
 .('backgroundColor','#F343FF');
}); // koniec funkcji click

W tym przypadku możliwość tworzenia sekwencji wy-
wołań może się okazać bardzo przydatna. Zamiast trzy-
krotnego stosowania wyrażenia $(this) możemy użyć
go tylko raz i dodać do niego sekwencję odpowiednich
wywołań. Jednak gdybyśmy próbowali nadać tej sekwencji
poniższą postać, pojawiłyby się problemy:

$('div').click(function() {
 $(this).fadeTo(250,1)
 .find('h2')
 .css('color','#F30')
 .find('p')
 .('backgroundColor','#F343FF');
}); // koniec funkcji click

Można odnieść wrażenie, że powyższa sekwencja jest
prawidłowa, ale problemy zaczynają się po wywołaniu
funkcji .find('h2'), która zmienia aktualnie pobrany
element z <div> na umieszczony wewnątrz niego
znacznik <h2>. Kiedy zostaje wywołana kolejna funkcja
.find(), czyli .find('p'), jQuery spróbuje odnaleźć
znaczniki <p> wewnątrz nagłówka <h2>, a nie wewnątrz
znacznika <div>. Na szczęście można wywołać funkcję
.end(), która odtwarza ostatnie zmiany wprowadzone
w kolekcji pobranych elementów i przywraca jej poprzedni
stan. W naszym przypadku możemy użyć funkcji .end(),
by przywrócić pobrany wcześniej znacznik <div> i do-
piero potem rozpocząć poszukiwanie znaczników <p>:

$('div').click(function() {
 $(this).fadeTo(250,1)
 .find('h2')
 .css('color','#F30')
 .end()
 .find('p')
 .('backgroundColor','#F343FF');
}); // koniec funkcji click

Należy zwrócić uwagę na funkcję .end() wywoływaną
bezpośrednio za funkcją .css('color','#f30'); to wła-
śnie ona przywraca wcześniej pobrany element <div>,
dzięki czemu wykonywane potem wywołanie .find('p')
będzie poszukiwać akapitów wewnątrz znacznika <div>.

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Inne funkcje do
manipulacji kodem HTML

560

 Funkcja .next() zwraca następny element, będący rodzeństwem aktualnie
pobranego elementu. Miałeś już okazję zobaczyć tę funkcję w działaniu we
wcześniejszej części książki, w przykładzie prezentującym najczęściej zadawane
pytania, przedstawionym na stronie 204. W przykładzie tym kliknięcie pytania
powodowało wyświetlenie, a następnie ukrycie, odpowiedniej odpowiedzi. Każde
pytanie było reprezentowane przez znacznik <h2>, a odpowiedź — przez znacznik
<div> umieszczony w kodzie strony bezpośrednio za pytaniem. Nagłówek oraz
znacznik <div> z odpowiedzią były zatem rodzeństwem; jednak ich rodzeń-
stwem były także wszystkie inne nagłówki i znaczniki <div> odpowiedzi.
Dlatego też w ramach obsługi kliknięcia konieczne było pobranie znacznika
umieszczonego bezpośrednio za klikniętym pytaniem (innymi słowy — na-
stępnego znacznika należącego do rodzeństwa klikniętego elementu). Funkcja
.next(), podobnie jak .siblings(), pozwala na podanie opcjonalnego selektora
ograniczającego zwracane wyniki. (Praktyczny przykład jej zastosowania można
znaleźć w pliku complete_faq.html umieszczonym w katalogu R05).

 Funkcja .prev() działa tak samo jak .next(), z tym że pobiera nie następny,
a poprzedni element.

Uwaga: Więcej funkcji jQuery pozwalających na poruszanie się po DOM można znaleźć na stronie

http://api jquery.com/category/traversing/.

Inne funkcje do manipulacji kodem HTML
Bardzo często będziemy chcieli dynamicznie dodawać, usuwać oraz modyfikować
kod HTML stron WWW. Możemy przykładowo mieć ochotę, by po kliknięciu przy-
cisku przesyłającego na stronie został wyświetlony komunikat „Informacje zostały
przesłane na serwer. Proszę czekać”, albo gdy użytkownik umieści wskaźnik myszy,
będziemy chcieli wyświetlić nad nim ramkę z tytułem oraz dodatkowymi informa-
cjami na jego temat. W obu tych przypadkach pojawia się konieczność dodania do
strony nowego kodu HTML. Najczęściej używane funkcje zapewniające takie moż-
liwości zostały przedstawione na stronie 157 w rozdziale 4. Niżej zostały pokrótce
przypomniane.

 Funkcja .text() umieszcza podany tekst wewnątrz aktualnie wybranego ele-
mentu. Oto przykład:

$('#error').text('Musisz podać adres email.');

 Funkcja .html() działa podobnie jak funkcja .text(), z tym że pozwala na do-
dawanie do strony dowolnego kodu HTML, a nie samego tekstu:

$('#tooltip').html('<h2>Esquif Avalon</h2><p>Zaprojektowany z myślą
o przygodzie na canoe.</p>');

 Funkcja .append() pozwala dodać przekazany do niej fragment kodu HTML na
końcu elementu (na przykład na końcu elementu div, bezpośrednio przed za-
mykającym znacznikiem </div>). Doskonale nadaje się do dodawania nowych
punktów na końcu listy.

http://api.jquery.com/category/traversing/

R O Z D Z I AŁ 1 5 . W Y K O R Z Y S T Y W A N I E W S Z Y S T K I C H M OŻL I W OŚC I J Q U E R Y

Inne funkcje do
manipulacji kodem HTML

561

 Funkcja .prepend() pozwala dodać przekazany w jej wywołaniu kod HTML na
samym początku elementu (na przykład na samym początku elementu div,
bezpośrednio za otwierającym znacznikiem <div>).

 Funkcja .before() dodaje kod HMTL przed aktualnie pobranym elementem.

 Funkcja .after() działa podobnie jak funkcja .before(), z tą różnicą, że nowy
kod HTML jest dodawany za aktualnie pobranym elementem (za jego znaczni-
kiem zamykającym).

To, której funkcji użyjemy, zależy przede wszystkim od tego, co chcemy osiągnąć.
Język JavaScript jest w znacznej mierze przeznaczony do automatyzowania operacji,
które projektanci stron WWW zazwyczaj wykonują ręcznie, takich jak dodawanie
kodu HTML i CSS w celu utworzenia strony. Jeśli piszesz program, który ma dy-
namicznie dodawać do strony jakieś treści, na przykład etykietę ekranową, ko-
munikat o błędzie, wyróżniony cytat i tym podobne, powinieneś wyobrazić sobie,
jak ma wyglądać gotowy produkt i kody HTML i CSS konieczne do osiągnięcia
zamierzonych celów.

Gdybyś chciał wyświetlić na stronie specjalny komunikat, w momencie gdy użyt-
kownik wskaże myszą konkretny przycisk, spróbuj najpierw utworzyć stronę pre-
zentującą taki komunikat bez wykorzystania kodu JavaScript — jedynie przy użyciu
kodów HTML i CSS. Kiedy wstępna wersja komunikatu będzie już gotowa, przyj-
rzyj się, jak wygląda jej kod HTML. Czy został umieszczony przed jakimś elemen-
tem? Jeśli tak, to będziesz go mógł dodać, używając funkcji .before(). A może jest
umieszczony wewnątrz jakiegoś znacznika? W takim przypadku będziesz mógł
wykorzystać funkcje .append() lub .prepend().

Biblioteka jQuery udostępnia także kilka funkcji służących do usuwania istniejących
fragmentów strony. Oto one.

 Funkcja .replaceWith() całkowicie usuwa aktualnie pobrane elementy (w tym
sam znacznik oraz całą jego zawartość) i zastępuje je kodem HTML podanym
w wywołaniu. Aby na przykład zastąpić przycisk przesyłający formularz komu-
nikatem „Przetwarzanie…”, można by użyć następującego wywołania:

$(':submit').replaceWith('<p>Przetwarzanie...</p>');

 Funkcja .remove() usuwa aktualnie pobrane elementy z DOM; co właściwie
sprowadza się do usunięcia ich ze strony. Aby na przykład usunąć ze strony
znacznik <div> o identyfikatorze error, można by użyć następującego wy-
wołania:

$('#error').remove();

Choć być może wystarczą Ci funkcje opisane powyżej oraz te z rozdziału 4., jednak
warto wiedzieć, że jQuery udostępnia także inne funkcje pozwalające na manipu-
lowanie kodem HTML strony na inne sposoby.

 Funkcja .wrap() zapisuje aktualnie pobrane elementy wewnątrz pary znaczni-
ków HTML. Co można by zrobić, gdybyśmy chcieli opracować wymyślny efekt
prezentujący tytuły zdjęć pokazywanych na stronie? Moglibyśmy zacząć od po-
brania samych zdjęć, zapisania ich wewnątrz znacznika <div> należącego do
klasy figure i dodania wewnątrz niego znacznika <p> z klasy caption. Następnie,
korzystając z CSS, moglibyśmy w dowolny sposób sformatować oba te znaczniki.
Oto sposób, w jaki można by to zrobić:

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Inne funkcje do
manipulacji kodem HTML

562

1 // przeglądamy listę wszystkich obrazków
2 $('img').each(function() {
3 // zapisujemy odwołanie do aktualnego obrazka
4 var $this = $(this);
5 // pobieramy wartość właściwości alt na potrzeby wyświetlenia tytułu
6 var caption = $this.attr('alt');
7 // dodanie kodu HTML
8 $this.wrap('<div class="figure"></div>').after('<p>' + caption
 + '</p>');
9 }); // koniec funkcji each

Powyższy kod najpierw pobiera wszystkie obrazki na stronie, a następnie prze-
twarza każdy z nich przy użyciu w tym celu funkcji .each() (opisanej na stronie
167). W wierszu 4. aktualnie pobrany obrazek jest zapisywany w zmiennej (to
bardzo dobre rozwiązanie, o czym już wspominaliśmy na stronie 544). W wier-
szu 6. pobieramy wartość atrybutu alt obrazka i zapisujemy ją w zmiennej
caption. W końcu, w wierszu 8., dodajemy ten tytuł za obrazkiem, używając do
tego celu funkcji .after().

Uwaga: Przykład zastosowania funkcji .wrap() można znaleźć w pliku wrap.html dostępnym w przykła-

dach do książki, w katalogu R15.

W wywołaniu funkcji .wrap() należy przekazać kompletną parę znaczników
— $('p').wrap('<div></div>') — bądź nawet kod HTML składający się z kilku
znaczników zagnieżdżonych, takich jak te:

$('#example').wrap('<div id="outer"><div id="inner"></div></div>');

W tym przykładzie jQuery umieści aktualnie pobrane elementy wewnątrz
dwóch znaczników <div>; powstanie kod przypominający przedstawiony
poniżej:

<div id="outer">
 <div id="inner">
 <div id="example">To jest oryginalny kod strony.</div>
 </div>
</div>

 Funkcja .wrapInner() zapisuje zawartość każdego z aktualnie pobranych ele-
mentów wewnątrz podanego kodu HTML. Załóżmy na przykład, że na naszej
stronie znajduje się następujący kod HTML:

<div id="outer">
<p>To jest zawartość elementu outer</p>
</div>

Jeśli teraz przeglądarka napotka i wykona następujące wywołanie: $('#outer').
wrapInner('<div id= inner ></div>');, kod HTML strony zostanie prze-
kształcony do następującej postaci:

<div id="outer">
<div id="inner">
<p>To jest zawartość elementu outer</p>
</div>
</div>

R O Z D Z I AŁ 1 5 . W Y K O R Z Y S T Y W A N I E W S Z Y S T K I C H M OŻL I W OŚC I J Q U E R Y

Inne funkcje do
manipulacji kodem HTML

563

 Funkcja .unwrap() usuwa znaczniki nadrzędne, wewnątrz których są umiesz-
czone aktualnie pobrane elementy. Przykładowo załóżmy, że na naszej stronie
znajduje się następujący kod HTML:

<div>
<p>akapit</p>
<div>

W takim przypadku wykonanie wywołania $('p').unwrap() zmieni kod strony
do postaci:

<p>akapit</p>

Jak widać, zewnętrzny znacznik <div> został usunięty. Zwróć uwagę, że, w od-
różnieniu od innych funkcji opisywanych w tym rozdziale, funkcja .unwrap()
nie pobiera żadnych argumentów — innymi słowy, w nawiasach umieszczonych
za nazwą funkcji nie można nic zapisać, gdyż funkcja nie zadziała.

 Funkcja .empty() usuwa z aktualnie pobranych elementów całą zawartość,
same elementy pozostają jednak na miejscu. Załóżmy, że na naszej stronie
znajduje się znacznik <div> o identyfikatorze messageBox. Za pomocą skryp-
tów możemy dynamicznie modyfikować treść tego elementu i wyświetlać ko-
munikaty zależne od czynności wykonywanych przez użytkownika. Mogliby-
śmy dodać do niego bardzo wiele nagłówków, obrazków i akapitów tekstu, by
wyświetlać użytkownikowi informacje o statusie strony. Jednak w jakiejś chwili
może się okazać, że konieczne będzie usunięcie całej zawartości tego elementu
(na przykład, jeśli w danej chwili nie będą miały być prezentowane żadne komu-
nikaty), ale pozostawienie go na miejscu, by później można było w nim wyświe-
tlić kolejne komunikaty. W celu usunięcia zawartości elementu możemy użyć
następującego wywołania:

$('#messageBox').empty();

Podobnie jak funkcja .unwrap(), także i .empty() nie pobiera żadnych argu-
mentów.

Uwaga: Biblioteka jQuery udostępnia więcej funkcji służących do operowania na kodzie HTML strony.

Pełną ich listę można znaleźć na stronie http://api.jquery.com/category/manipulation/.

http://api.jquery.com/category/manipulation/

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

564

Zaawansowane techniki
języka JavaScript

tym rozdziale poznasz zestaw technik, które pomogą Ci stać się lepszym
programistą języka JavaScript. Większość opisanych tu rozwiązań nie
jest niezbędna do pisania funkcjonalnych programów, dlatego nie musisz

rozumieć ich wszystkich. W kilku pierwszych podrozdziałach zamieszczone zostały
porady i metody związane z posługiwaniem się łańcuchami znaków, liczbami oraz
datami, a kiedy dokładnie poznasz podstawy, zamieszczone w nich informacje na-
prawdę pomogą Ci przetwarzać informacje podawane przez użytkownika w formu-
larzach, operować na kodzie HTML i atrybutach znaczników oraz generować daty.
Podrozdział „Łączenie różnych elementów”, rozpoczynający się na stronie 606, za-
wiera wartościowe wskazówki dla początkujących, jednak z powodzeniem możesz
napisać wiele programów bez korzystania z informacji zamieszczonych w pozosta-
łych podrozdziałach. Jeśli jednak chcesz rozwinąć swe umiejętności, przeczytanie
tego rozdziału pomoże Ci obrać właściwy kierunek.

Stosowanie łańcuchów znaków

Łańcuchy znaków są typem danych, których będziesz używał najczęściej: dane po-
bierane z formularzy, ścieżki do obrazków, adresy URL i kod HTML, który chcesz
umieścić na stronie, to są przykłady liter, symboli i cyfr, jakie składają się na łań-
cuchy znaków. Podstawowe informacje o łańcuchach znaków zostały zamieszczone
w rozdziale 2., jednak język JavaScript udostępnia wiele przydatnych metod uła-
twiających ich stosowanie i modyfikację.

W

16
ROZDZIAŁ

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Stosowanie
łańcuchów znaków

566

Określanie długości łańcucha
W niektórych sytuacjach konieczne może być określenie ilości znaków w łańcuchu.
Załóżmy na przykład, że chcesz upewnić się, iż zawsze gdy ktoś zakłada konto użyt-
kownika na Twojej tajnej witrynie, poda przy tym hasło o długości od 6 do 15 zna-
ków. Każdy łańcuch znaków posiada właściwość o nazwie length, która zawiera
właśnie tę informację. Wystarczy dodać do nazwy zmiennej kropkę, a po niej umie-
ścić właściwość length, by odczytać liczbę znaków w łańcuchu — nazwa.length.

Przykładowo załóżmy, że na naszej stronie znajduje się formularz z polem teksto-
wym o identyfikatorze password. Aby upewnić się, że w polu tym podano łańcuch
znaków o prawidłowej długości, można zastosować instrukcję warunkową (patrz
strona 93) testującą wartość właściwości length:

var password = $('#password').val();
if (password.length <= 6) {
alert('Hasło jest za krótkie.');
} else if (password.length > 15) {
alert('Hasło jest za długie.');
}

Kod przedstawiony w tym przykładzie pobiera zawartość pola zawierającego hasło,
w którym użyto możliwości biblioteki jQuery — a konkretnie wywołania o postaci:
$('#password').val() — jednak cała jego reszta stanowi zwyczajny kod JavaScript.
Doskonałym sposobem wykorzystania tego fragmentu kodu byłoby umieszcze-
nie go w odrębnej funkcji, na przykład w sposób przedstawiony poniżej:

function verifyPassword() {
 var password = $('#password').val();
 if (password.length <= 6) {
 alert('Hasło jest za krótkie.');
 } else if (password.length > 15) {
 alert('Hasło jest za długie.');
 }
}

Taką funkcję można by później wywoływać podczas obsługi zdarzenia wysyłania
formularza (patrz strona 285), aby sprawdzić, czy użytkownik podał dostatecznie
długie hasło:

$('form').submit(verifyPassword);

Można by jej także użyć do obsługi zdarzeń blur (patrz strona 288) generowa-
nych przez pole tekstowe do wprowadzania hasła, dzięki czemu kiedy użytkownik
naciśnie klawisz Tab lub kliknie gdzieś poza polem, będzie można od razu spraw-
dzić, czy długość podanego hasła jest prawidłowa. Załóżmy na przykład, że pole
hasła ma identyfikator password, w takim przypadku funkcji verifyPassword
można by użyć do obsługi generowanych przez niego zdarzeń blur w następujący
sposób:

$('#password').blur(verifyPassword);

Zmiana wielkości znaków w łańcuchu
JavaScript udostępnia dwie metody służące do zmiany wielkości wszystkich liter
w łańcuchu na wielkie lub małe; za ich pomocą można zmienić łańcuch zna-
ków witamy na WITAMY oraz NIE na nie . Możesz się zastanawiać, po co

R O Z D Z I AŁ 1 6 . Z A A W A N S O W A N E T E C H N I K I JĘZ Y K A J A V A S C R I P T

Stosowanie
łańcuchów znaków

567

wykonywać takie zmiany. Otóż, zmiana wielkości liter w łańcuchu na określoną
wielkość ułatwia porównywanie dwóch łańcuchów. Wyobraź sobie, że piszesz pro-
gram obsługujący internetowe quizy, taki jak przedstawiony w rozdziale 3. (patrz stro-
na 124), i jedno z pytań brzmi: „Kto był pierwszym Amerykaninem, który wygrał
Tour de France?”. Do sprawdzenia odpowiedzi na to pytanie mógłbyś użyć na-
stępującego fragmentu kodu:

var correctAnswer = 'Greg LeMond';
var response = prompt('Kto był pierwszym Amerykaninem, który wygrał
Tour de France?', '');
if (response == correctAnswer) {
// odpowiedź prawidłowa
} else {
// odpowiedź nieprawidłowa
}

Oczywiście, prawidłową odpowiedzią jest Greg LeMond; co by się jednak stało, gdyby
użytkownik, odpowiadając na to pytanie, wpisał Greg Lemond? W takim przypadku
warunek testowany w instrukcji if przybrałby następującą postać: 'Greg LeMond' ==
'Greg Lemond'. Ponieważ język JavaScript rozróżnia wielkie i małe litery, zatem
mała litera 'm' ze słowa 'Lemond' nie będzie równa wielkiej literze 'M' ze słowa
'LeMond'. Program obsługujący quiz mógłby zatem uznać tę odpowiedź za niepra-
widłową. Dokładnie to samo zdarzyłoby się, gdyby użytkownik przypadkowo na-
cisnął klawisz Caps Lock i podał odpowiedź w postaci 'GREG LEMOND'.

Aby rozwiązać ten problem, oba łańcuchy można skonwertować do liter tej samej
wielkości, a dopiero potem je porównać:

if (response.toUpperCase() == correctAnswer.toUpperCase()) {
// odpowiedź prawidłowa
} else {
// odpowiedź nieprawidłowa
}

W tym przypadku wewnątrz wyrażenia warunkowego zarówno odpowiedź udzielona
przez użytkownika, jak i prawidłowa odpowiedź na pytanie są przekształcane do
wielkich liter, a zatem łańcuch 'Greg Lemond' zostanie przekształcony na 'GREG
LEMOND', a łańcuch 'Greg LeMond' na 'GREG LEMOND'.

Aby przekształcić łańcuch znaków do małych liter, wystarczy użyć metody toLower
Case(), jak pokazano na poniższym przykładzie:

var answer = 'Greg LeMond';
alert(answer.toLowerCase()); // 'greg lemond'

Trzeba zwrócić uwagę, że żadna z tych metod nie modyfikuje oryginalnego łańcucha
znaków przechowywanego w zmiennej — zwracają one nowy łańcuch, który jest za-
pisany odpowiednio wielkimi lub małymi literami. A zatem w powyższym przy-
kładzie zmienna answer wciąż będzie zawierać łańcuch w postaci 'Greg LeMond',
nawet po dokonaniu porównania. (Innymi słowy, metody te działają podobnie jak
funkcje opisane na stronie 120, które zwracają jakieś wartości).

Przeszukiwanie łańcuchów znaków: zastosowanie indexOf()
Język JavaScript udostępnia kilka technik przeszukiwania łańcuchów znaków i od-
najdywania wewnątrz nich słów, cyfr oraz określonych sekwencji znaków. Prze-
szukiwanie łańcuchów może się przydać w sytuacji, kiedy będziemy chcieli określić

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Stosowanie
łańcuchów znaków

568

typ przeglądarki używanej przez osobę oglądającą nasze strony. Każda przeglądarka
zapisuje informacje o sobie w łańcuchu znaków. Można go z łatwością zobaczyć,
wystarczy w tym celu umieścić na stronie poniższy fragment kodu, a samą stronę
wyświetlić w przeglądarce:

<script>
alert(navigator.userAgent);
</script>

gdzie navigator jest jednym z wbudowanych obiektów przeglądarki, a userAgent
— właściwością tego obiektu. Właściwość ta zawiera długi łańcuch znaków, w któ-
rym umieszczono wiele informacji; na przykład w przeglądarce Internet Explorer 10
działającej w systemie Windows 8 właściwość ta przyjmuje wartość Mozilla/5.0
(compatible; MSIE 10.0; Windows NT 6.2; Trident/6.0). A zatem, gdybyśmy
chcieli sprawdzić, czy przeglądarką użytkownika jest Internet Explorer 10, wystar-
czy spróbować odnaleźć we właściwości userAgent łańcuch znaków MSIE 10 .

Jednym ze sposobów przeszukiwania łańcuchów znaków jest zastosowanie metody
indexOf(). Najprościej rzecz ujmując, aby z niej skorzystać, należy umieścić za
łańcuchem lub zmienną kropkę, po niej zapisać nazwę metody — indexOf() — a we-
wnątrz nawiasów podać poszukiwany łańcuch znaków. Podstawowa składnia jej
wywołania wygląda następująco:

string.indexOf('poszukiwany łańcuch znaków')

Metoda indexOf() zwraca liczbę. Gdy poszukiwanego łańcucha nie uda się odna-
leźć, zwracana jest wartość -1. Jeśli zatem chcemy sprawdzić, czy używaną przeglą-
darką jest Internet Explorer, możemy użyć następującego fragmentu kodu:

var browser = navigator.userAgent; // to jest łańcuch znaków
if (browser.indexOf('MSIE') != -1) {
// to jest Internet Explorer
}

Jeśli metoda indexOf() nie odnajdzie łańcucha 'MSIE' we właściwości userAgent,
zwróci -1, dlatego też warunek testuje, czy zwrócona przez nią wartość jest różna
(!=) od -1.

Kiedy metoda indexOf() odnajdzie łańcuch znaków, zwraca liczbę określająca miej-
sce jego początku w przeszukiwanym łańcuchu. Poniższy przykład wszystko wyjaśni:

var quote = 'być albo nie być';
var searchPosition = quote.indexOf('być'); // zwraca 0

W tym przykładzie metoda indexOf() poszukuje położenia łańcucha 'być' w łań-
cuchu 'być albo nie być'. Dłuższy łańcuch zaczyna się od 'być', zatem metoda
odnajdzie poszukiwane słowo na pierwszym miejscu przeszukiwanego łańcucha.
Jednak, ze względu na wariactwa występujące w świecie programowania, temu pierw-
szemu miejscu odpowiada liczba 0, kolejnemu miejscu łańcucha (temu, w którym
znajduje się litera y) odpowiada liczba 1, trzeciemu (literze ć) — liczba 2 (więcej in-
formacji na ten temat można znaleźć na stronie 80; w podobny sposób są indek-
sowane także tablice).

Metoda indexOf() rozpoczyna poszukiwania od początku łańcucha znaków. Ist-
nieje także możliwość rozpoczęcia poszukiwań na końcu łańcucha; służy do tego
metoda lastIndexOf(). W przedstawionym powyżej cytacie słowo 'być' występuje
dwa razy, a zatem pierwsze 'być' możemy odszukać, używając metody indexOf(),
a drugie — metody lastIndexOf():

R O Z D Z I AŁ 1 6 . Z A A W A N S O W A N E T E C H N I K I JĘZ Y K A J A V A S C R I P T

Stosowanie
łańcuchów znaków

569

var quote = "być albo nie być";
var firstPosition = quote.indexOf('być'); // zwraca 0
var lastPosition = quote.lastIndexOf('być'); // zwraca 13

Wyniki zwracane przez obie metody zostały zilustrowane na rysunku 16.1. W obu
przypadkach, gdyby słowo 'być' w ogóle nie występowało w łańcuchu, obie metody
zwróciłyby wartość -1, a gdyby w przeszukiwanym łańcuchu poszukiwane słowo
występowało tylko raz, obie metody zwróciłyby ten sam wynik — indeks początku
poszukiwanego słowa w dłuższym łańcuchu.

Rysunek 16.1. Metody indexOf() oraz lastIndexOf()
poszukują podanego ciągu w dłuższym łańcuchu
znaków. Jeśli uda się go odnaleźć, obie zwracają
jego położenie w dłuższym łańcuchu

Pobieranie fragmentu łańcucha przy użyciu metody slice()
Do pobierania fragmentu łańcucha służy metoda slice(). Zwraca ona określony
fragment łańcucha. Przykładowo załóżmy, że dysponujemy łańcuchem znaków
http://www.sawmac.com i chcemy usunąć z niego początkowy ciąg http://. Jed-
nym z rozwiązań jest pobranie fragmentu łańcucha rozpoczynającego się za po-
czątkowym http://; można to zrobić przy użyciu następującego fragmentu kodu:

var url = 'http://www.sawmac.com';
var domain = url.slice(7); // www.sawmac.com

Metoda slice() wymaga przekazania liczby określającej początkowy indeks pobie-
ranego fragmentu łańcucha (patrz rysunek 16.2). W naszym przypadku jej wywoła-
nie ma postać url.slice(7) — a indeks 7 oznacza ósmą literę łańcucha (pamiętaj,
że znaki w łańcuchu są liczone od 0). Metoda ta zwraca wszystkie znaki, zaczynając
od tego o podanym indeksie, a kończąc na ostatnim znaku łańcucha.

Rysunek 16.2. Jeśli w wywołaniu metody slice() nie
zostanie podany drugi argument, zwróci ona całą
zawartość łańcucha, od znaku o podanym indeksie
(w tym przykładzie jest to znak o indeksie 7)
do kończącego łańcuch

Można także pobrać określoną liczbę znaków z łańcucha — w tym celu wystarczy
przekazać w wywołaniu metody drugi argument. Oto podstawowa składnia wy-
wołania metody slice():

string.slice(poczatek, koniec);

Argument poczatek jest liczbą określającą pierwszy znak pobieranego fragmentu
łańcucha. Drugi argument — koniec — jest jednak nieco kłopotliwy. Nie określa in-
deksu ostatniego znaku fragmentu, lecz jego indeks powiększony o 1. Gdybyśmy

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Odnajdywanie wzorów
w łańcuchach

570

chcieli pobrać pierwsze pięć znaków łańcucha „być albo nie być”, jako pierwszy ar-
gument wywołania metody slice() powinniśmy przekazać wartość 0, a jako drugi
— wartość 5. Jak widać na rysunku 16.3, znak o indeksie 0 jest pierwszym znakiem
łańcucha, a znak o indeksie 5 — szóstym znakiem łańcucha, jednak ten ostatni
wskazany znak nie jest pobierany. Innymi słowy, znak określony drugim argumen-
tem metody slice() nigdy nie zostanie dodany do zwracanego fragmentu łańcucha.

Rysunek 16.3. Metoda slice() pobiera fragment łań-
cucha znaków. Początkowy łańcuch nie jest przy tym
w żaden sposób modyfikowany. Przykładowo wywołanie
quote.slice(0,3) w żaden sposób nie zmienia łańcucha
zapisanego w zmiennej quote. Metoda ta zwraca
wyznaczony fragment łańcucha, który można zapi-
sać w zmiennej, wyświetlić w okienku informacyjnym
albo nawet użyć jako argumentu w wywołaniu jakiejś
funkcji

Wskazówka: Jeśli chcemy pobrać z łańcucha określoną liczbę znaków, wystarczy dodać ją do war-

tości przekazywanej jako pierwszy argument wywołania metody slice(). Gdybyśmy chcieli pobrać

pierwsze 10 znaków łańcucha, pierwszy argument miałby wartość 0 (pierwszy znak łańcucha), a drugi

— 0 + 10, czyli 10. Zatem wywołanie miałoby postać slice(0,10).

W wywołaniu metody slice() można także podawać liczby ujemne, na przykład:
slice(-7,-4). Zastosowanie liczby mniejszej od zera sprawi, że indeks znaku bę-
dzie wyznaczony względem końca łańcucha i liczony w kierunku jego początku (co
pokazano na rysunku 16.3).

Wskazówka: Gdybyśmy na przykład chcieli pobrać fragment zawierający X ostatnich znaków łań-

cucha, wystarczy w tym celu przekazać w wywołaniu metody slice() jeden argument: liczbę ujemną

odpowiadająca ilości znaków, które należy zwrócić. Aby na przykład pobrać dokładnie 6 ostatnich

znaków łańcucha, należałoby użyć wywołania o następującej postaci:

 var end_of_string = quote.slice(-6);

Odnajdywanie wzorów w łańcuchach

Czasami może pojawić się konieczność przejrzenia łańcucha w poszukiwaniu nie
konkretnej wartości, lecz określonego wzorca znaków. Załóżmy na przykład, że chce-
my upewnić się, iż numer telefonu podany przez użytkownika podczas wypełniania
internetowego zamówienia został zapisany w prawidłowym formacie. Nie chodzi
przy tym o jakiś konkretny numer, taki jak 503-555-212. Interesuje nas ogólny wzo-
rzec: trzy cyfry, łącznik, kolejne trzy cyfry, jeszcze jeden łącznik i ponownie trzy cy-
fry. Chcemy sprawdzić wartość podaną przez użytkownika i jeśli okaże się, że
pasuje do wzorca (na przykład numer ma postać: 415-555-384, 408-555-782,
212-555-428 i tak dalej), wszystko będzie w porządku. Jeśli jednak numer nie będzie
pasował do wzorca (bo użytkownik wpisał łańcuch znaków 243lllkkkmmmnn), chce-
my wyświetlić komunikat: „Hej stary, nie próbuj nas robić w konia!”.

R O Z D Z I AŁ 1 6 . Z A A W A N S O W A N E T E C H N I K I JĘZ Y K A J A V A S C R I P T

Odnajdywanie wzorów
w łańcuchach

571

Język JavaScript pozwala na stosowanie wyrażeń regularnych w celu odnajdywania
wzorców w łańcuchach znaków. Wyrażenie regularne to sekwencja znaków, defi-
niujących wzorzec, który chcemy odszukać. Jak to często bywa z terminami progra-
mistycznymi, określenie „wyrażenie regularne” jest trochę mylące. Poniżej przed-
stawione zostało jedno z często używanych wyrażeń regularnych:

/^[-\w.]+@([a-zA-Z0-9][-a-zA-Z0-9]+\.)+[a-zA-Z]{2,4}$/

Nie ma w nim nic, co mogłoby wyglądać na „regularne”, no chyba że jesteśmy supe-
robcymi z Omicrona 9. Do tworzenia wyrażeń regularnych używane są znaki i ich
sekwencje, takie jak *, +, ? oraz \w, które są następnie tłumaczone przez interpreter
JavaScriptu do postaci umożliwiającej dopasowywanie ich do prawdziwych znaków
zapisywanych w łańcuchach — liter, cyfr i tym podobnych.

Uwaga: Profesjonaliści czasami używają także skróconej nazwy wyrażeń regularnych — regex (od

angielskich słów regular expression).

Tworzenie i stosowanie podstawowych wyrażeń regularnych
W celu utworzenia wyrażenia regularnego w języku JavaScript konieczne jest zbu-
dowanie obiektu wyrażenia, który ma postać sekwencji znaków zapisanych pomię-
dzy dwoma znakami ukośnika. Aby na przykład utworzyć wyrażenie regularne pa-
sujące do słowa „witaj”, należałoby użyć następującej instrukcji:

var myMatch = /witaj/;

Podobnie do pary cudzysłowów, które wyznaczają łańcuch znaków, para znaków
ukośnika — / — tworzy wyrażenie regularne.

JavaScript udostępnia także kilka metod obiektu łańcuchów znaków, które mogą
operować na wyrażeniach regularnych (zostały one opisane w tej części rozdziału, od
strony 570), jednak najprostszą z nich jest metoda search(). Działa podobnie jak
metoda indexOf(), lecz zamiast odnajdywać jeden łańcuch znaków wewnątrz in-
nego, poszukuje wzorca (czyli wyrażenia regularnego). Załóżmy, że chcemy odna-
leźć łańcuch znaków „być” w łańcuchu „być albo nie być”. Dowiedziałeś się, jak to
zrobić na stronie 567, a poniżej zobaczysz, jak można zrobić to samo, korzystając
z wyrażeń regularnych:

var myRegEx = /być/; // wyrażenia regularne nie są zapisywane w cudzysłowach
var quote = 'być albo nie być';
var foundPosition = quote.search(myRegEx); // zwraca 0

Jeśli metoda search() odnajdzie pasujący łańcuch znaków, zwróci położenie jego
pierwszego znaku; jeśli jednak niczego nie znajdzie, zwróci wartość -1. A zatem
w powyższym przykładzie w zmiennej foundPosition zostanie zapisana wartość 0,
gdyż ciąg być znajduje się na samym początku łańcucha (b jest jego pierwszym
znakiem).

Jak sobie zapewne przypominasz (patrz strona 567), metoda indexOf() działa w do-
kładnie taki sam sposób. Skoro obie metody działają tak samo, możesz się zastana-
wiać, po co w ogóle zawracać sobie głowę wyrażeniami regularnymi? Otóż, wyrażenia
regularne mają tę zaletę, że pozwalają odnajdywać wzorce, czyli są w stanie realizo-
wać znacznie bardziej złożone i subtelniejsze porównania niż te, na które pozwala

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Odnajdywanie wzorów
w łańcuchach

572

metoda index() (gdyż ona poszukuje jedynie wystąpień konkretnego łańcucha).
Przykładowo metody indexOf() można by użyć do odnalezienia konkretnego adresu
strony — http://www.missingmanuals.com/ — natomiast wyrażenia regularnego
do odnalezienia dowolnego tekstu zapisanego w formacie przypominającym adres
URL — czyli dokładnie tego, co chcielibyśmy zrobić w celu sprawdzenia, czy osoba
przesyłająca komentarz na Twoim blogu podała adres swojej strony WWW.

Aby jednak opanować wyrażenia regularne, trzeba poznać tajemnicze symbole uży-
wane do ich tworzenia.

Tworzenie wyrażeń regularnych
Choć wyrażenia regularne mogą się składać z jednego lub kilku słów, zazwyczaj są
w nich używane kombinacje liter i symboli specjalnych, definiujące wzorzec, którego
będziemy szukać. Wyrażenia regularne udostępniają różne symbole oznaczające
różne rodzaje znaków, na przykład pojedyncza kropka (.) reprezentuje jeden, dowolny
znak, natomiast sekwencja \w oznacza dowolną literę lub cyfrę (jednak bez odstę-
pów i symboli, takich jak $ lub %). W tabeli 16.1 zawarto listę znaków najczęściej
używanych w wyrażeniach regularnych.

Tabela 16.1. K lka symboli najczęściej używanych w wyrażeniach regularnych

Znak Pasuje do

. dowolnego znaku — litery, cyfry, odstępu oraz dowolnego symbolu.

\w dowolnego znaku używanego w słowach, czyli należącego do zbioru zawierającego
litery a – z, A – Z, cyfry 0 – 9 oraz znak podkreślenia.

\W dowolnego znaku niebędącego znakiem używanym w słowach. Stanowi przeciwieństwo \w.

\d dowolnej cyfry 0 – 9.

\D dowolnego znaku z wyjątkiem cyfr. Stanowi przeciwieństwo \d.

\s znaku odstępu, tabulacji, powrotu karetki, nowego wiesza.

\S dowolnego znaku z wyjątkiem odstępu, tabulacji, powrotu karetki, nowego wiesza.

^ początku łańcucha znaków. Jest używany, kiedy chcemy mieć pewność, że przed
poszukiwanym fragmentem pasującym do wzorca nie znajdują się żadne inne znaki.

$ końca łańcucha znaków. Można go używać, by upewnić się, że poszukiwany fragment
jest umieszczony na samym końcu łańcucha. Przykładowo /kom$/ pasuje do łańcucha
znaków "kom", ale tylko w przypadku, gdy są to trzy ostatnie znaki przeszukiwanego
łańcucha. Innymi słowy, /kom$/ pasuje do słowa „interkom”, lecz nie „zakompleksiony”.

\b odstępu, początku łańcucha, końca łańcucha oraz dowolnego znaku, który nie jest ani
literą, ani cyfrą, takiego jak +, = czy też '. Symbolu \b można używać do dopasowania
początku lub końca słowa i to nawet w przypadku, gdy jest ono umieszczone na samym
początku lub końcu łańcucha.

[] dowolnego znaku podanego pomiędzy nawiasami. I tak wyrażenie [aeiou] będzie
pasowało do dowolnej z tych liter. Aby podać zakres znaków, wystarczy użyć łącznika:
wyrażenie [a-z] będzie pasowało do dowolnej małej litery, a wyrażenie [0-9]
— do dowolnej cyfry (czyli odpowiada symbolowi \d).

http://www.missingmanuals.com/

R O Z D Z I AŁ 1 6 . Z A A W A N S O W A N E T E C H N I K I JĘZ Y K A J A V A S C R I P T

Odnajdywanie wzorów
w łańcuchach

573

Tabela 16.1. K lka symboli najczęściej używanych w wyrażeniach regularnych — ciąg dalszy

Znak Pasuje do

[^] dowolnego znaku z wyjątkiem podanych w nawiasach. Przykładowo wyrażenie
[^aąeęioóuAĄEĘIOÓU] będzie pasowało do dowolnego znaku z wyjątkiem samogłosek,
a wyrażenie [^0-9] — do dowolnego znaku z wyjątkiem cyfr (czyli jest to odpowiednik
symbolu \D).

| znaku podanego przed kreską pionową lub za nią. Przykładowo wyrażenie a|b będzie
pasowało do znaku a lub b, lecz nie do obu tych znaków równocześnie. (Przykład
zastosowania tego symbolu został przedstawiony na stronie 581).

\ Służy do poprzedzania znaków specjalnych wyrażeń regularnych (takich jak *, ., \, /)
i umożliwia odszukanie tego znaku w łańcuchu. Przykładowo kropka (.) oznacza w wyrażeniu
regularnym dowolny znak, gdybyśmy jednak faktycznie chcieli odnaleźć kropkę w łańcuchu,
musielibyśmy użyć wyrażenia regularnego o postaci \. (czyli ukośnika i kropki).

Uwaga: Jeśli wszystkie rozważania o wyrażeniach „regularnych” powodują jedynie ból głowy, zapew-

ne ucieszy Cię wiadomość, że w książce (na stronie 577) przedstawione zostały przykłady niektórych, naj-

częściej używanych wyrażeń regularnych, które możesz skopiować i wykorzystać w swoich własnych

skryptach (bez zbytniego wgłębiania się w to, jak one działają).

Wyrażenia regularne są zagadnieniem, którego najlepiej można się nauczyć na przy-
kładach; dlatego też w dalszej części tego punktu przedstawionych zostało kilka wy-
rażeń, które ułatwią ich poznanie i przyswojenie sobie tej wiedzy. Załóżmy, że chcemy
odszukać pięć cyfr zapisanych jedna po drugiej — by na przykład sprawdzić, czy
użytkownik podał w formularzu kod produktu.

 1. Dopasowanie jednej liczby.

Pierwszym krokiem będzie określenie, w jaki sposób możemy utworzyć wyraże-
nie regularne pasujące do jednej cyfry. Jeśli zajrzysz do tabeli 16.1, przekonasz
się, że w wyrażeniach regularnych symbolem odpowiadającym cyfrze jest \d.

 2. Dopasowanie pięciu liczb podanych jedna za drugą.

Ponieważ symbol \d odpowiada pojedynczej cyfrze, najprostszym sposobem do-
pasowania pięciu kolejnych cyfr zapisanych jedna za drugą będzie użycie wy-
rażenia w postaci: \d\d\d\d\d. (Na stronie 574 został przedstawiony sposób
zapisania tego samego wyrażenia w krótszej postaci).

 3. Dopasowanie tylko pięciu liczb podanych jedna za drugą.

Wyrażenie regularne jest jak rakieta precyzyjnie naprowadzana na cel — usta-
wia swój celownik na początek łańcucha, który ma dopasować. Dlatego też cza-
sami otrzymujemy w efekcie dopasowanie, które jest fragmentem całego słowa
lub zbiorem znaków. Wyrażenie regularne podane w poprzednim punkcie zo-
stanie dopasowane do pierwszych pięciu cyfr, które za jego pomocą uda się od-
naleźć. Przykładowo w ciągu 12345678998 zostanie ono dopasowane do frag-
mentu 12345. Oczywiście, nie jest to pięciocyfrowy kod produktu, o jaki nam
chodzi, dlatego też będziemy potrzebowali wyrażenia, które pozwoli odnaleźć ciąg
składający się jedynie z pięciu cyfr.

Symbol \b (nazywany także znakiem granicy słowa) odpowiada dowolnemu
znakowi, który nie jest ani literą, ani cyfrą. A zatem nasze wyrażenie mogliby-
śmy zapisać w następującej postaci: \b\d\d\d\d\d\b. Moglibyśmy także użyć

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Odnajdywanie wzorów
w łańcuchach

574

symbolu ^, by dopasować wzorzec do początku łańcucha, oraz symbolu $, by
dopasować go do końca łańcucha. Oba te symbole stają się bardzo przydatne, kiedy
chcemy dopasować wyrażenie do całego łańcucha znaków. Gdyby na przykład
w polu produktu ktoś wpisał łańcuch kdfjalkjfajk 77777 jajajajajaj,
moglibyśmy go poprosić o jego poprawienie przed przesłaniem formularza.
W końcu interesuje nas sam kod produktu, na przykład 23423 (bez żadnych
dodatkowych znaków). W takim przypadku moglibyśmy użyć wyrażenia w po-
staci ^\d\d\d\d\d$.

Uwaga: Ciąg składający się z pięciu cyfr przypomina nieco polski kod pocztowy, jednak w nim

pierwsze dwie cyfry są oddzielone od trzech pozostałych znakiem łącznika, czyli 44-100. Wyraże-

nie regularne umożliwiające sprawdzanie kodów pocztowych zostało opisane na stronie 577.

 4. Zastosowanie wyrażenia w kodzie JavaScript.

Załóżmy, że już zapisałeś informacje wprowadzone przez użytkownika do zmien-
nej o nazwie code, a teraz chcesz sprawdzić, czy dane te są napisane w prawi-
dłowym formacie, czy są pięcioma cyframi umieszczonymi jedna za drugą:

var codeTest = /^\d\d\d\d\d$/; // tworzymy testujące wyrażenie regularne
if (code.search(codeTest) == -1) {
 alert('To nie jest prawidłowy kod produktu');
} else {
 // dane są prawidłowe
}

Wyrażenie regularne zastosowane w tym przykładzie działa, jednak można uznać,
że pięciokrotne wpisywanie symbolu \d to trochę dużo. Jak wyglądałoby wyrażenie
pozwalające sprawdzić sto cyfr zapisanych jedna obok drugiej? Na szczęście Java-
Script udostępnia kilka symboli pozwalających na sprawdzanie wielokrotnego wy-
stępowania tego samego znaku. Zostały one przedstawione w tabeli 16.2. Symbole
te umieszcza się bezpośrednio za sprawdzanym znakiem.

Tabela 16.2. Znaki służące do wielokrotnego dopasowywania tego samego znaku lub wzorca

Znak Odpowiada

? brakowi wystąpień lub dokładnie jednemu wystąpieniu poprzedzającego elementu
wzorca (znaku lub grupy znaków). Oznacza to, że poprzedzający element wzorca jest
opcjonalny, jeśli jednak wystąpi, może się pojawić tylko jeden raz; na przykład wzorzec
st?ernik pasuje do słowa "sernik" lub "sternik", lecz nie do słowa "stternik".

+ jednemu powtórzeniu poprzedzającego elementu wzorca lub większej liczbie
powtórzeń. Element ten musi wystąpić co najmniej raz.

* brakowi powtórzenia poprzedzającego elementu wzorca lub dowolnej liczbie powtórzeń.
Element ten jest opcjonalny i może się powtórzyć dowolną ilość razy; na przykład
wyrażenie .* odpowiada dowolnemu łańcuchowi znaków, w tym łańcuchowi pustemu.

{n} ściśle określonej liczbie powtórzeń poprzedzającego elementu wzorca; na przykład
\d{3} odpowiada łańcuchowi składającemu się z trzech cyfr.

{n,} Poprzedzający element wzorca musi się powtórzyć co najmniej n razy. Przykładowo
wyrażenie n{2,} odpowiada słowu "gehenna" lub "Achhhhhh!".

{n,m} Poprzedzający element wzorca musi się powtórzyć co najmniej n razy, lecz nie więcej
niż m razy. A zatem wyrażenie \d{3,4} będzie odpowiadało trzem lub czterem zapisanym
kolejno cyfrom, lecz nie pięciu cyfrom.

R O Z D Z I AŁ 1 6 . Z A A W A N S O W A N E T E C H N I K I JĘZ Y K A J A V A S C R I P T

Odnajdywanie wzorów
w łańcuchach

575

Aby na przykład dopasować pięć cyfr, można użyć wyrażenia w postaci \d{5}, gdzie
\d odpowiada jednej cyfrze, a wyrażenie {5} informuje interpreter JavaScriptu, że
ma się ona powtórzyć pięć razy. Wyrażenie \d{100} będzie odpowiadać 100 cyfrom
zapisanym jedna obok drugiej.

Przeanalizujmy kolejny przykład. Załóżmy, że chcemy znaleźć nazwę jakiegoś pliku
GIF, zapisaną w łańcuchu znaków. Dodatkowo chcemy ją pobrać, aby na przykład
wykorzystać w innym miejscu skryptu (możemy przy tym użyć metody match()
opisanej na stronie 582). Innymi słowy, chodzi o odnalezienie dowolnego łańcucha
znaków pasującego do podstawowego wzorca nazwy pliku z rozszerzeniem GIF, na
przykład logo.gif, banner.gif bądź ad.gif. Oto czynności, jakie należy wykonać.

 1. Określ wspólną postać nazw plików.
Aby utworzyć wyrażenie regularne, musimy najpierw ustalić, jakiego wzorca
znaków szukamy. Ponieważ interesują nas nazwy plików GIF, wiemy, że wszyst-
kie będą się kończyć ciągiem znaków .gif. Innymi słowy, interesujący nas
ciąg może się składać z dowolnej liczby znaków zakończonych ciągiem .gif.
Jednak przed rozszerzeniem .gif powinien się znaleźć przynajmniej jeden znak:
a.gif jest prawidłową nazwą pliku, natomiast .gif nie jest.

 2. Odszukaj rozszerzenia .gif.
Ponieważ chodzi nam o odszukanie ciągu znaków .gif , zatem możesz przy-
puszczać, że także wyrażenie regularne będzie go zawierało. Jednak, jak mogłeś
się przekonać, analizując tabelę 16.1, w wyrażeniach regularnych znak kropki
odpowiada dowolnemu znakowi. A zatem wyrażenie .gif pasowałoby — oczy-
wiście — do ciągu .gif , lecz także do tgif . Kropka odpowiada dowolnemu
znakowi, czyli oprócz faktycznego znaku kropki można ją także dopasować do
litery t w ciągu tgif. Aby zbudować wyrażenie regularne z kropką, która zo-
stanie potraktowana w sposób dosłowny, konieczne jest umieszczenie przed nią
znaku odwrotnego ukośnika; dopiero wyrażenie \. zostanie zrozumiane jako
„znajdź znak kropki”. Oznacza to, że w celu odszukania ciągu .gif należy
użyć wyrażenia regularnego w postaci: \.gif.

 3. Odszukaj dowolną liczbę znaków umieszczonych przed rozszerzeniem .gif.
Chodzi o dopasowanie takich łańcuchów znaków jak a.gif, photo.gif, ale nie .gif
(bo on nie byłby prawidłową nazwą pliku). Aby znaleźć przynajmniej jeden
znak, należy użyć wyrażenia .+, które trzeba rozumieć jako: „znajdź jeden
znak (.) występujący raz lub więcej razy (+)”. Jeśli jednak zastosujemy je do
utworzenia wyrażenia regularnego o postaci .+\.gif, mogłoby się okazać, że
będzie ono dopasowywane do większego fragmentu łańcucha znaków, a nie
samej nazwy pliku: to wyrażenie regularne można dopasować do wszystkich
znaków w łańcuchu. Jeśli na przykład będziemy dysponować łańcuchem
plik logo nazywa się logo.gif , to wyrażenie regularne .+\.gif zosta-

nie dopasowane do całego łańcucha, włącznie z nazwą pliku logo.gif. A przecież
zależy nam wyłącznie na nazwie pliku logo.gif. W tym celu należy użyć se-
kwencji \S, oznaczającej wszelkie znaki z wyjątkiem znaków odstępu. Wy-
rażenie \S+\.gif należy rozumieć jako: znajdź przynajmniej jeden znak, który
nie jest znakiem odstępu (dotyczy to także znaków tabulacji, spacji, powrotu
karetki i nowego wiersza) i za którym występuje fragment .gif. W tym
przypadku w naszym przykładowym łańcuchu znaków wyrażenie zostanie
dopasowane wyłącznie do fragmentu logo.gif.

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Odnajdywanie wzorów
w łańcuchach

576

 4. Upewnij się, że za .gif nie będzie żadnych znaków.

Teraz wyrażenie regularne odnajdzie wyłącznie nazwę pliku… a może nie?
Wyrażenia regularne potrafią być naprawdę trudne. Jeśli przykładowo uży-
jesz powyższego wyrażenia w łańcuchu znaków o postaci: "adres e-mail
alex.gifford@example", dopasowany zostanie fragment alex.gif, który
w ogóle nie stanowi nazwy pliku. Aby zapewnić, że takie problemy nie pojawią
się, można także sprawdzić, czy za nazwą rozszerzenia (gif) nie występują
żadne inne znaki. Można to zrobić, dodając na końcu wyrażenie odpowiadające
granicy słowa (\b): na przykład: \S+\.gif\b. W ten sposób będziemy mieli
pewność, że dopasowany fragment nie stanowi elementu dłuższego łańcucha,
który przypadkowo zawiera sekwencję .gif.

 5. Zignoruj wielkość znaków.

Nasze wyrażenie regularne ma jeszcze jeden feler — znajduje wyłącznie pliki
z rozszerzeniem gif. Przecież rozszerzenie GIF także jest prawidłowe, a mimo to,
nasze wyrażenie regularne nie odnajdzie pliku o nazwie logo.GIF. Aby nasze wy-
rażenie regularne ignorowało wielkość liter, trzeba do niego dodać argument i:

/\S+\.gif\b/i

Koniecznie należy zwrócić uwagę, że argument i jest umieszczony poza prawym
ukośnikiem wyznaczającym koniec wyrażenia regularnego.

 6. Zastosuj wyrażenia w skrypcie:
var testString = 'Plik logo.gif utworzony przez
alex.gifford@witryna.com.pl'; // testowany łańcuch znaków
var gifRegex = /\S+\.gif\b/i; // wyrażenie regularne
var results = testString.match(gifRegex);
var file = results[0]; // logo.gif

Powyższy fragment kodu pobiera nazwę pliku umieszczoną w łańcuchu zna-
ków. (Szczegółowe informacje na temat sposobu działania metody match()
można znaleźć na stronie 582).

Grupowanie fragmentów wzorców
Wewnątrz wyrażeń regularnych można tworzyć podgrupy — w tym celu stosowane
są nawiasy. Takie podgrupy są niezwykle przydatne, gdy chcemy wyszukiwać
wielokrotnie powtarzające się fragmenty wzorca, korzystając przy tym ze znaków
przedstawionych w tabeli 16.2.

Załóżmy, że chcemy sprawdzić, czy łańcuch zawiera fragment Mar lub Marzec
— oba te fragmenty zaczynają się od liter Mar . Wiemy więc, co chcemy dopasować,
jednak w tym przypadku nie możemy sprawdzać występowania samych liter Mar ,
gdyż można by je także dopasować do wielu innych słów, na przykład Marcepan
lub Margherita . Dlatego też chcemy odnaleźć litery Mar , po których będzie
umieszczony odstęp lub inna granica słowa (do tego służy znak \b opisany w tabeli
16.1) albo całe słowo Marzec zakończone granicą słowa. Innymi słowy, koń-
cówka zec jest opcjonalna. A oto sposób na utworzenie takiego wyrażenia za
pomocą nawiasów.

R O Z D Z I AŁ 1 6 . Z A A W A N S O W A N E T E C H N I K I JĘZ Y K A J A V A S C R I P T

Odnajdywanie wzorów
w łańcuchach

577

var sentence = 'Marzec jest najokrutniejszym z miesięcy.';
var aprMatch = /Mar(zec)?\b/;
if (sentence.search(aprMatch) != -1) {
 // znaleźliśmy Mar lub Marzec
} else {
 // nic nie znaleźliśmy
}

Wyrażenie regularne zastosowane w powyższym przykładzie — /Mar(zec)?\b/
— sprawia, że pierwsze trzy litery (Mar) są obowiązkowe, natomiast podwzorzec
— (zec) — jest opcjonalny (znak ? określa, że może on nie wystąpić lub wystąpić
jeden raz). I wreszcie, umieszczony na samym końcu wzorca znak granicy słowa
(\b) sprawia, że wyrażenie nie zostanie dopasowane do takich słów jak Marcepan
lub Margherita (więcej informacji na temat stosowania podwzorców można
znaleźć w ramce „Zastępowanie tekstów przy użyciu podwzorców” na stronie 586).

Aby to wyrażenie regularne było jeszcze bardziej niezawodne, można także na jego
początku dodać sekwencję oznaczającą granicę słowa (\b):

var aprMatch = /\bMar(zec)?\b/;

Dodanie granicy słowa na początku wyrażenia zabezpiecza przed możliwością
dopasowania go do takich łańcuchów znaków jak zMarznięty czy ZMarł. (Oczy-
wiście raczej jest mało prawdopodobne, aby takie łańcuchy pojawiły się, ale lepiej
się na wszelki wypadek zabezpieczyć).

Wskazówka: Obszerną bibliotekę wyrażeń regularnych można znaleźć na witrynie www.regexlib.com.

Znajdują się w niej wyrażenia na niemal każdą okazję.

Przydatne wyrażenia regularne
Tworzenie wyrażeń regularnych może być sporym wyzwaniem. Nie tylko trzeba
znać i rozumieć działanie poszczególnych symboli używanych w wyrażeniach, lecz
także należy określić właściwy wzorzec. Trzeba na przykład uwzględnić, że numer
telefonu stacjonarnego może się składać z siedmiu cyfr (1234567), lecz oprócz tego
może być poprzedzony dwucyfrowym numerem kierunkowym (89-1234567). Aby
ułatwić Ci rozpoczęcie stosowania wyrażeń regularnych, w tym punkcie rozdziału
przedstawimy kilka przydatnych przykładów.

Uwaga: Jeśli nie masz ochoty samodzielnie wpisywać wszystkich przedstawianych tu wyrażeń,

możesz je znaleźć w pliku example_regex.txt dostępnym w przykładach do książki, w katalogu R16.

(Więcej informacji na temat pobierania przykładów znajdziesz na stronie 46).

Kod pocztowy

Kody pocztowe mają odmienną postać w różnych krajach, jednak w Polsce składają
się z grupy dwóch cyfr oddzielonych łącznikiem od kolejnej grupy trzech cyfr. Oto
wyrażenie regularne odpowiadające kodowi pocztowemu:

\d{2}-\d{3}

http://www.regexlib.com

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Odnajdywanie wzorów
w łańcuchach

578

To wyrażenie regularne można podzielić na następujące fragmenty:

 \d{2} odpowiada grupie dwóch cyfr,

 -\d{3} odpowiada grupie trzech cyfr poprzedzonych łącznikiem.

Uwaga: Aby mieć pewność, że do wyrażenia zostanie dopasowany cały łańcuch znaków, należy je

rozpocząć znakiem ^ i zakończyć znakiem $. By na przykład mieć pewność, że w polu do podania

kodu pocztowego użytkownik wpisał sam kod, należy użyć wyrażenia regularnego w postaci:

/^\d{2}-\d{3}$/. Zabezpieczy nas ono przed sytuacjami, gdy użytkownik wpisze w polu coś takiego

jak łańcuch "blabla 33-300 och ach".

Numer telefonu stacjonarnego

Polskie numery telefonów stacjonarnych mogą się składać z opcjonalnego, dwu-
cyfrowego numeru kierunkowego oraz numeru lokalnego liczącego siedem cyfr;
oto kilka przykładów zapisu takich numerów: (22) 555-2121, 22.555.2121 lub
22 555 2121. Wyrażenie regularne odpowiadające takim numerom ma następującą
postać:

\(?(\d{2})\)?[.-](\d{3})[.-](\d{4})

Uwaga: Przykłady wyrażeń regularnych odpowiadających pełnym polskim numerom telefonów sta-

cjonarnych i komórkowych można znaleźć na witrynie http://www.regexplib.com, a konkretnie na

stronie http://regexlib.com/Search.aspx?k=polish.

Powyższe wyrażenie regularne wygląda na skomplikowane, jeśli jednak rozdzielimy
je na fragmenty (i skorzystamy z dobrych wyjaśnień, takich jak zamieszczone poni-
żej), będzie można zrozumieć zasadę jego działania.

 \(odpowiada otwierającemu znakowi nawiasu. Ponieważ nawiasy są używane
w wyrażeniach regularnych do tworzenia podwzorców grup, zatem nawias otwie-
rający ma w nich specjalne znaczenie. By poinstruować interpreter JavaScriptu,
że chodzi o faktyczny znak nawiasu otwierającego, musimy go poprzedzić od-
wrotnym ukośnikiem (przypomina to nieco poprzedzanie cudzysłowów i apo-
strofów opisane na stronie 61).

 Znak ? oznacza, że nawias otwierający jest opcjonalny, dzięki czemu numery
telefonów, w których numer kierunkowy nie jest zapisany w nawiasie, na przy-
kład 22-555-2121, także zostaną dopasowane do wyrażenia.

 Fragment \d{2} odpowiada dwóm cyfrom.

 Fragment \)? odpowiada opcjonalnemu nawiasowi zamykającemu.

 Fragment [.-] odpowiada znakowi odstępu, łącznikowi lub kropce. (Zwróć
uwagę, że zazwyczaj kropkę trzeba poprzedzić znakiem odwrotnego ukośnika,
by interpreter JavaScriptu potraktował ją dosłownie, a nie jako symbol specjalny
odpowiadający dowolnemu znakowi; jednak kropka umieszczona wewnątrz
nawiasów kwadratowych zawsze jest traktowana dosłownie).

 Fragment \d{3} odpowiada sekwencji trzech cyfr.

 Fragment [.-] odpowiada znakowi odstępu, łącznikowi lub kropce.

 Fragment \d{4} odpowiadającym sekwencji czterech cyfr.

http://www.regexplib.com
http://regexlib.com/Search.aspx?k=polish

R O Z D Z I AŁ 1 6 . Z A A W A N S O W A N E T E C H N I K I JĘZ Y K A J A V A S C R I P T

Odnajdywanie wzorów
w łańcuchach

579

Adresy e-mail

Sprawdzanie poprawności adresu e-mail jest popularnym problemem, występują-
cym podczas weryfikacji danych wpisywanych przez użytkownika w formularzu.
Wiele osób stara się unikać podawania swojego adresu e-mail i wpisuje w formularzu
dowolne dane, takie jak „to nie twój interes”, bądź też popełnia proste błędy typo-
graficzne (na przykład wpisuje adres w postaci jan.kowalski@gmail.commm). Poniż-
sze wyrażenie regularne sprawdza, czy łańcuch znaków zawiera adres poczty elek-
tronicznej zapisany w prawidłowej postaci:

[-\w.]+@([A-z0-9][-A-z0-9]+\.)+[A-z]{2,4}

Uwaga: To wyrażenie regularne nie sprawdza, czy podany adres należy do rzeczywistej osoby; spraw-

dza jedynie to, czy jest zapisany w prawidłowej postaci.

Powyższe wyrażenie można podzielić na fragmenty i zinterpretować w następujący
sposób.

 Fragment [-\w.]+ odpowiada łącznikowi, znakowi używanemu w słowach lub
kropce, powtórzonym co najmniej jeden raz. A zatem będzie pasował do takich
ciągów znaków jak „jan”, „jan.kowalski” lub „jan-kowalski”.

 Znak @ jest znakiem @ występującym we wszystkich adresach e-mail.

 Fragment [A-z0-9] odpowiada jednej literze lub cyfrze.

 Fragment [-A-z0-9]+ odpowiada jednemu lub większej liczbie wystąpień
łącznika, litery lub cyfry.

 Fragment \. odpowiada znakowi kropki, a zatem będzie pasować do kropki
w nazwie sawmac.com. (http://www.sawmac.com).

 Znak + odpowiada jednemu lub większej liczbie powtórzeń umieszczonego
wcześniej wzorca; w naszym przypadku te powtórzenia odnoszą się do grupy
trzech fragmentów wzorca przedstawionych w trzech poprzednich punktach
listy. Dzięki niemu wzorzec będzie pasować do nazw poddomen, takich jak
jan@mail.sawmac.com.

 Ostatni fragment [A-z]{2,4} pasuje do dowolnej sekwencji składającej się
z dwóch, trzech lub czterech liter, czyli odpowiada takim końcówkom jak com
w .com lub pl w .pl.

Uwaga: Powyższe wyrażenie regularne nie będzie pasować do wszystkich adresów e-mail prawi-

dłowych z technicznego punktu widzenia. Przykładowo adres !#$%&'*+-/=?^_`.{|}~@example.com

jest prawidłowy, jednak powyższe wyrażenie nie uzna go za taki. Nasze wyrażenie zostało zaprojekto-

wane z myślą o adresach, którymi użytkownicy będą się posługiwać. Jeśli jednak naprawdę zależy Ci na

zachowaniu poprawności i dokładności, możesz wykorzystać poniższe wyrażenie regularne. Wpisz

je całe w jednym wierszu:

 /^[\w!#$%&\'*+\/=?^`{|}~.-]+@(?:[a-z\d][a-z\d-]*(?:\.[a-z\d][a-z\

 d-]*)?)+\.(?:[a-z][a-z\d-]+)$/i

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Odnajdywanie wzorów
w łańcuchach

580

Daty

Daty można zapisywać na wiele różnych sposobów, takich jak 28/09/2009, 28-9-2009,
28 09 2009 bądź nawet 28.09.2009 (a są to formaty stosowane w Polsce; w innych
krajach mogą być wykorzystywane zupełnie inne sposoby zapisu dat, na przykład
w USA najczęściej spotkamy format 09/28/2009). Ponieważ osoby odwiedzające naszą
witrynę mogą podawać daty w każdym z tych formatów, zatem musimy mieć jakiś
sposób sprawdzenia, czy podana data została zapisana prawidłowo. (W ramce na
stronie 595 dowiesz się, jak skonwertować każdy z tych zapisów na jeden, standar-
dowy format, dzięki czemu będziemy mogli mieć pewność, że wszystkie daty wpi-
sane w formularzu są zapisane prawidłowo).

Oto wyrażenie regularne sprawdzające poprawność zapisu daty:
([0123]?\d)[-\/ .]([01]?\d)[-\/ .](\d{4})

 Nawiasy — () — łączą dwa podane wewnątrz fragmenty wyrażenia w jedną
grupę. Razem tworzą one numer dnia.

 Fragment [0123]? odpowiada cyfrom 0, 1, 2 oraz 3, które mogą zostać pominięte
lub wystąpić jeden raz. Ponieważ w miesiącu nie ma dnia 40., zatem pierwszą
cyfrą numeru dnia może być tylko jedna z cyfr od 0 do 3. Ten wzorzec jest opcjo-
nalny, gdyż użytkownik może pominąć pierwszą cyfrę numeru dnia, wpisując
na przykład 9 zamiast 09.

 Symbol \d odpowiada dowolnej cyfrze.

 Fragment [-\/ .] odpowiada łącznikowi, znakowi ukośnika, znakowi odstępu
lub kropki. Są to dozwolone separatory oddzielające numer dnia od miesiąca, na
przykład: 10/11 lub 10.11 lub 10-11.

 Nawiasy — () — wyznaczają kolejny podwzorzec przeznaczony do pobrania
numeru miesiąca.

 Fragment [01]? odpowiada jednej z cyfr 0 lub 1, która może zostać pominięta
lub pojawić się jeden raz. Cyfra ta określa pierwszą cyfrę miesiąca. Oczywiście,
nie może być większa od 1, gdyż nie mamy miesiąca na przykład 22. Co więcej,
wszystkie miesiące od stycznia do września można zapisać przy użyciu jednej
cyfry — na przykład 9 zamiast 09. Właśnie z tego względu ta pierwsza cyfra jest
opcjonalna.

 Symbol \d odpowiada dowolnej cyfrze.

 Fragment [-\/ .] został opisany powyżej.

 Kolejna para nawiasów pozwala pobrać numer roku.

 Fragment \d{4} pobiera sekwencję znaków składającą się z czterech cyfr, na
przykład 1908 lub 2880.

Uwaga: Choć oczywiście można napisać mechanizm weryfikacji poprawności informacji podawanych

w formularzu, korzystając z wyrażeń regularnych prezentowanych w tym rozdziale, jednak warto wie-

dzieć, że nie jest to jedyne dostępne rozwiązanie. Ktoś już ten problem rozwiązał, dlaczego zatem nie

skorzystać z owoców czyjejś ciężkiej pracy, a samemu zająć się rozwiązywaniem innych problemów?

Łatwym sposobem zagwarantowania, że osoby odwiedzające naszą stronę będą wpisywały w formula-

rzu poprawne informacje, może być użycie wtyczki jQuery Form Validation opisanej na stronie 317.

R O Z D Z I AŁ 1 6 . Z A A W A N S O W A N E T E C H N I K I JĘZ Y K A J A V A S C R I P T

Odnajdywanie wzorów
w łańcuchach

581

Adresy stron WWW

Sprawdzanie adresów URL jest przydatne, jeśli prosimy użytkownika o podanie
adresu swojej strony i chcemy mieć pewność, że został podany, bądź też chcemy
przeanalizować jakiś tekst i wyszukać w nim wszystkie podane adresy. Oto proste
wyrażenie regularne reprezentujące adres URL:

((\bhttps?:\/\/)|(\bwww\.))\S*

Jest dosyć trudne, gdyż użyto w nim kilku par nawiasów, definiując przy ich użyciu
kilka grup. Na rysunku 16.4 pokazano te grupy, co pomoże zrozumieć konstrukcję
powyższego wyrażenia. Jedna para nawiasów (oznaczona cyfrą 1) otacza dwie pozo-
stałe grupy (oznaczone jako 2 i 3). Znak | umieszczony pomiędzy dwoma pozosta-
łymi grupami oznacza logiczne „lub”. Innymi słowy, łańcuch znaków musi pasować
do podwyrażenia 2 lub 3.

 (oznacza początek zewnętrznej grupy (na rysunku 16.4 została ona ozna-
czona numerem 1).

 (oznacza początek wewnętrznej grupy (na rysunku 16.4 została ona oznaczona
numerem 2).

 \b odpowiada początkowi słowa.

 http odpowiada początkowi kompletnego adresu URL, zaczynającego się od
oznaczenia protokołu — http.

 s? to opcjonalna litera s. Strony WWW mogą być przesyłane przy użyciu bez-
piecznych połączeń, a zatem adres URL może także rozpoczynać się od ozna-
czenia protokołu https.

 Fragment :\/\/ odpowiada sekwencji znaków ://. Jednak ze względu na to, że
znak ukośnika ma specjalne znaczenie w wyrażeniach regularnych, aby został
potraktowany dosłownie, trzeba go poprzedzić odwrotnym ukośnikiem.

) oznacza koniec pierwszej grupy wewnętrznej (na rysunku 16.4 została ona
oznaczona numerem 2). Cała ta grupa będzie odpowiadać oznaczeniu protokołu
http lub https.

 Znak | pozwala dopasować wyrażenie podane z jego lewej lub prawej strony
(2 lub 3 na rysunku 16.4).

 (oznacza początek drugiej grupy wewnętrznej (na rysunku 16.4 została ona
oznaczona numerem 3).

 \b odpowiada początkowi słowa.

 Fragment www\. odpowiada sekwencji znaków www..

Rysunek 16.4. Można grupować wyrażenia przy
użyciu nawiasów oraz odszukać jedno lub drugie
z wyrażeń, umieszczając pomiędzy nimi znak |
(pionową kreskę). Przykładowo zewnętrzne wyra-
żenie (1) zostanie dopasowane do dowolnego
tekstu pasującego do wyrażenia 2 lub 3

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Odnajdywanie wzorów
w łańcuchach

582

) oznacza koniec drugiej grupy wewnętrznej (na rysunku 16.4 została ona ozna-
czona numerem 3). Pozwoli ona dopasować wyrażenie do adresu URL, który nie
zaczyna się od określenia protokołu https, lecz od sekwencji znaków www.

) oznacza koniec grupy zewnętrznej (na rysunku 16.4 została ona oznaczona
numerem 1). Do tej pory wyrażenie regularne będzie pasować do łańcucha zna-
ków rozpoczynającego się od http://, https:// lub www.

 Fragment \S* odpowiada dowolnej liczbie znaków innych niż odstępy.

To wyrażenie regularne nie jest doskonałe (na przykład można go dopasować do
zupełnie bezsensownych adresów URL, takich jak http://#$*%&*@*), jednak jest
stosunkowo proste i można je prawidłowo dopasować do rzeczywistych adresów, ta-
kich jak http://www.sawmac.com/missing/js/index.html.

Wskazówka: Aby sprawdzić, czy łańcuch znaków zawiera wyłącznie adres URL (czy przed nim lub

za nim nie wpisano żadnych niepotrzebnych znaków), na początku wyrażenia należy umieścić znak ^,

na jego końcu znak $, a ze środka wyrażenia usunąć znaki \b. W efekcie uzyskamy wyrażenie w postaci

^((https?:\/\/)|(www\.))\S*$.

Dopasowywanie wzorców
Metoda search() opisana na stronie 571 jest jednym ze sposobów sprawdzenia, czy
łańcuch zawiera konkretny wzorzec wyrażenia regularnego. Kolejną metodą, która
na to pozwala, jest metoda match(). Można jej używać nie tylko w celu sprawdze-
nia, czy łańcuch zawiera konkretny wzorzec, lecz także po to, by pobrać fragment
paskujący do tego wzorca i wykorzystać go w dalszej części skryptu. Przykładowo
załóżmy, że na naszej stronie znajduje się formularz z polem służącym do podawa-
nia komentarzy. Być może chcielibyśmy sprawdzić, czy w tym komentarzu nie zo-
stał podany adres URL, a gdyby został, chcemy go jakoś pobrać i przetworzyć.

Poniższy fragment kodu odnajduje i pobiera adres URL z łańcucha znaków:
// sprawdzany łańcuch zawierający adres URL
var text='moja witryna to www.missingmanuals.com';
// utworzenie wyrażenia regularnego
var urlRegex = /((\bhttps?:\/\/)|(\bwww\.))\S*/
// odnalezienie dopasowania wyrażenia w łańcuchu znaków
var url = text.match(urlRegex);
alert(url[0]); // www.missingmanuals.com

W powyższym fragmencie kodu na początku tworzymy zmienną i zapisujemy w niej
łańcuch znaków zawierający adres URL www.missingmanuals.com. Zmienną utwo-
rzyliśmy tutaj wyłącznie w celach testowych (abyś mógł się przekonać, do czego
służy metoda match()). Gdybyśmy faktycznie chcieli sprawdzić zawartość pola tek-
stowego, powinniśmy posłużyć się następującym wywołaniem:

var text = $('#comments').val();

Następnie piszemy wyrażenie regularne, które zostanie dopasowane do adresu URL
(szczegóły jego konstrukcji zostały opisane na stronie 581). Następnie wywołujemy
metodę match() na rzecz testowanego łańcucha znaków. Metoda match() jest metodą
obiektu łańcucha znaków, dlatego też jej wywołanie rozpoczyna się od podania na-
zwy zmiennej zawierającej łańcuch; po tej nazwie należy zapisać kropkę oraz samą
metodę match(). W wywołaniu tej metody przekazywane jest wyrażenie regularne.

http://www.sawmac.com/missing/js/index.html
http://www.missingmanuals.com
http://www.missingmanuals.com
http://www.missingmanuals.com

R O Z D Z I AŁ 1 6 . Z A A W A N S O W A N E T E C H N I K I JĘZ Y K A J A V A S C R I P T

Odnajdywanie wzorów
w łańcuchach

583

W powyższym przykładzie w zmiennej url zapisywane są wyniki dopasowania.
Jeśli nie uda się znaleźć fragmentu łańcucha pasującego do wyrażenia regularnego,
wynikiem metody match() będzie specjalna wartość języka JavaScript — null. Jeśli
jednak uda się znaleźć dopasowanie, metoda ta zwraca tablicę — jej pierwszym
elementem jest dopasowany łańcuch znaków. W naszym przykładzie zmienna url
zawiera tablicę, której pierwszym elementem jest dopasowany fragment sprawdza-
nego łańcucha znaków. Konkretnie rzecz biorąc, url[0] zawiera łańcuch znaków
www.missingmanuals.com (więcej informacji na temat tablic można znaleźć na

stronie 77).

Uwaga: W języku JavaScript null jest wartością traktowaną tak samo jak false; a zatem to, czy

dopasowanie się udało, czy nie, można sprawdzić w następujący sposób:

 var url = text.match(urlRegex);

 if (! url) {

 // brak dopasowania

 } else {

 // jest dopasowanie

 }

Metoda match() dostarcza także pewnych dodatkowych informacji. Oprócz tablicy,
której pierwszym elementem jest cały dopasowany łańcuch znaków, metoda
match() dodaje także do tej tablicy właściwość index, określającą położenie po-
czątku dopasowanego fragmentu w całym łańcuchu. Oto przykład:

var string = 'Być albo nie być';
var regex = /albo/;
var result = string.match(regex);
alert(result.index); // wyświetla liczbę 4

Zmienna result zawiera wartości zwrócone przez metodę match(). W tym przy-
padku jest to tablica, a jej pierwszym i jedynym elementem jest dopasowany łań-
cuch znaków — element result[0] zawiera łańcuch albo . Metoda match() do-
dała także do tej tablicy właściwość index. W powyższym przykładzie będzie ona
mieć wartość 4, gdyż słowo „albo” zaczyna się od czwartego znaku łańcucha (trzeba
pamiętać, że w języku JavaScript elementy tablic są liczone od 0). Jest to taka sama
wartość, którą zwróciłoby wywołanie metody search() (opisanej na stronie 571);
a działanie tej metody przypomina metodę indexOf() (patrz strona 567), która
zwraca indeks pierwszego znaku podanego fragmentu, odnalezionego w większym
łańcuchu znaków. Dodatkowo jest to ta sama wartość, której należałoby użyć
w metodzie slice() (patrz strona 569), aby pobrać fragment z większego łańcucha
znaków.

Jeśli w wyrażeniu regularnym zostały umieszczone podwzorce zdefiniowane przy
użyciu nawiasów () (zgodnie z informacjami podanymi w ramce na stronie 586),
metoda match() umieści w zwracanej tablicy także dodatkowe elementy. Pierw-
szym elementem zwracanej tablicy zawsze jest dopasowany fragment łańcucha
znaków; jeśli jednak wyrażenie regularne będzie zawierać podwzorce, w każdym
dodatkowym elemencie zwracanej tablicy zostanie zapisany fragment łańcucha do-
pasowany do kolejnego podwzorca.

http://www.missingmanuals.com

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Odnajdywanie wzorów
w łańcuchach

584

Dopasowywanie każdego wystąpienia wzorca

Metoda match() może działać na dwa różne sposoby, zależnie od tego, jak zostało
przygotowane wyrażenie regularne. W przedstawionym wcześniej przykładzie wy-
wołanie metody zwracało tablicę zawierającą pierwszy odnaleziony fragment łańcucha
pasujący do wyrażenia oraz właściwość index określającą położenie tego fragmentu
w łańcuchu (a gdyby wyrażenie zawierało podwzorce, w tablicy mogłyby także
znaleźć się dodatkowe elementy). A zatem, gdybyśmy dysponowali długim łańcuchem
znaków, zawierającym wiele adresów URL, zostałby zwrócony tylko pierwszy z nich.
Jednak można także skorzystać z opcji wyszukiwania globalnego, która umożliwi
pobranie wszystkich dopasowań w łańcuchu.

Opcję wyszukiwania globalnego włącza się, dodając na końcu tworzonego wyrażenia
literę g (podobnie jak było podczas tworzenia wyrażeń, w których nie jest uwzględ-
niana wielkość liter, opisanych na stronie 576):

var urlRegex = /((\bhttps?:\/\/)|(\bwww\.))\S*/g

Warto zwrócić uwagę, że litera g została umieszczona poza znakiem ukośnika koń-
czącym wyrażenie. Takie wyrażenie regularne wykonuje przeszukanie globalne; pod-
czas użycia go w metodzie match() spróbuje odnaleźć każdy fragment łańcucha pa-
sujący do podanego wyrażenia i zwróci tablicę zawierającą wszystkie. Innymi słowy,
jest to doskonały sposób na odnalezienie każdego adresu URL umieszczonego
na przykład we wpisie w blogu bądź też każdego wystąpienia konkretnego słowa
w długim bloku tekstu.

Poniżej przedstawiony został przykład z początku tej strony zmodyfikowany tak, by
korzystał z przeszukiwania globalnego:

// utworzenie zmiennej zawierającej tekst z adresami URL
var text='istnieje wiele wspaniałych witryn, takich jak
www.missingmanuals.com oraz http://www.oreilly.com';
// utworzenie wyrażenia regularnego z opcją przeszukiwania globalnego
var urlRegex = /((\bhttps?:\/\/)|(\bwww\.))\S*/g
// znalezienie dopasowań w sprawdzanym łańcuchu znaków
var url = text.match(urlRegex);
alert(url[0]); // www.missingmanuals.com
alert(url[1]); // http //www.oreilly.com

Liczbę odnalezionych dopasowań można określić przy użyciu właściwości length
zwróconej tablicy, na przykład url.length. W powyższym przykładzie właściwość
ta ma wartość 2, gdyż w sprawdzanym łańcuchu znaków udało się odnaleźć dwa ad-
resy URL. Co więcej, do każdego z tych łańcuchów można się odwołać przy użyciu
odpowiedniego indeksu tablicy (zgodnie z informacjami podanymi na stronie 80);
a zatem, w naszym przykładzie url[0] zawiera pierwszy odnaleziony adres URL,
a url[1] — drugi.

Trzeba pamiętać, że w przypadku przeszukiwania globalnego metoda match()
nie zwraca indeksu określającego położenie początku odszukanego fragmentu
łańcucha znaków, nie zwraca także żadnych informacji o podwzorcach. W tym
przypadku metoda zwraca wyłącznie tablicę zawierającą każde dopasowanie wy-
rażenia odnalezione w przeszukiwanym łańcuchu znaków.

http://www.missingmanuals.com
http://www.oreilly.com
http://www.missingmanuals.com
http://www.oreilly.com

R O Z D Z I AŁ 1 6 . Z A A W A N S O W A N E T E C H N I K I JĘZ Y K A J A V A S C R I P T

Odnajdywanie wzorów
w łańcuchach

585

Zastępowanie tekstów
Wyrażeń regularnych można także używać do zastępowania fragmentów łańcuchów
znaków. Załóżmy, że mamy łańcuch znaków zawierający datę zapisaną w postaci
28/10/2014. Chcemy jednak, by na naszej stronie daty były prezentowane w for-
macie 28.10.2014. Taką zmianę możemy wykonać właśnie przy użyciu metody
replace(). Oto składnia jej wywołania:

lancuch.replace(wyrazenieRegularne, 'zamiennik');

Metoda replace() wymaga przekazania dwóch argumentów. Pierwszym jest wyra-
żenie regularne, które chcemy odszukać w łańcuchu, natomiast drugim — łańcuch,
którym chcemy zastąpić fragment pasujący do podanego wyrażenia regularnego. Aby
zatem zmienić format zapisu dat z 28/10/2011 na 28.10.2011, moglibyśmy użyć
następującego fragmentu kodu:

1 var date='28/10/2014'; // łańcuch znaków
2 var replaceRegex = /\//g // wyrażenie regularne
3 var date = date.replace(replaceRegex, '.'); // zastępujemy / znakiem .
4 alert(date); // 28.10.2014

W wierszu 1. tworzona jest zmienna zawierająca datę zapisaną jako '28/10/2014'.
W rzeczywistym programie łańcuch ten mógłby zostać podany przez użytkownika
w polu formularza. W wierszu 2. tworzone jest wyrażenie regularne. Dwa skrajne
znaki ukośnika (/) określają odpowiednio jego początek i koniec. Umieszczony we-
wnątrz wyrażenia symbol \/ odpowiada potraktowanemu dosłownie znakowi uko-
śnika. Litera g umieszczona na samym końcu wyrażenia sprawia, że będzie ono ope-
rowało globalnie, czyli zostanie zastąpiony każdy występujący w nim znak ukośnika.
Gdybyśmy pominęli tę literę, zostałoby zastąpione tylko pierwsze wystąpienie uko-
śnika, a przez to ostatecznie data miałaby postać '28.10/2014'. Faktyczna zamiana
jest wykonywana w wierszu 3. i to właśnie ona zmienia znaki ukośnika na kropki
i zapisuje wynik w nowej zmiennej date. W ostatnim wierszu wyświetlamy odpo-
wiednio sformatowaną datę — '28.10.2014' — w okienku informacyjnym.

Testowanie wyrażeń regularnych
Przykładowe wyrażenia regularne zostały zamieszczone w pliku example_regex.txt,
umieszczonym w przykładach dołączonych do książki w katalogu testy. Dodatko-
wo w katalogu testy znajduje się także plik regex_tester.html. Można go wyświetlić
w przeglądarce i spróbować swych sił podczas samodzielnego tworzenia wyrażeń
regularnych (patrz rysunek 16.5). Wystarczy wpisać testowy łańcuch znaków w polu
Testowy łańcuch znaków, a w polu poniżej podać wyrażenie regularne (należy przy
tym pominąć znaki ukośnika podawane na początku i końcu wyrażenia w kodzie
JavaScript i wpisać jedynie sam wzorzec). Oprócz tego można także wybrać metodę,
której chcesz używać — Search, Match lub Replace — oraz dodatkowe opcje: igno-
rowanie wielkości liter i wyszukiwanie globalne. Aby sprawdzić wyniki, wystarczy
kliknąć przycisk Wykonaj.

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Odnajdywanie wzorów
w łańcuchach

586

Rysunek 16.5. Ta strona WWW, dostępna w przykładach do książki, pozwala na testowanie wyrażeń regular-
nych przy użyciu różnych metod JavaScriptu — na przykład search() lub match() — oraz z wykorzystaniem
różnych opcji dodatkowych, takich jak ignorowanie wielkości liter oraz wyszukiwanie globalne

P O R A D N I A D L A Z A A W A N S O W A N Y C H

Zastępowanie tekstów przy użyciu podwzorców
Zastępowanie fragmentów pasujących do wzorca (takich

jak ukośniki w dacie 28/10/2008) innym łańcuchem

znaków (na przykład znakiem kropki) nie jest jedyną

możliwością, jaką daje metoda replace(). Oprócz tego,

za jej pomocą można także zapamiętywać podwzorce
podane w wyrażeniu regularnym i używać ich podczas

zastępowania tekstów. Podwzorzec jest dowolnym

fragmentem wyrażenia regularnego zapisanym w na-

wiasach, na przykład podwzorcem jest (zec) w wyraże-

niu regularnym /Mar(zec)?\b/.

Metoda replace() zastosowana w przykładzie ze strony

585 pozwalała zmienić format zapisu daty z 28/10/2008

na 28.10.2008. Co jednak moglibyśmy zrobić w przy-

padku, gdybyśmy chcieli zapisać w tym samym formacie

28.10 2008 daty wpisywane jeszcze inaczej, na przy-

kład w postaci: 28 10 2008 lub 28-10-2008? Zamiast

używać długiego kodu JavaScript sprawdzającego i za-

stępującego wszystkie wystąpienia odstępów, łączników

i ukośników, można utworzyć ogólne wyrażenie regularne

pasujące do każdego z tych formatów zapisu dat:

var date='28-10-2008';
var regex = /([0123]?\d)
[-\/ .]([01]?\d)[-\/ .](\d{4})/;
date = date.replace(regex, '$1.$2.$3');

W tym przykładzie skorzystano z wyrażenia regularnego

do odnajdywania dat, opisanego na stronie 580. Należy

w nim zwrócić uwagę na fragmenty umieszczone w na-

wiasach, takie jak ([01]?\d). Każdy z tych podwzor-

ców pasuje do konkretnego fragmentu daty. Metoda

replace() pamięta fragmenty łańcucha dopasowane

do każdego z podwzorców i pozwala wykorzystać je

w łańcuchu zamiennika. W powyższym przykładzie łań-

cuch zamiennika ma postać: '$1.$2.$3'. Znak dolara

($) wraz z zapisaną za nim liczbą reprezentuje dopaso-

wanie do podwzorca. Przykładowo $1 reprezentuje frag-

ment dopasowany do pierwszego podwzorca, czyli numer

dnia. A zatem, użyty tu łańcuch zamiennika należy inter-

pretować w następujący sposób: „na początku umieść

fragment dopasowany do pierwszego podwzorca, na-

stępnie zapisz kropkę, fragment dopasowany do dru-

giego podwzorca, kolejną kropkę i w końcu fragment do-

pasowany do trzeciego podwzorca”.

R O Z D Z I AŁ 1 6 . Z A A W A N S O W A N E T E C H N I K I JĘZ Y K A J A V A S C R I P T

Stosowanie liczb

587

Stosowanie liczb
Liczby są bardzo ważnym elementem programowania. Pozwalają na realizację ta-
kich zadań jak obliczanie łącznej ceny produktu, określanie odległości między dwo-
ma punktami bądź symulowanie rzutu kostką poprzez wygenerowanie liczby losowej
z zakresu od 1 od 6. Język JavaScript udostępnia wiele sposobów posługiwania się
liczbami.

Zamiana łańcucha znaków na liczbę
W tworzonej zmiennej liczbę można zapisać w następujący sposób:

var a = 3.25;

Może się jednak zdarzyć i tak, że łańcuch będzie reprezentacją jakiejś liczby. Jeśli
użyjemy metody prompt() (opisanej na stronie 74) do pobrania danych od użyt-
kownika, to nawet jeśli wpisze on 3.25, i tak uzyskamy '3.25' (czyli łańcuch zna-
ków), a nie 3.25 (czyli liczbę). Bardzo często ta różnica typu nie przysparza więk-
szych problemów, gdyż interpreter JavaScriptu zazwyczaj konwertuje łańcuchy na
liczby, jeśli zauważy, że program tak chce je traktować. Oto przykład:

var a = '3';
var b = '4';
alert(a*b); // 12

W tym przykładzie, pomimo faktu, że zmienne a i b zawierają łańcuchy znaków, in-
terpreter JavaScriptu skonwertuje je do postaci liczb w celu wykonania operacji mno-
żenia (3 x 4) i dzięki temu uzyskamy wynik 12.

Gdybyśmy jednak zastosowali operator dodawania (+), interpreter JavaScriptu nie
wykonałby tej konwersji, a my uzyskalibyśmy zupełnie inny wynik:

var a = '3';
var b = '4';
alert(a+b); // '34'

Także w tym przypadku obie zmienne — a i b — są łańcuchami znaków; jednak
operator + nie służy wyłącznie do wykonywania dodawania arytmetycznego, pozwala
także na łączenie (konkatenację) dwóch łańcuchów znaków (patrz strona 69). A zatem,
zamiast dodania liczb 3 + 4 i uzyskania wyniku 7, w tym przypadku uzyskamy
połączenie dwóch łańcuchów, czyli '34'.

Gdy pojawia się konieczność konwersji łańcucha znaków na liczbę, JavaScript udo-
stępnia kilka sposobów.

 Metoda Number() konwertuje na liczbę dowolny, przekazany w jej wywołaniu
łańcuch znaków, na przykład:

var a = '3';
a = Number(a); // teraz a ma wartość 3

A zatem problem dodawania dwóch łańcuchów zawierających liczby można
rozwiązać w następujący sposób:

var a = '3';
var b = '4';
var total = Number(a) + Number(b); // 7

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Stosowanie liczb

588

Szybszą metodą jest jednak zastosowanie operatora +, który robi dokładnie to
samo, co metoda Number(). Wystarczy umieścić go przed nazwą zmiennej
zawierającej łańcuch znaków, a interpreter JavaScriptu skonwertuje ją do po-
staci liczby.

var a = '3';
var b = '4';
var total = +a + +b; // 7

Oba te rozwiązania mają wadę. Gdy łańcuch znaków zawiera cokolwiek innego
niż liczba — pojedynczą kropkę, znak – lub + na początku — w efekcie konwersji
uzyskamy wartość NaN (jest to specjalna wartość języka JavaScript, która ozna-
cza „to nie jest liczba”; z ang: Not a Number; więcej informacji na jej temat
można znaleźć na stronie 589).

 Także funkcja parseInt() konwertuje łańcuch znaków na liczbę. Jednak, w od-
różnieniu od Number(), funkcja parseInt() spróbuje wykonać konwersję nawet
wtedy, gdy podany łańcuch znaków zawiera jakieś litery, o ile tylko zaczyna się
on od cyfr. Funkcja może się przydać, gdy musimy skonwertować na liczbę łań-
cuch znaków w takiej postaci jak '20 lat', podany na przykład jako odpowiedź
na pytanie zadane na stronie:

var age = '20 lat';
age = parseInt(age,10); // 20

Funkcja parseInt() szuka cyfry bądź znaków + lub - umieszczonych na po-
czątku łańcucha znaków, a następnie poszukuje kolejnych cyfr i tak dalej, aż do
momentu odnalezienia pierwszego znaku, który nie jest cyfrą. A zatem w po-
wyższym przykładzie wywołanie funkcji parseInt() zwróci liczbę 20 i zignoruje
umieszczone za nią słowo ' lat'.

Oprócz łańcucha znaków, w wywołaniu metody parseInt() przekazywany
jest także drugi argument, nazywany podstawą i określający system liczbo-
wy, którego metoda ma używać. W przeważającej większości przypadków
będziemy używali systemu dziesiątkowego, czyli tego, którym zazwyczaj się
posługujemy. Jednak nie jest to jedyny system zapisu liczb; stosowane są
także systemy liczbowe o podstawie 8, czyli ósemkowy, oraz o podstawie 16,
czyli szesnastkowy.

Uwaga: Liczby ósemkowe zawsze zaczynają się od 0, może się zatem zdarzyć, że argumentem

wywołania metody parseInt() będzie łańcuch znaków "010", a ponieważ taki łańcuch zaczyna się

od zera, zatem przeglądarka uzna, że jest to liczba ósemkowa i zwróci dziwne wyniki. W tym przy-

padku ósemkowa liczba 10 odpowiada liczbie 8 w systemie dziesiątkowym. Niektóre przeglądarki

w takich sytuacjach domyślnie uznają, że konwertowane liczby są zapisane w systemie ósemko-

wym, natomiast inne (jak również standard języka JavaScript) domyślnie używają systemu dzie-

siątkowego. Oznacza to, że różne przeglądarki mogą zwracać różne wyniki.

W efekcie najbezpieczniejszym rozwiązaniem jest jawne określanie, że metoda parseInt() ma

używać systemu dziesiątkowego:

 var age = '010 lat';

 age = parseInt(age, 10); // 10

 Funkcja parseFloat() działa podobnie do funkcji parseInt(), przy czym jest
używana w przypadkach, gdy liczba zapisana w łańcuchu znaków może zawierać

R O Z D Z I AŁ 1 6 . Z A A W A N S O W A N E T E C H N I K I JĘZ Y K A J A V A S C R I P T

Stosowanie liczb

589

kropkę dziesiętną. Gdybyśmy na przykład dysponowali łańcuchem znaków '4.5
hektarów', z wykorzystaniem funkcji parseFloat() moglibyśmy go przekształ-
cić na liczbę z miejscami dziesiętnymi:

var space = '4.5 hektarów';
space = parseFloat(space); // 4.5

Gdybyśmy do przetworzenia tego samego łańcucha znaków użyli funkcji
parseInt(), uzyskalibyśmy liczbę 4, gdyż funkcja ta zwraca jedynie liczby cał-
kowite.

Wybór jednej z tych metod jest zależny od sytuacji. Jeśli chcemy dodać do siebie
dwie liczby zapisane w postaci łańcuchów znaków, możemy w tym celu wykorzy-
stać metodę Number() lub operator +. Jeśli jednak chcemy pobrać liczbę zapisaną
w łańcuchu znaków, który może także zawierać jakieś inne znaki, takim jak '200px'
lub '1.5em', musimy użyć funkcji parseInt() w przypadku pobierania wartości
całkowitych lub parseFloat() w przypadku pobierania liczb z częścią ułamkową
(takich jak 1.5).

Sprawdzanie występowania liczb
Podczas korzystania z języka JavaScript do przetwarzania danych wpisywanych przez
użytkowników czasami może się pojawić konieczność sprawdzenia, czy podane
informacje są odpowiedniego typu. Jeśli na przykład prosimy o podanie roku uro-
dzenia, chcemy mieć pewność, że została podana liczba całkowita. Podobnie w przy-
padku przeprowadzania operacji arytmetycznych, bo jeśli dane, na których one ope-
rują, nie będą liczbami, mogą wystąpić błędy lub nawet awaria samego skryptu.

Do sprawdzenia, czy łańcuch znaków można przekształcić na liczbę, służy metoda
isNaN(). Metoda ta pobiera jeden argument będący łańcuchem znaków i sprawdza,
czy „nie jest on liczbą”. Jeśli łańcuch zawiera cokolwiek oprócz znaku plusa (lub
minusa w przypadku liczb ujemnych) i umieszczonych za nim cyfr oraz opcjonalnej
części dziesiętnej, funkcja uzna, że „nie jest on liczbą”. A zatem łańcuch '-23.45'
jest liczbą, a '24 piksele' nie jest. Funkcja zwraca wartość true (jeśli łańcuch nie
jest liczbą) oraz false (jeśli jest liczbą). Funkcji tej można używać wewnątrz in-
strukcji warunkowej, co pokazano na poniższym przykładzie:

var x = '10'; // jest liczbą
if (isNaN(x)) {
 // ten fragment nie zostanie wykonany
} else {
 // ten fragment zostanie wykonany
}

Zaokrąglanie liczb
Język JavaScript zapewnia także możliwość zaokrąglania wartości ułamkowych do
liczb całkowitych — na przykład można zaokrąglić 4.5 do 5. To bardzo przydatne,
gdy wykonujemy obliczenia, których wynik ma być liczbą całkowitą. Przykładowo
załóżmy, że używamy języka JavaScript do dynamicznego wyznaczenia wysokości
elementu <div> na stronie, w zależności od wysokości okna przeglądarki. Innymi

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Stosowanie liczb

590

słowy, wysokość elementu <div> jest uzależniona od wysokości okna przeglądarki.
Wszystkie wykonywane obliczenia mogą zwrócić wynik z częścią ułamkową (na
przykład 300.25), jednak, zważywszy na fakt, że nie ma czegoś takiego jak 0,25 pik-
sela, musimy taki wynik zaokrąglić do najbliższej liczby całkowitej (na przykład 300).

Liczbę można zaokrąglić przy użyciu metody round() obiektu Math. Składnia jej
wywołania wygląda następująco:

Math.round(liczba)

W wywołaniu tej metody przekazywana jest liczba (bądź też zmienna zawierająca
jakąś wartość liczbową), a sama metoda zwraca wartość całkowitą. Jeśli przekaza-
na wartość zawiera część dziesiętną mniejszą od 0,5, zostanie ona zaokrąglona w dół.
Jeśli natomiast część dziesiętna liczby jest równa lub większa od 0,5, liczba zostanie
zaokrąglona w górę, na przykład wartość 4.4 zostanie zaokrąglona do 4, a 4.5 do 5.
Oto przykład:

var decimalNum = 10.25;
var roundedNum = Math.round(decimalNum); // 10

Uwaga: JavaScript udostępnia także dwie inne metody służące do zaokrąglania: Math.ceil() oraz

Math.floor(). Używa się ich dokładnie tak samo jak metody Math.round(), jednak Math.ceil()

zaokrągla przekazaną wartość w górę (na przykład wywołanie Math.ceil(4.0001) zwróci 5), natomiast

metoda Math.floor() zaokrągla w dół (na przykład wywołanie Math.floor(4.9999) zwróci 4). Nazwy

tych metod podchodzą od angielskich słów ceiling — sufit i floor — podłoga. Łatwo więc sobie

wyobrazić, że pierwsza z nich — Math.ceil() — zaokrągla w górę, a druga — Math.floor() — w dół.

Formatowanie wartości monetarnych
Podczas obliczania ceny produktu lub prezentowania wartości koszyka z zakupami
prezentowana jest zazwyczaj liczba wraz z dwoma miejscami dziesiętnymi, na przy-
kład 9,99. Jeśli nawet wartość monetarna jest liczbą całkowitą, zazwyczaj dodaje się
do niej dwa zera po przecinku dziesiętnym, na przykład 10,00. Poza tym, wartości
monetarne, takie jak 9,8, także są zapisywane jako 9,80. Niestety, JavaScript nie
postrzega wartości liczbowych w taki sposób — pomija niepotrzebne zera na końcu
wartości dziesiętnych (wyświetli 10 zamiast 10,00 oraz 8.9 zamiast 8,90).

Na szczęście, dostępna jest metoda o nazwie toFixed(), pozwalająca konwertować
liczby na łańcuchy znaków zawierające odpowiednią liczbę miejsc dziesiętnych. Aby
jej użyć, wystarczy umieścić za liczbą (lub nazwą zmiennej zawierającej wartość
liczbową) kropkę, a następnie dodać toFixed(2):

var cost = 10;
var printCost = cost.toFixed(2) . ' zł'; // 10.00 zł
printCost = printCost.replace(/\./, ','); // 10,00 zł

Liczba przekazywana w wywołaniu metody toFixed() określa, ile miejsc dziesięt-
nych chcemy uzyskać w wyniku. W przypadku wartości monetarnych należy użyć
liczby 2, dzięki czemu uzyskamy takie wartości jak 10.00 lub 9.90. W przypadku
przekazania liczby 3 analogiczne wyniki miałyby postać: 10.000 oraz 9.900. Trzecia
instrukcja zamienia kropkę w łańcuchu wygenerowanym przez metodę toFixed()
na przecinek i uzyskujemy prawidłowo sformatowaną polską wartość monetarną.

R O Z D Z I AŁ 1 6 . Z A A W A N S O W A N E T E C H N I K I JĘZ Y K A J A V A S C R I P T

Stosowanie liczb

591

Jeśli formatowana wartość ma początkowo więcej miejsc dziesiętnych niż podamy
w wywołaniu, zostanie odpowiednio zaokrąglona. Oto przykład:

var cost = 10.289;
var printCost = cost.toFixed(2) + ' zł'; // 10.29 zł
printCost = printCost.replace(/\./, ','); // 10,29 zł

W tym przypadku wartość 10.289 zostanie zaokrąglona do 10.29.

Uwaga: Metoda toFixed() operuje wyłącznie na liczbach. Jeśli spróbujemy sformatować za jej

pomocą łańcuch znaków, zostanie zgłoszony błąd:

 var cost='10'; // łańcuch znaków

 var printCost=cost.toFixed(2) + ' zł'; // błąd

Aby ominąć ten problem, wystarczy skonwertować łańcuch znaków na liczbę przy użyciu jednego

ze sposobów opisanych na stronie 70, na przykład:

 var cost='10'; // łańcuch znaków

 cost = +cost; // lub cost = Number(cost);

 var printCost= cost.toFixed(2) + ' zł'; // 10.00 zł

 printCost = printCost.replace(/\./, ','); // 10,00 zł

Tworzenie liczb losowych
Liczby losowe pozwalają wzbogacać programy o elementy losowości. Załóżmy, że
dysponujemy tablicą pytań quizowych (takich jak w przykładowym programie przed-
stawionym na stronie 124). Zamiast wyświetlać te pytania za każdym razem w tej
samej kolejności, można je wybierać i prezentować losowo. Można by także podczas
wyświetlania strony losowo wybierać nazwę pliku graficznego, który zostanie na niej
wyświetlony. Każde z tych zadań wymaga zastosowania liczb losowych.

Język JavaScript udostępnia metodę Math.random() służącą do generowania
liczb losowych z zakresu od 0 do 1 (na przykład .9716907176080688 lub
.10345038010895868). Choć najprawdopodobniej takie liczby nie będą szczególnie
przydatne, jednak przy użyciu prostych działań matematycznych można je prze-
kształcić na liczby całkowite z zakresu od zera do wybranej wartości. Przykładowo
poniższy wzór pozwala wygenerować liczbę losową z zakresu od 0 do 9:

Math.floor(Math.random()*10);

Ten wzór można rozdzielić na dwa fragmenty. Fragment umieszczony wewnątrz wy-
wołania metody Math.floor() — czyli Math.random()*10 — generuje liczbę losową
z zakresu od 0 do 10. Pozwala on wygenerować takie liczby jak 4.190788392268892,
a ponieważ liczba losowa jest zakresu od 0 o 10, zatem nigdy nie przyjmie war-
tości 10. Aby uzyskać liczbę całkowitą, wystarczy przekazać tę wartość do me-
tody Math.floor(), która ją zaokrągli do najbliższej liczby całkowitej, a zatem
3.4448588848 zostanie zaokrąglone do 3, a .1111939498984 do 0.

Gdybyśmy chcieli wygenerować liczbę z zakresu od 1 do innej liczby, wynik metody
Math.random() należałoby pomnożyć przez górną granicę zakresu, a następnie za-
okrąglić przy użyciu metody Math.ceil() (która zaokrągla w górę, do najbliższej
liczby całkowitej). Gdybyśmy chcieli zasymulować rzut kostką, by uzyskać wartość
z zakresu od 1 do 6, moglibyśmy to zrobić w następujący sposób:

var roll = Math.ceil(Math.random()*6); // 1,2,3,4,5 or 6

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Daty i godziny

592

Losowe pobieranie elementu tablicy

Metody Math.random() można używać w celu pobierania losowo wybranego ele-
mentu tablicy. Zgodnie z informacjami podanymi na stronie 80, do elementów ta-
blicy odwołujemy się przy użyciu indeksów liczbowych. Indeks pierwszego elementu
ma wartość 0, natomiast ostatniego — wartość o jeden mniejszą od sumarycznej
liczby elementów w tej tablicy. Przy zastosowaniu metody Math.random() pobie-
ranie losowego elementu tablicy jest naprawdę łatwe:

var people = ['Romek','Tomek','Krysia','Bronek']; // tworzymy tablicę
var random = Math.floor(Math.random() * people.length);
var rndPerson = people[random];

Wiersz 1. powyższego fragmentu kodu tworzy tablicę zawierającą cztery imiona.
Wiersz 2. wykonuje dwie podstawowe operacje. Przede wszystkim generuje liczbę
losową z zakresu od 0 do liczby elementów w tablicy (czyli w naszym przypadku od
0 do 4). Następnie korzysta z metody Math.floor(), by zaokrąglić tę liczbę w dół, do
najbliższej liczby całkowitej i zwraca w efekcie liczbę 0, 1, 2 lub 3. W końcu, w ostat-
nim wierszu pobieramy jedno z imion z tablicy, korzystając przy tym z wyliczonej
wcześniej wartości, i zapisujemy je w zmiennej rndPerson.

Funkcja do generacji liczby losowej
Funkcje są doskonałym narzędziem do tworzenia użytecznych fragmentów kodu,
nadających się do wielokrotnego stosowania (patrz strona 115). Jeśli często korzy-
stasz z liczb losowych, możesz zdecydować się na napisanie funkcji, która pomoże
w generowaniu losowej liczby całkowitej z określonego zakresu, na przykład od 1 do
6 lub od 100 do 1000. Przedstawiona poniżej funkcja wymaga przekazania dwóch
argumentów. Pierwszy z nich określa najniższą możliwą wartość zakresu (na przy-
kład 1), a drugi — wartość maksymalną (na przykład 6):

function rndNum(from, to) {
 return Math.floor((Math.random()*(to - from + 1)) + from);
}

Aby skorzystać z tej funkcji, dodaj ją do swojej strony WWW (zgodnie z informacjami
zamieszczonymi na stronie 115) i wywołaj, tak jak w następującym przykładzie:

var dieRoll = rndNum(1,6); // generacja liczby losowej z zakresu od 1 do 6

Daty i godziny
Jeśli chcemy śledzić aktualną datę i godzinę, musimy skorzystać z obiektu Date.
Ten specjalny obiekt języka JavaScript pozwala określać rok, miesiąc, dzień tygodnia,
godzinę oraz wiele innych informacji związanych z datą i czasem. Aby z niego sko-
rzystać, należy utworzyć zmienną i zapisać w niej nowy obiekt Date, zgodnie z po-
niższym przykładem:

var new = new Date();

Instrukcja new Date() tworzy nowy obiekt Date zawierający aktualną datę i godzi-
nę. Po utworzeniu można pobierać z niego różne informacje, wywołując w tym celu
odpowiednie metody (opisane w tabeli 16.3). Aby pobrać aktualny rok, można
użyć następującego fragmentu kodu:

var now = new Date();
var year = now.getFullYear();

R O Z D Z I AŁ 1 6 . Z A A W A N S O W A N E T E C H N I K I JĘZ Y K A J A V A S C R I P T

Daty i godziny

593

Tabela 16.3. Metody służące do pobierania informacji z obiektu Date

Metoda Zwraca

getFullYear() rok; na przykład 2014.

getMonth() miesiąc wyrażony jako liczba z zakresu od 0 do 11:
0 odpowiada styczniowi, a 11 grudniowi.

getDate() dzień miesiąca — jest to liczba z zakresu od 1 do 31.

getDay() dzień tygodnia — jest to liczba z zakresu od 0 do 6;
przy czym 0 oznacza niedzielę, a 6 sobotę.

getHours() godzinę wyrażoną jako liczba z zakresu od 0 do 23.

getMinutes() minuty, jako liczbę z zakresu od 0 do 59.

getSecond() sekundy, jako liczbę z zakresu od 0 do 59.

getTime() całkowitą liczbę milisekund, jaka upłynęła od 1 stycznia 1970 roku
(więcej informacji na ten temat można znaleźć w ramce na stronie 595).

Uwaga: Instrukcja new Date() pobiera aktualną datę i godzinę według ustawień na komputerze

użytkownika. Innymi słowy, jeśli zegar systemowy w komputerze użytkownika nie jest prawidłowo

ustawiony, także pobierane informacje o dacie i godzinie nie będą dokładne.

Pobieranie miesiąca
Aby pobrać datę z wykorzystaniem obiektu Date, należy posłużyć się funkcją
getMonth(), która zwraca numer miesiąca:

var now = new Date();
var month = now.getMonth();

Jednak zamiast zwracać liczbę, która byłaby sensowna dla nas — ludzi — (czyli 1 dla
miesiąca stycznia), metoda ta zwraca wartość o jeden mniejszą. I tak dla stycznia
metoda ta zwróci wartość 0, dla lutego — 1 i tak dalej. Jeśli zatem chcemy uzyskać
liczbę odpowiadającą tradycyjnie używanej numeracji miesięcy, do wyniku zwróco-
nego przez metodę getMonth() należy dodać 1:

var now = new Date();
var month = now.getMonth()+1; // odpowiada faktycznej numeracji miesięcy

JavaScript nie udostępnia żadnego mechanizmu pozwalającego na pobieranie nazw
miesięcy. Na szczęście, dziwaczny sposób numeracji miesięcy używany w metodzie
getMonth() okazuje się bardzo wygodny przy określaniu ich nazw. W celu podania
nazw miesięcy należy je najpierw zapisać w tablicy, a następnie pobierać z niej przy
użyciu jako indeksu liczby zwróconej przez metodę getMonth():

var months = ['styczeń','luty','marzec','kwiecień','maj',
 'czerwiec','lipiec','sierpień','wrzesień',
 'październik','listopad','grudzień'];
var now = new Date();
var month = months[now.getMonth()];

Wiersz 1. powyższego kodu tworzy tablicę zawierającą nazwy wszystkich dwunastu
miesięcy, zapisane w prawidłowej kolejności, czyli od stycznia do grudnia. Należy

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Daty i godziny

594

pamiętać, że w celu pobrania wartości elementu tablicy należy podać jego indeks
oraz że indeksy tablicy zaczynają się od wartości 0 (patrz strona 79). A zatem, by
pobrać pierwszy element tablicy months, trzeba użyć wyrażenia months[0]. Oznacza
to, że korzystając z metody getMonth(), możemy uzyskać liczbę, której następnie
będziemy mogli użyć jako indeksu do tablicy months i pobrać nazwę miesiąca.

Określanie dnia tygodnia
Metoda getDay() zwraca numer dnia tygodnia. Podobnie jak to było w metodzie
getMonth(), także i tutaj interpreter JavaScriptu zwraca liczbę o jeden mniejszą, niż
można by się spodziewać: 0 odpowiada niedzieli (która w USA i niektórych innych
krajach jest traktowana jako pierwszy dzień tygodnia), a 6 — sobocie. Ponieważ
jednak nazwa dnia tygodnia jest zazwyczaj bardziej użyteczna niż jego numer, za-
tem możemy zapisać te nazwy w tablicy i do ich pobierania używać metody getDay():

var days = ['niedziela','poniedziałek','wtorek','środa',
 'czwartek','piątek','sobota'];
var now = new Date();
var dayOfWeek = days[now.getDay()];

Pobieranie czasu
Obiekt Date() zawiera także informacje o czasie, a zatem można go wyświetlić na
stronie bądź użyć do określenia, czy użytkownik wyświetla stronę przed południem,
czy po południu. Następnie można te informacje w jakiś sposób wykorzystać — na
przykład wyświetlić obraz tła ze słońcem w czasie dnia lub z księżycem w nocy.

Do pobierania liczby godzin, minut i sekund można użyć metod getHours(),
getMinutes() oraz getSeconds(). Aby wyświetlić czas na stronie WWW, w wy-
branym miejscu jej kodu HTML należy dodać poniższy fragment kodu JavaScriptu:

var now = new Date();
var hours = now.getHours();
var minutes = now.getMinutes();
var seconds = now.getSeconds();
document.write(hours + ":" + minutes + ":" + seconds);

Powyższy fragment kodu generuje czas zapisany w formacie 6:35:51 oznaczający
godzinę 6, 35 minut oraz 51 sekund. Jednak wygeneruje także czas zapisany jako
18:23:42 reprezentujący godzinę szóstą po południu, 23 minuty i 42 sekundy.
Problem polega jednak na tym, że w dobie zegarków elektronicznych sporo osób
może być przyzwyczajonych do wyrażania czasu w formie 12-godzinnej, gdzie zapis
10:34 p.m. odpowiada godzinie 22:34. Kolejnym problemem jest to, że podczas za-
pisu czasu godziny i minuty zawsze powinny być zapisywane przy użyciu dwóch
cyfr (nawet jeśli ich wartość jest mniejsza od 10), na przykład: 6:04:09. Na szczęście
powyższy przykład stosunkowo łatwo można zmodyfikować i dostosować do pre-
zentowania czasu w zapisie 12-godzinnym.

R O Z D Z I AŁ 1 6 . Z A A W A N S O W A N E T E C H N I K I JĘZ Y K A J A V A S C R I P T

Daty i godziny

595

P O R A D N I A D L A Z A A W A N S O W A N Y C H

Tajemnice obiektu Date
JavaScript pozwala na dostęp do poszczególnych ele-

mentów obiektu Date, takich jak numer roku, dnia lub

miesiąca. Jednak w rzeczywistości interpreter JavaScrip-

tu myśli o tej dacie jak o liczbie m lisekund, jakie upły-

nęły od północy 1 stycznia 1970 roku. Przykładowo

poniedziałek 1 grudnia 2014 roku jest reprezentowa-

ny jako liczba 1417388400000.

Nie, to nie żart. Z punktu widzenia interpretera Java-

Scriptu początkiem czasu jest 1 stycznia 1970 roku

według uniwersalnego czasu koordynowanego (który

w większości przypadków pokrywa się z czasem GMT).

Ta data (nazywana także „epoką Uniksa”) została celowo

wybrana w latach 70. ubiegłego wieku przez progra-

mistów tworzących system operacyjny Unix, po to by

wszyscy mogli używać tego samego sposobu zapisu

czasu. Od tamtej pory ten sposób reprezentacji czasu stał

się popularny i jest używany w wielu językach programo-

wania oraz na wielu platformach komputerowych.

Za każdym razem, gdy używamy jakiejś metody obiektu

Date, takiej jak getFullYear(), interpreter Java-

Scriptu wykonuje obliczenia matematyczne (bazujące na

liczbie sekund, jaka upłynęła od 1 stycznia 1970 roku),

by określić, jaki rok ten obiekt reprezentuje. Aby pobrać

liczbę milisekund dla danej daty, wystarczy wywołać me-

todę getTime():

var sometime = new Date();
var msElapsed = sometime.getTime();

Przechowywanie informacji o datach i czasie w formie

milisekund sprawia, że bardzo łatwo można obliczać róż-

nice między dwiema datami. Aby obliczyć liczbę dni do

nowego roku, wystarczy pobrać liczbę milisekund od

1 stycznia 1970 do 1 stycznia następnego roku i odjąć

od niej liczbę milisekund od 1 stycznia 1970 roku do

dnia dzisiejszego.

// liczba milisekund od 1.1.1970 do dnia dzisiejszego
var today = new Date();
// liczba milisekund od 1.1.1970 do następnego nowego roku
var nextYear = new Date(2015,0,1);
// obliczenie różnicy milisekund pomiędzy dniem dzisiejszym
// i następnym nowym rokiem
var timeDiff = nextYear - today;

W efekcie odjęcia od siebie dwóch dat uzyskujemy licz-

bę milisekund stanowiącą różnicę pomiędzy nimi. Aby

przekształcić ją w jakąś użyteczną informację, należy ją

podzielić przez liczbę milisekund w jednym dniu (by

określić liczbę dni) lub liczbę milisekund w godzinie (by

określić liczbę godzin) i tak dalej.

var second = 1000; // sekunda to 1000 millisekund
var minute = 60*second; // 60 sekund to minuta
var hour = 60*minute; // 60 minut to godzina
var day = 24*hour; // 24 godziny to jedna doba
var totalDays = timeDiff/day; // sumaryczna
 // liczba dni

(W tych przykładach mogłeś zauważyć inny sposób two-

rzenia obiektu daty: new Date(2015,0,1). Więcej in-

formacji na jego temat można znaleźć na stronie 597.

Zmiana godzin do formatu 12-godzinnego

Aby zmienić czas z formatu 24-godzinnego na 12-godzinny, należy wykonać kilka
operacji. Przede wszystkim trzeba sprawdzić, czy czas reprezentuje godziny przed-
południowe (aby dodać do niego oznaczenie 'am'), czy też popołudniowe (by dodać
do niego oznaczenie 'pm'). Poza tym, liczbę godzin większą od 12 należy zmienić
na ich 12-godzinny odpowiednik (na przykład zmienić 14 na 2 p.m.).

Poniższy fragment kodu wykonuje taką konwersję:
1 var now = new Date();
2 var hour = now.getHours();
3 var am_pm;
4 if (hour < 12) {
5 am_pm = 'am';
6 } else {
7 am_pm = 'pm';
8 }
9 hour = hour % 12;
10 if (hour==0) {
11 hour = 12;
12 }
13 hour = hour + ' ' + am_pm;

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Daty i godziny

596

Uwaga: Kolumna liczb widoczna z lewej strony to tylko numeracja wierszy kodu, zamieszczona po to,

by łatwiej było analizować opisywany kod. Nie należy przepisywać tych liczb do własnego kodu.

Wiersze 1. i 2. pobierają aktualną datę oraz czas i zapisują aktualną godzinę w zmien-
nej hour. Wiersze od 3. do 7. sprawdzają, czy godzina wypada przed południem, czy
po południu; jeśli jest mniejsza od 12 (godzinie bezpośrednio po północy odpo-
wiada liczba 0), to znaczy, że mamy rano (a.m.), w przeciwnym razie mamy popo-
łudnie (p.m.).

W wierszu 8. został zastosowany operator modulo, reprezentowany przez znak pro-
centa (%). Operator ten zwraca resztę z dzielenia dwóch liczb. Przykładowo w przy-
padku dzielenia 5 przez 2 dwójka mieści się w liczbie 5 dwa razy (2 * 2 = 4) i pozo-
staje reszta o wartości 1. Innymi słowy 5 % 2 = 1. Wracając do naszego przykładu
z przeliczaniem godzin, jeśli mamy godzinę 18, to 18 % 12 wynosi 6 (12 mieści się
w 18 jeden raz i pozostaje reszta 6). A zatem, godzina 18 to inaczej 6 p.m., czyli do-
kładnie taka, jaką chcieliśmy uzyskać. Jeśli pierwsza wartość jest mniejsza od
wartości umieszczonej z prawej strony operatora modulo, wynikiem działania jest
pierwsza wartość, na przykład 8 % 12 daje 8. Innymi słowy, w naszym przypadku
operator modulo nie zmienia godzin przed południem.

W wierszach od 9. do 11. uwzględniamy dwa możliwe wyniki działania operatora
modulo. Jeśli mamy godzinę 12 (południe) lub 0 (północ), operator modulo zwróci
wartość 0. W tych przypadkach ustawiamy godzinę na 12 — odpowiednio 12 p.m.
oraz 12 a.m.

I w końcu, w wierszu 12. dodajemy do przeliczonej godziny odpowiednią końcówkę
— am lub pm — dzięki czemu godzina zostanie wyświetlona w oczekiwanej po-
staci: 6 am lub 6 pm .

Dopełnianie pojedynczych cyfr
Zgodnie z informacjami podanymi na poprzedniej stronie, kiedy wartości minut lub
sekund są mniejsze od 10, może się okazać, że prezentowane dane zostaną wyświe-
tlone w dziwnej postaci, takiej jak 7:3:2. Aby rozwiązać ten problem i wyświetlać
czas w oczekiwanej postaci, czyli jako 7:03:02, przed pojedynczymi cyframi minut
i sekund należy dodawać zero. Można to zrobić bardzo łatwo przy użyciu prostej in-
strukcji warunkowej:

1 var minutes = now.getMinutes();
2 if (minutes<10) {
3 minutes = '0' + minutes;
4 }

W wierszu 1. pobieramy minuty z aktualnego czasu, uzyskując na przykład wartość
33 lub 3. W wierszu 2. sprawdzamy, czy pobrana wartość jest mniejsza od 10, co by
oznaczało, że jest pojedynczą cyfrą i wymaga dodania zera na początku. Instrukcja
umieszczona w wierszu 3. jest nieco bardziej złożona, gdyż normalnie nie można
dodać zera przed liczbą: 0 + 2 daje 2, a nie 02. Jednak nic nie stoi na przeszkodzie,
by w taki sposób dodawać do siebie łańcuchy znaków, a zatem '0' + minutes ozna-
cza: połącz łańcuch znaków '0' z wartością zmiennej minutes. Zgodnie z informa-
cjami podanymi na stronie 70, w przypadku dodawania łańcucha znaków do liczby
interpreter JavaScriptu konwertuje tę liczbę na łańcuch znaków, w efekcie uzysku-
jemy łańcuch, taki jak '08'.

R O Z D Z I AŁ 1 6 . Z A A W A N S O W A N E T E C H N I K I JĘZ Y K A J A V A S C R I P T

Daty i godziny

597

Teraz możemy połączyć wszystkie te elementy i napisać prostą funkcję, która wy-
świetla czas w postaci: 7:32:04 p.m. lub 4:02:34 a.m bądź nawet całkowicie pomija
sekundy i zwraca czas w postaci 7:23 p.m.:

function getTime(secs) {
 var sep = ':'; // znak separatora
 var hours, minutes, seconds, time;
 var now = new Date();
 var am_pm;
 hours = now.getHours();
 if (hours < 12) {
 am_pm = 'am';
 } else {
 am_pm = 'pm';
 }
 hours = hours % 12;
 if (hours==0) {
 hours = 12;
 }
 time = hours;
 minutes = now.getMinutes();
 if (minutes<10) {
 minutes = '0' + minutes;
 }
 time += sep + minutes;
 if (secs) {
 seconds = now.getSeconds();
 if (seconds<10) {
 seconds = '0' + seconds;
 }
 time += sep + seconds;
 }
 return time + ' ' + am_pm;
}

Kod tej funkcji można znaleźć przykładach do książki, w pliku getTime.js umiesz-
czonym w katalogu R16. Jego działanie można natomiast sprawdzić, wyświetlając
w przeglądarce przykładowy plik time.html (umieszczony w tym samym katalogu).
Aby skorzystać z tej funkcji, należy dołączyć plik getTime.js do strony bądź też
skopiować kod i umieścić go bezpośrednio na swojej stronie lub w innym zewnętrz-
nym pliku JavaScript. Aby wyświetlić czas, wystarczy wywołać funkcję getTime().
Jeśli chcemy wyświetlać także sekundy, możemy wywołać funkcję w następu-
jący sposób: getTime(true). Funkcja zwróci bieżący czas zapisany w formacie
12-godzinnym.

Tworzenie daty innej niż bieżąca
Dowiedziałeś się, jak można tworzyć obiekt Date (new Date()) reprezentujący ak-
tualną datę i czas na komputerze użytkownika. A w jaki sposób można napisać
obiekt Date reprezentujący 1 stycznia następnego roku bądź Wigilię najbliższych
Świąt Bożego Narodzenia? JavaScript pozwala tworzyć takie daty na kilka różnych
sposobów. Możemy potrzebować takiej możliwości na przykład podczas wyliczania
różnicy pomiędzy dwiema datami, takiej jak „Ile dni pozostało do nowego roku?”.

W przypadku stosowania metody Date() można podać zarówno przeszłe, jak i przy-
szłe datę i czas. Składnia wywołania takich metod ma następującą postać:

new Date(rok, miesiac, dzien, godzina, minuta, sekunda, milisekunda);

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Daty i godziny

598

By na przykład uzyskać datę reprezentującą 1 stycznia 2015 roku, trzeba użyć na-
stępującego wywołania:

var ny2015 = new Date(2015,0,1,0,0,0);

Taki kod zostanie zinterpretowany w następujący sposób: „utwórz nowy obiekt Date
reprezentujący 1 stycznia 2015 roku o godzinie 0, minut 0 i 0 sekund”. W wywołaniu
w takiej postaci trzeba określić przynajmniej argumenty ustalające rok oraz miesiąc,
jeśli jednak informacje o czasie nie są potrzebne, to argumenty odpowiadające go-
dzinom, minutom, sekundom i milisekundom możemy pominąć. Aby na przykład
utworzyć obiekt daty reprezentujący 1 stycznia 2015 roku, możemy użyć wywoła-
nia w postaci:

var ny2015 = new Date(2015,0,1);

Uwaga: Koniecznie trzeba pamiętać, że w JavaScripcie styczniowi odpowiada wartość 0, lutemu

— 1 i tak dalej; informacje na ten temat można znaleźć na stronie 593.

Tworzenie daty z zadaną liczbą dni w przód

Zgodnie z informacjami podanymi w ramce na stronie 595, interpreter JavaScriptu
traktuje daty jako liczbę milisekund, która upłynęła od północy 1 stycznia 1970
roku, według uniwersalnego czasu koordynowanego (UTC). Kolejnym sposo-
bem utworzenia obiektu Date jest przekazanie w wywołaniu metody Date()
liczby milisekund:

new Date(milisekundy);

A zatem, datę 1 stycznia 2015 roku można także uzyskać w następujący sposób:
var ny2015 = new Date(1420066800000);

Oczywiście, większość z nas nie liczy jak kalkulatory, dlatego nie postrzegamy dat
w taki sposób. Jednak ten sposób tworzenia dat okazuje się bardzo przydatny, gdy
trzeba utworzyć nową datę przesuniętą o określony czas w stosunku do innej daty.
Podczas tworzenia w kodzie JavaScript cookie (ciasteczka) konieczne jest określenie
daty jego wygaśnięcia. Aby upewnić się, że cookie zostanie usunięte dokładnie za
tydzień, musimy podać datę przesuniętą o 7 dni w stosunku do dnia dzisiejszego.

Uwaga: Przedstawiony powyżej przykład — new Date(1420066800000); — nie zadziała we wszyst-

kich przypadkach. Działa on prawidłowo wyłącznie w środkowoeuropejskiej strefie czasowej, UTC+1,

czyli strefie czasowej, w której leży Polska. Dzieje się tak dlatego, że przeglądarki uwzględniają strefy

czasowe i dostosowują swój zegar na podstawie uniwersalnego czasu koordynowanego (UTC), zgodnie

z informacjami podanymi w ramce na stronie 595.

Aby utworzyć taką datę, należy użyć poniższego fragmentu kodu:
var now = new Date(); // data dzisiejsza
var nowMS = now.getTime(); // pobranie liczby milisekund dla daty bieżącej
var week = 1000*60*60*24*7; // liczba milisekund w tygodniu
var oneWeekFromNow = new Date(nowMS + week);

W 1. wierszu powyższego fragmentu kodu zapisujemy w zmiennej now bieżącą datę
i godzinę. W kolejnym wierszu za pomocą metody getTime() pobieramy liczbę mi-
lisekund, jakie upłynęły od 1 stycznia 1970 roku do dziś. W wierszu 3. obliczamy,

R O Z D Z I AŁ 1 6 . Z A A W A N S O W A N E T E C H N I K I JĘZ Y K A J A V A S C R I P T

Tworzenie wydajnego
kodu JavaScript

599

P O R A D N I A D L A Z A A W A N S O W A N Y C H

Obsługa różnych stref czasowych
Komputery robią coś więcej, niż jedynie śledzenie upływu
sekund, minut i dni. Muszą także koordynować swój
czas z czasem na innych komputerach działających na
całym świecie, w różnych strefach czasowych. W końcu
godzina 8 wieczorem w Moskwie nie jest godziną 8 wie-
czorem w San Francisco. Ponieważ oba te miasta znaj-
dują się niemal na przeciwnych stronach kuli ziemskiej,
a czas wschodów i zachodów słońca jest niemal odwrot-
ny, zatem godzina 8 po południu w Moskwie wypada
o godzinie 8 rano w San Francisco. (Bądź też, w przy-
padku czasu letniego, godzina 8 wieczorem w Moskwie
odpowiada godzinie 9 rano w San Francisco).

Aby ułatwić komputerom (i ludziom) z różnych stron
świata wzajemną synchronizację, programiści używają
konwencji określanej jako UTC — uniwersalny czas ko-
ordynowany. Ta strefa czasowa była niegdyś określana
jako GMT — Greenwich Mean Time — i odpowiada po-
łudnikowi o długości geograficznej 0 . Wszyscy, którzy nie
mieszkają w Anglii, Portugalii lub w krajach afrykańskich le-
żących na tej samej długości geograficznej, co Anglia,
mieszkają w krajach, których czas jest przesunięty
względem czasu UTC.

San Francisco leży w strefie czasowej UTC -8, co
oznacza, że jest tam o 8 godzin wcześniej, niż wynosi
czas UTC. Kiedy w Londynie jest godzina 9:15 wieczo-
rem, w San Francisco jest godzina 1:15 po południu.

Moskwa znajduje się w strefie czasowej UTC +4, a za-

tem kiedy w Londynie jest godzina 9:15 wieczorem,

w Moskwie jest godzina 1:15. (Choć godziny te będą

nieco inne w przypadku stosowania czasu letniego).

Obiekt Date udostępnia metodę pozwalającą na okre-

ślenie przesunięcia lokalnej strefy czasowej (czyli róż-

nicy pomiędzy czasem lokalnym oraz czasem UTC):
var now = new Date();
var offset = now.getTimezoneOffset();

Jeśli komputer będzie działał w San Francisco, wywo-

łanie tej metody zwróci wartość 480 lub 420. Wartość

ta reprezentuje całkowitą liczbę minut, jaka różni czas

lokalny komputera od czasu UTC. A zatem 480 odpo-

wiada 8 godzinom, a 420 — 7 godzinom (ta wartość

będzie zwracana w przypadku czasu letniego). Jeśli

w kraju zamieszkania jest stosowany czas letni, prze-

glądarka także to uwzględni (czyż komputery nie są

sprytne?).

Ogólnie rzecz biorąc, nie musimy się przejmować

uwzględnianiem stref czasowych. Kod JavaScript jest

wykonywany na komputerach użytkowników, a zatem,

w przypadku wykonywania obliczeń związanych z czasem,

takich jak wyświetlanie informacji, która jest godzina,

przeglądarka dostosuje się do strefy czasowej użyt-

kownika i wyświetli prawidłowy czas.

ile milisekund przypada na jeden tydzień (1000 milisekund * 60 sekund * 24 go-
dziny * 7 dni). I w końcu, w ostatnim wierszu tworzymy nową datę, dodając liczbę
milisekund w tygodniu do liczby milisekund reprezentującej datę bieżącą.

Uwaga: Obiekt Date języka JavaScript udostępnia wiele użytecznych metod służących do obliczania

dat i dostosowywania ich do różnych lokalizacji. Kompletną dokumentację tej klasy można znaleźć na

stronie https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date.

Tworzenie bardziej wydajnego kodu JavaScript

Programowanie wymaga dużo pracy. Programiści zawsze starają się wykonywać
zadania szybciej i w mniejszej liczbie wierszy kodu. Znanych jest wiele sztuczek
z tego obszaru, a poniżej opisano techniki szczególnie przydatne przy korzystaniu
z języka JavaScript i biblioteki jQuery.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Tworzenie wydajnego
kodu JavaScript

600

Zapisywanie ustawień w zmiennych
Jedną z ważnych lekcji dla programistów jest nauka usuwania zbędnych szczegółów
ze skryptów, co sprawia, że programy są bardziej elastyczne i łatwiejsze do aktu-
alizowania. Załóżmy, że kolor akapitu ma się zmienić na pomarańczowy, kiedy
użytkownik kliknie dany tekst. Możesz uzyskać ten efekt za pomocą funkcji css()
biblioteki jQuery (patrz strona 163):

$('p').click(function() {
 $(this).css('color','#F60');
});

Tu kolor pomarańczowy (#F60) jest na stałe zapisany w instrukcji. Przyjmijmy, że
chcesz użyć tej samej barwy także w innych fragmentach kodu (na przykład aby
dodać kolor tła po umieszczeniu kursora nad wierszem tabeli). Wydaje się, że
należy umieścić wartość #F60 także w tych instrukcjach. Jednak lepsze rozwiązanie
polega na zapisaniu koloru w zmiennej na początku skryptu i użyciu jej w dalszej
części programu:

1 $(document).ready(function() {
2 var hColor='#F60';
3 $('p').click(function() {
4 $(this).css('color',hColor);
5 });
6 $('td').hover(
7 function() {
8 $(this).css('backgroundColor',hColor);
9 },
10 function() {
11 $(this).css('backgroundColor','transparent');
12 }
13);
14 }); // Koniec funkcji ready.

Zmienna hColor przechowuje tu wartość szesnastkową reprezentującą kolor.
Zmiennej tej skrypt używa w zdarzeniu click znaczników <p> i zdarzeniu hover
tagów <td>. Jeśli później uznasz, że kolor pomarańczowy nie odpowiada Ci, możesz
zmienić wartość zapisaną w zmiennej, na przykład na var hColor='F33';, a skrypt
użyje nowej barwy.

Powyższy skrypt będzie bardziej elastyczny, jeśli zlikwidujesz powiązanie między
kolorami używanymi dla znaczników <p> i <td>. Obecnie dla obu tagów używana
jest ta sama barwa, jednak jeśli chcesz mieć możliwość zastosowania w przyszłości
dwóch odrębnych kolorów, możesz dodać do kodu nową zmienną:

1 $(document).ready(function() {
2 var pColor='#F60';
3 var tdColor=pColor;
4 $('p').click(function() {
5 $(this).css('color',pColor);
6 });
7 $('td').hover(
8 function() {
9 $(this).css('backgroundColor',tdColor);
10 },
11 function() {
12 $(this).css('backgroundColor','transparent');
13 }
14);
15 }); // Koniec funkcji ready.

R O Z D Z I AŁ 1 6 . Z A A W A N S O W A N E T E C H N I K I JĘZ Y K A J A V A S C R I P T

Tworzenie wydajnego
kodu JavaScript

601

Teraz zdarzenia click i hover korzystają z tego samego koloru #F60, ponieważ
skrypt przypisuje w 3. wierszu wartość zmiennej pColor do zmiennej tdColor.
Jeśli jednak w przyszłości zechcesz nadać komórkom tabeli inną barwę, wystarczy
zmienić wiersz 3.:

var tdColor='#FF3';

W czasie tworzenia programów JavaScript staraj się przekształcać nazwy bezpo-
średnio używane w programie na zmienne. Dobrymi kandydatami na to są: kolory,
czcionki, wymiary (szerokość i wysokość), czas (na przykład 1000 milisekund),
nazwy plików (graficznych i innych), tekst komunikatów (z ramek ostrzegawczych
i okien z potwierdzeniami) oraz ścieżki do plików (na przykład w odnośnikach
i znacznikach):

var highlightColor = '#33A';
var upArrow = 'ua.png';
var downArrow='da.png';
var imagePath='/images/';
var delay=1000;

Takie definicje zmiennych należy umieścić na początku skryptu lub — jeśli używasz
jQuery — w funkcji .ready().

Wskazówka: Szczególnie przydatne jest umieszczanie w zmiennych tekstu, który chcesz wyświe-

tlać na stronie. Są to na przykład komunikaty o błędach („Podaj prawidłowy adres e-mail”) lub infor-

macje („Dziękujemy za podanie adresu e-mail”). Jeśli zgrupujesz takie wiadomości w formie zmien-

nych na początku skryptu, w przyszłości będziesz mógł je łatwo zmodyfikować (lub przetłumaczyć,

jeżeli zechcesz dotrzeć do użytkowników z innych państw).

Zapisywanie ustawień w obiektach
Istnieje także nieco bardziej zaawansowany sposób przechowania ustawień: z wy-
korzystaniem obiektów JavaScript. Zgodnie z informacjami podanymi na stronie
165, literały obiektowe w języku JavaScript pozwalają na przechowywanie w jed-
nym obiekcie par nazwa – wartość (lub klucz – wartość). W ostatnim przykładzie
przedstawionym w poprzednim punkcie rozdziału do zachowania często używa-
nych wartości, takich jak kolory, ścieżki do obrazów, nazwy ikon i tym podobne,
wykorzystanych zostało wiele niezależnych zmiennych. Takie rozwiązanie jest
pod każdym względem prawidłowe, jednak wszystkie te niezależne wartości można
grupować i umieścić w jednym obiekcie, a następnie odwoływać się do nich, tak
jak do właściwości, wykorzystując w tym celu zapis z kropką (patrz strona 87).

Przykładowo listę pięciu zmiennych z poprzedniego punktu rozdziału można by
zapisać w formie jednego obiektu w następujący sposób:

var siteSettings = {
 highlightColor: '#33A',
 upArrow: 'ua.png',
 downArrow:'da.png',
 imagePath: '/images/',
 delay: 1000
}

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Tworzenie wydajnego
kodu JavaScript

602

Jeśli zastosowany zostanie ten zapis, wartości nie będą kojarzone z nazwami
właściwości przy użyciu znaku równości, dlatego zamiast zapisu upArrow =
'ua.png' będzie użyty zapis upArrow: 'ua.png', a poszczególne pary nazwa –
wartość będą od siebie oddzielane przecinkami (przy czym za ostatnią parą prze-
cinka nie należy umieszczać). Aby użyć takich ustawień w kodzie programu,
należy odwoływać się do poszczególnych właściwości obiektu przy użyciu zapisu
z kropką. Aby na przykład pobrać wartość właściwości highlightColor, należa-
łoby użyć następującego wyrażenia:

siteSettings.highlightColor

Powyższe rozwiązanie ma kilka zalet. Przede wszystkim zapewnia lepszą organi-
zację kodu niż stosowanie grupy niezależnych zmiennych. Wszystkie ustawienia
są zapisywane w jednym obiekcie, umieszczonym w jednym miejscu kodu. Po
drugie pozwala uniknąć problemu polegającego na nadaniu tej samej nazwy dwóm
różnym zmiennym. Przykładowo nazwa „delay” jest dosyć ogólna. Jeśli na po-
czątku swojego kodu utworzysz zmienną delay, a później, w jakimś jego innym
miejscu, utworzysz kolejną zmienną o tej samej nazwie służącą do przechowywania
jakiegoś ustawienia, pierwsza zmienna delay zostanie usunięta. Jeśli jednak usta-
wienie o nazwie delay zostanie zapisane w obiekcie — jako siteSettings.delay
— nie będzie kolidowało z żadną inną zmienną używaną w programie.

Uwaga: Być może pamiętasz, że na stronie 265 wspominano o wtyczkach jQuery, które używają lite-

rałów obiektowych do przekazywania informacji konfiguracyjnych. Także widżety jQuery UI (przedsta-

wione w rozdziałach 10. i 11.) korzystają z literałów obiektowych do przekazywania informacji kontro-

lujących ich wygląd i działanie.

Operator trójargumentowy
Często wykonywaną operacją programistyczną jest przypisywanie wartości do
zmiennej na podstawie określonego warunku. Załóżmy, że chcesz określić wartość
zmiennej zawierającej tekst z informacją o tym, czy użytkownik jest zalogowany.
W skrypcie znajduje się zmienna logiczna login. Ma ona wartość true, jeśli użyt-
kownik się zalogował, i false, jeżeli jest niezalogowany. Oto jeden ze sposobów
na utworzenie nowej zmiennej:

var status;
if (login) {
 status='Zalogowany';
} else {
 status='Niezalogowany';
}

Tu prosta instrukcja warunkowa (patrz strona 93) ustawia wartość zmiennej
status w zależności od tego, czy użytkownik jest zalogowany, czy nie. JavaScript
udostępnia skrótowy zapis tej często używanej konstrukcji. Jest to tak zwany opera-
tor trójargumentowy. Umożliwia on tworzenie prostych instrukcji warunkowych
w jednym wierszu. Składnia tego operatora wygląda następująco:

warunek ? A : B

R O Z D Z I AŁ 1 6 . Z A A W A N S O W A N E T E C H N I K I JĘZ Y K A J A V A S C R I P T

Tworzenie wydajnego
kodu JavaScript

603

Jeśli warunek ma wartość true, instrukcja zwróci A, a jeśli wartość warunku to
false, zwrócone zostanie B (znak ? poprzedza wynik dla wartości true, natomiast
po symbolu : znajduje się rezultat zwracany dla wartości false). Dlatego wcze-
śniejszy fragment można zapisać także w poniższy sposób:

var status = login ? 'Zalogowany' : 'Niezalogowany';

Sześć wierszy kodu można więc przekształcić na jeden. Na rysunku 16.6 pokazano
jego działanie.

Rysunek 16.6. Operator trójargumen-
towy pozwala tworzyć jednowierszowe
instrukcje warunkowe. Tu punkt 1 ozna-
cza warunek. Jeśli jest on spełniony,
instrukcja zwróci kod po znaku ?
(punkt 2). Jeśli warunek jest fałszywy,
zwrócony zostanie kod po symbolu :
(punkt 3)

Operator trójargumentowy to tylko skrót. Nie musisz go używać, a niektórzy pro-
gramiści uważają, że technika ta utrudnia zrozumienie kodu, dlatego wolą stoso-
wać bardziej czytelne instrukcje if-else. Ponadto operator trójargumentowy naj-
lepiej nadaje się do określania wartości zmiennych na podstawie warunku.
Techniki tej nie można użyć dla każdej instrukcji warunkowej. Na przykład nie
można zastosować jej w instrukcjach wielowierszowych, w których należy uru-
chomić kilka wierszy kodu na podstawie wartości warunku. Jednak nawet jeśli nie
będziesz korzystał z operatora trójargumentowego, warto znać jego działanie.
Dzięki temu łatwiej będzie Ci zrozumieć skrypty innych programistów, które praw-
dopodobnie będziesz często przeglądał.

Instrukcja Switch
Jest wiele postaci instrukcji warunkowych. Operator trójargumentowy doskonale
nadaje się do przypisywania wartości zmiennych na podstawie warunku, natomiast
instrukcja switch to bardziej zwięzły sposób zapisu zbioru instrukcji if-else opar-
tych na wartości jednej zmiennej.

Załóżmy, że użytkownik może podać w polu formularza ulubiony kolor, a skrypt ma
wyświetlić wiadomość dostosowaną do danej barwy. Za pomocą standardowej in-
strukcji warunkowej można to zapisać w następujący sposób:

if (favoriteColor == 'niebieski') {
 message = 'Niebieski to zimny kolor.';
} else if (favoriteColor == 'czerwony') {
 message = 'Czerwony to ciepły kolor.';
} else if (favoriteColor == 'zielony') {
 message = 'Zielony to kolor liści.';
} else {
 message = 'Co to za kolor?';
}

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Tworzenie wydajnego
kodu JavaScript

604

Zauważ, że wielokrotnie pojawia się tu fragment favoriteColor == 'wartość'.
Występuje on trzykrotnie w dziewięciu wierszach kodu. Jeśli chcesz wielokrotnie
sprawdzić wartość danej zmiennej, bardziej eleganckie (i czytelne) będzie użycie
instrukcji switch. Jej podstawową strukturę przedstawiono na rysunku 16.7.

Rysunek 16.7. Instrukcja switch
pozwala w zwięzły sposób wykonać
różne operacje w zależności
od wartości zmiennej. Nie zapo-
mnij o poleceniu break; na końcu
każdego warunku. Umożliwia ono
opuszczenie instrukcji switch

Pierwszy wiersz instrukcji switch rozpoczyna się od słowa kluczowego switch.
Po nim następuje nazwa zmiennej w nawiasach i otwierający nawias klamrowy. Kod
ten oznacza: „Sprawdźmy, czy wartość danej zmiennej pasuje do jednej z podanych
dalej wartości”. Każda operacja porównywania wartości to warunek (instrukcja
switch może zawierać ich wiele). Na rysunku 16.7 znajdują się trzy warunki
o numerach od 1 do 3. Podstawowa struktura warunku wygląda następująco:

case wartość1:
 // Wykonaj operacje.
 break;

Słowo kluczowe case oznacza początek warunku. Następnie znajduje się wartość
i dwukropek. Ten wiersz to skrót dłuższego zapisu if (zmienna=='wartość1').
Wartością może być liczba, łańcuch znaków lub wartość logiczna (albo zmienna
zawierająca dane dowolnego z tych typów). Jeśli chcesz sprawdzić, czy zmienna ma
wartość 37, możesz użyć poniższego testu:

case 37:
 // Wykonaj operacje.
 break;

Aby sprawdzić, czy zmienna zawiera wartość true, należy użyć następującego kodu:
case true:
 // Wykonaj operacje.
 break;

Po pierwszym wierszu należy dodać instrukcje wykonywane, jeśli warunek jest
spełniony. Na końcu trzeba umieścić instrukcję break;. To ważne — instrukcja
break; powoduje zakończenie wykonywania instrukcji switch. Jeśli ją pominiesz,

R O Z D Z I AŁ 1 6 . Z A A W A N S O W A N E T E C H N I K I JĘZ Y K A J A V A S C R I P T

Tworzenie wydajnego
kodu JavaScript

605

interpreter przejdzie do sprawdzania następnych warunków! Innymi słowy, kie-
dy interpreter JavaScript dopasuje warunek catch, przestanie już sprawdzać ko-
lejne warunki i wykona cały kod umieszczony w dalszej części instrukcji switch.

Oto jak za pomocą instrukcji switch można przekształcić kod instrukcji if-else ze
strony 603:

switch (favoriteColor) {
 case 'niebieski':
 message = 'Niebieski to zimny kolor.';
 break;
 case 'czerwony':
 message = 'Czerwony to ciepły kolor.';
 break;
 case 'zielony':
 message = 'Zielony to kolor liści.';
 break;
 default:
 message = 'Co to za kolor?';
}

Ten kod działa tak samo jak wcześniejsza instrukcja if-else, jednak jest bardziej
zrozumiały i nie wymaga stosowania powtarzających się warunków (takich jak if
(favouriteColor === blue)).

Możesz też umieścić kilka warunków case jeden pod drugim (i celowo pominąć
słowo kluczowe default), aby uruchomić ten sam kod dla kilku różnych wartości,
na przykład:

switch (favoriteColor) {
 case 'granatowy':
 case 'niebieski':
 case 'indygo':
 message = 'Niebieski to zimny kolor.';
 break;

 case 'czerwony':
 message = 'Czerwony to ciepły kolor.';
 break;
 case 'zielony':
 message = 'Zielony to kolor liści.';
 break;
 default:
 message = 'Co to za kolor?';
}

Odpowiada to zapisowi if (favoriteColor == 'granatowy' || favoriteColor
== 'niebieski' || favoriteColor == 'indygo') w instrukcji if-else.

Łączenie tablic i dzielenie łańcuchów znaków
Tablice w języku JavaScript można porównać do list zakupów. Są to kolejne war-
tości zapisane wewnątrz jednej zmiennej. Przykładowo tablicę zawierającą na-
zwy wszystkich dni tygodnia można utworzyć w następujący sposób:

var days = ['poniedziałek','wtorek','środa','czwartek','piątek',
'sobota','niedziela'];

Każdy element takiej listy jest niezależną wartością, do której można się odwo-
ływać, używając charakterystycznego dla tablic zapisu, opisanego na stronie 79.

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Łączenie różnych
elementów

606

Aby odwołać się do pierwszego elementu na liście, musiałbyś użyć wyrażenia
days[0]. Od czasu do czasu może się jednak zdarzyć, że będziesz chciał pobrać
wszystkie elementy listy w formie jednego łańcucha znaków. Takie rozwiązanie
może się przydać na przykład do wyświetlenia całej zawartości tablicy. Możesz to
zrobić, korzystając z metody join(). Ta metoda języka JavaScript pobiera wszystkie
elementy przechowywane w tablicy i zamienia je w jeden łańcuch znaków. W tym
łańcuchu wszystkie elementy tablicy są oddzielone przecinkami bądź też innym
separatorem określonym w wywołaniu metody, na przykład tak:

var weekdays = days.join(); // poniedziałek,wtorek,środa…

Jeśli w wywołaniu metody join() nie przekażesz żadnego argumentu, poszcze-
gólne elementy tablicy będą od siebie oddzielone przecinkami. Istnieje jednak
możliwość określenia innego separatora:

var weekdays = days.join(':'); // poniedziałek wtorek środa…

JavaScript nie dodaje żadnych odstępów pomiędzy elementami tablicy oraz sepa-
ratorami, a zatem, jeśli chcesz, by elementy były oddzielone na przykład zna-
kiem przecinka i odstępem, konieczne będzie przekazanie łańcucha ', ' w wy-
wołaniu metody join():

var weekdays = days.join(', '); // poniedziałek, wtorek, środa…

Z drugiej strony, jeśli tylko łańcuch znaków zawiera jakieś separatory określają-
ce początek i koniec elementów, możesz go przekształcić na tablicę, używając
metody split(). Przykładowo załóżmy, że dysponujesz następującym łańcuchem
znaków:

var weekdays =

 'poniedziałek,wtorek,środa,czwarek,piątek,sobota,niedziela';

Taki łańcuch możesz podzielić na części i przekształcić w tablicę, używając na-
stępującego wywołania:

var dayList = weekdays.split(','); // teraz dayList zawiera tablicę
 // składającą się z 7 elementów.

Łączenie różnych elementów
Wiesz już, że język JavaScript umożliwia wykonywanie wielu zadań. Niektóre z nich
to: walidacja formularzy, dodawanie efektu podmiany rysunków, tworzenie galerii
zdjęć lub wzbogacanie interfejsu użytkownika (na przykład o zestawy kart lub
akordeony). Możesz się jednak zastanawiać, jak połączyć wszystkie te elementy w jed-
nej witrynie. W końcu kiedy zaczniesz korzystać z języka JavaScript, prawdopodobnie
zechcesz usprawnić każdą stronę witryny. Oto kilka wskazówek ułatwiających ko-
rzystanie w witrynie z wielu skryptów.

Używanie zewnętrznych plików JavaScript
Na stronie 49 dowiedziałeś się, że zewnętrzne pliki JavaScript umożliwiają wydajne
używanie tego samego kodu JavaScript na różnych stronach witryny. Technika ta
ułatwia aktualizowanie kodu JavaScript. Jeśli będziesz musiał to zrobić, wystarczy

R O Z D Z I AŁ 1 6 . Z A A W A N S O W A N E T E C H N I K I JĘZ Y K A J A V A S C R I P T

Łączenie różnych
elementów

607

zmodyfikować (lub naprawić) jeden plik. Ponadto pobrany plik JavaScript jest zapi-
sywany w pamięci podręcznej przeglądarki, dlatego nie trzeba go wczytywać po raz
drugi. Dzięki temu strony reagują szybciej i są krócej wczytywane.

Przy korzystaniu z bibliotek języka JavaScript (takich jak jQuery) zewnętrzne pliki
JavaScript są niezbędne. Strony byłyby bardzo duże i trudne w konserwacji, gdyby
na każdej z nich znalazł się kod JavaScript biblioteki jQuery. Także wtyczki są udo-
stępniane jako zewnętrzne pliki, dlatego trzeba je dołączyć do strony, aby można
było ich używać. Dołączanie zewnętrznych plików JavaScript jest bardzo proste:

<script src="js/jquery.min.js"></script>

Umieszczenie własnego kodu JavaScript w zewnętrznym pliku pomaga powtórnie
wykorzystać dany program i przyspiesza działanie witryny, jednak tylko wtedy, gdy
dany skrypt jest potrzebny na wielu stronach. Przypomnij sobie skrypt do walidacji
formularza, który utworzyłeś na stronie 311. Nie ma sensu umieszczać go w ze-
wnętrznym pliku, ponieważ wszystkie reguły walidacji i komunikaty o błędach są
specyficzne dla elementów formularza z danej strony, dlatego nie będą działać dla
formularza o innych polach. W podobnych sytuacjach najlepiej jest umieścić kod do
obsługi walidacji bezpośrednio na stronie.

Jednak wtyczki walidacyjnej, którą poznałeś na stronie 301, można użyć w dowol-
nym formularzu, dlatego warto umieścić ją w odrębnym pliku. To samo dotyczy
każdego kodu używanego w wielu miejscach. Na stronie 290 dowiedziałeś się, jak za
pomocą kodu JavaScript aktywować pierwsze pole formularza. Tę technikę możesz
zastosować w każdym formularzu. Podobnie rzecz się ma z metodą opisaną w ramce
na stronie 292. Rozwiązanie to zapobiega wielokrotnemu przesłaniu formularza,
kiedy użytkownik kilkakrotnie kliknie przycisk Wyślij, co może być przydatne na
wielu stronach. Te dwa skrypty warto umieścić w pojedynczym zewnętrznym pliku
(na przykład forms.js) z następującym kodem JavaScript:

1 $(document).ready(function() {
2 // Aktywowanie pierwszego pola tekstowego formularza.
3 $(":text")[0].focus();
4
5 // Wyłączanie przycisku przesyłania.
6 $('form').submit(function() {
7 var subButton = $(this).find(':submit');
8 subButton.attr('disabled',true);
9 subButton.val('...przesyłanie w toku...');
10 });
11 }); // Koniec funkcji ready.

Uwaga: Zgodnie z informacjami podanymi na stronie 190, dowolny kod JavaScript umieszczony

w sekcji <head> strony, który wymaga biblioteki jQuery, musi zostać umieszczony wewnątrz wywołania

funkcji $(document).ready(). Biblioteka jQuery zapewnia możliwość stosowania dowolnie wielu

wywołań tej funkcji. Możesz na przykład używać kilku zewnętrznych plików JavaScript, które wy-

konują różne operacje na stronie i w każdym z nich możesz umieścić odrębne wywołanie funkcji

$(document).ready(). Dodatkowo możesz umieścić wywołanie tej funkcji wewnątrz elementu

<script> na samej stronie. Biblioteka jQuery nie będzie miała żadnych problemów z takim kodem.

Jednak stosowania funkcji $(document).ready() można uniknąć, umieszczając znaczniki <script> na

samym końcu strony, bezpośrednio przed zamykającym znacznikiem </body>.

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Łączenie różnych
elementów

608

Używanie tego samego skryptu na wielu stronach wymaga odpowiedniego planu. Na
przykład wiersz 3. umieszcza kursor w pierwszym polu tekstowym na stronie. Prze-
ważnie ma to sens — warto aktywować pierwsze pole, aby użytkownik mógł zacząć
wypełniać formularz. Jednak jeśli na stronie znajduje się kilka formularzy, rozwią-
zanie może działać w niepożądany sposób.

Jeśli w górnej części strony umieścisz pole wyszukiwania, a poniżej odrębny for-
mularz do składania zamówień, kod z wiersza 3. aktywuje kontrolkę do wyszuki-
wania, a nie pierwsze pole tekstowe formularza zamówień. W takich przypadkach
trzeba zastanowić się nad takimi problemami i sprawić, aby skrypt umieszczał
kursor w odpowiednim miejscu. Oto dwa możliwe rozwiązania:

 Dodaj nazwę klasy do pola, które chcesz aktywować przy wczytywaniu strony.
Załóżmy, że przypiszesz polu tekstowemu klasę focus:

<input type="text" class="focus" name="firstName">

Następnie można użyć kodu JavaScript do aktywowania tego pola:
$('.focus').focus();

Aby użyć tej instrukcji, wystarczy dodać klasę focus do odpowiednich pól
tekstowych na wszystkich stronach z formularzem i dołączyć do każdej z nich
zewnętrzny plik JavaScript z tym kodem.

 Ten sam efekt możesz uzyskać przez dodanie nazwy klasy do samego znacznika
<form> i użycie poniższej instrukcji:

$('.focus :text')[0].focus();

Ten kod automatycznie aktywuje pierwsze pole tekstowe formularza klasy
focus. Zaletą tego podejścia jest to, że zawsze powoduje umieszczenie kursora
w pierwszym polu tekstowym, dlatego jeśli zmienisz układ formularza (na
przykład dodasz na jego początku kilka nowych pól tekstowych), skrypt ak-
tywuje odpowiednią kontrolkę, a nie inny obiekt klasy focus w dalszej części
strony.

Często zbiór skryptów jest potrzebny na wszystkich (lub prawie wszystkich) stronach
witryny. Możesz na przykład przygotować efekt podmienianych obrazków (patrz
strona 239), a także użyć języka JavaScript do wyświetlania odnośników do stron
zewnętrznych w nowym oknie (patrz strona 260). Wtedy warto utworzyć zewnętrzny
plik JavaScript ze wszystkimi skryptami działającymi w całej witrynie (możesz
nazwać go na przykład site_scripts.js lub po prostu site.js).

Uwaga: Biblioteka jQuery ma mechanizm zapobiegający zgłaszaniu niektórych usterek w kodzie

JavaScript. Język ten wygeneruje błąd, jeśli spróbujesz wykonać operację na nieistniejącym elemencie,

na przykład zechcesz pobrać pole tekstowe na stronie, która nie zawiera takiej kontrolki. Na szczęście

jQuery ignoruje takie problemy.

R O Z D Z I AŁ 1 6 . Z A A W A N S O W A N E T E C H N I K I JĘZ Y K A J A V A S C R I P T

Kod JavaScript o krótkim
czasie wczytywania

609

Tworzenie kodu JavaScript
o krótkim czasie wczytywania

Kiedy zaczniesz umieszczać skrypty w zewnętrznych plikach JavaScript, odwie-
dzający odczują przyspieszenie wczytywania stron witryny. Dzięki pamięci pod-
ręcznej przeglądarki po pobraniu zewnętrznych plików JavaScript dla jednej strony
witryny nie trzeba ponownie wczytywać ich dla następnych stron. Jednak istnieje
też inny sposób na przyspieszenie wczytywania witryny. Polega on na kompreso-
waniu zewnętrznych plików JavaScript.

Uwaga: Pliki przesyłane bezpiecznie za pomocą SSL (ang. Secure Socket Layer) zazwyczaj nie są

umieszczane w pamięci podręcznej. Dlatego jeśli użytkownik otwiera stronę za pomocą protokołu

https:// (na przykład przez wpisanie adresu https://www.ore lly.com/), to pobrane pliki — w tym ze-

wnętrzne pliki JavaScript — najprawdopodobniej trzeba będzie wczytywać za każdym razem, kiedy

będą potrzebne. (Można zmienić ustawienia na serwerze WWW, by umożliwić przechowywanie

w pamięci podręcznej plików przesyłanych bezpiecznym połączeniem).

Aby skrypt był bardziej zrozumiały, programiści zwykle używają odstępów, nowych
wierszy i komentarzy z opisem działania kodu. Są to elementy ważne dla pro-
gramisty, jednak niekoniecznie dla przeglądarki, która potrafi przetworzyć kod
JavaScript bez nowych wierszy, tabulacji, dodatkowych odstępów i komentarzy. Przy
użyciu programu do kompresji można zminimalizować wielkość plików. W tej
książce polecana jest zminimalizowana wersja biblioteki jQuery, a jej wielkość jest
o około połowę mniejsza od nieskompresowanego pliku.

Istnieje kilka programów, które pozwalają skrócić kod JavaScript. Są to między
innymi utworzony przez Douglasa Crockforda JSMin (http://crockford.com/
javascript/jsmin.html) i Packer opracowany przez Deana Edwarda (http://dean.
edwards.name/packer). Jednak preferowanym rozwiązaniem będzie skorzystanie
z narzędzia używanego w witrynie Yahoo! (i jQuery), ponieważ pozwala ono znacz-
nie zmniejszyć rozmiar pliku bez modyfikowania kodu (niektóre programy kom-
presujące przekształcają skrypty, co może czasem prowadzić do awarii).

Program kompresujący z witryny Yahoo!, YUI Compressor, jest dostępny pod adre-
sem http://yui.github.io/yuicompressor/. Na szczęście dostępna jest internetowa
wersja tego narzędzia, która pozwala na korzystanie z niego bez konieczności in-
stalowania na własnym komputerze.

 1. Uruchom przeglądarkę i wyświetl w niej stronę http://refresh-sf.com

To jest witryna internetowej wersji kompresora YUI.

 2. Kliknij odnośnik File(s).

Ewentualnie możesz także skopiować kod JavaScript z edytora tekstów i wkleić
go do dużego pola tekstowego na stronie głównej witryny; w takim przypadku
przejdź bezpośrednio do kroku 4.

 3. Kliknij przycisk Choose File i odszukaj zewnętrzny plik JavaScript na swoim
komputerze.

https://www.oreilly.com/
http://crockford.com/javascript/jsmin.html
http://crockford.com/javascript/jsmin.html
http://dean.edwards.name/packer
http://dean.edwards.name/packer
http://yui.github.io/yuicompressor/
http://refresh-sf.com

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Kod JavaScript o krótkim
czasie wczytywania

610

Plik musi zawierać wyłącznie kod JavaScript. Nie można przykładowo wybrać
pliku strony WWW, który oprócz kodu JavaScript zawiera także kod HTML.

 4. Zaznacz pole wyboru Redirect to gzipped output umieszczone tuż powyżej
przycisku Compress.

Zaznaczenie tej opcji pozwala pobrać zminimalizowany kod, zapisany w formie
nowego pliku w formacie ZIP. To będzie Twój nowy, skompresowany, zewnętrz-
ny plik JavaScript, który powinieneś zapisać na swojej witrynie.

 5. Kliknij przycisk Compress.

Strona przetworzy przesłany kod, po czym pozwoli pobrać skompresowany plik
i zapisać go na swoim komputerze. Można mu zmienić nazwę (gdyż zawsze bę-
dzie zapisywany pod nazwą min.js), a następnie używać na własnej witrynie. Po
dokonaniu minimalizacji strona generuje także estetyczny raport przedstawiający
wielkość oryginalnego pliku, wielkość nowego, spakowanego pliku oraz wartość
procentową określającą, o ile udało się zmniejszyć wielkość pliku.

Ostrzeżenie: Koniecznie należy pamiętać o tym, by po skompresowaniu nie pozbywać się orygi-

nalnego pliku JavaScript, gdyż jego zmniejszona wersja jest ca kowicie nieczytelna i nie będzie

można jej edytować, gdyby w przyszłości pojawiła się konieczność wprowadzenia kodzie zmian.

Diagnozowanie
i rozwiązywanie
problemów

szyscy popełniają pomyłki, a usterki w kodzie JavaScript mogą sprawić, że
skrypty nie będą działać prawidłowo (a nawet całkowicie przestaną funk-
cjonować). Początkujący programiści popełniają zwykle wiele błędów.

Ustalanie przyczyn nieoczekiwanego działania skryptów bywa frustrujące, jest to
jednak nieodłączny element programowania. Na szczęście wraz z nabywaniem
doświadczenia nauczysz się określać, dlaczego pojawiły się błędy, i naprawiać je.

W tym rozdziale opisano najczęstsze pomyłki programistów, a także — co ważniej-
sze — sposoby diagnozowania problemów w skryptach (w języku technicznym pro-
ces ten nazywa się debugowaniem). Ponadto w przykładzie zobaczysz krok po kroku,
jak zdiagnozować program z usterkami.

Najczęstsze błędy w kodzie JavaScript

W programach pojawiają się usterki wielu różnego rodzaju — od prostych literówek
po bardziej ukryte błędy, które ujawniają się tylko w określonych warunkach. Nie-
które pomyłki przydarzają się początkującym (a także doświadczonym) progra-
mistom języka JavaScript szczególnie często. Zapoznaj się z listą błędów opisanych
w tym podrozdziale i pamiętaj o nich w trakcie tworzenia kodu. Znajomość tych
standardowych usterek powinna pomóc Ci w wykrywaniu i rozwiązywaniu pro-
blemów we własnych programach.

W

17
ROZDZIAŁ

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Najczęstsze błędy
w kodzie JavaScript

612

Brak symboli końcowych
Jak pewnie zauważyłeś, kod JavaScript jest pełen nawiasów zwykłych i klamrowych,
średników, cudzysłowów i innych znaków specjalnych. Ze względu na drobiazgową
naturę komputerów pominięcie jednego takiego znaku może wstrzymać działanie
programu. Jednym z najczęściej popełnianych błędów jest pominięcie zamykające-
go znaku specjalnego. Przykładowo instrukcja alert('witaj'; jest nieprawidłowa,
ponieważ brakuje w niej końcowego nawiasu. Poprawny zapis to alert('witaj');.

Pominięcie zamykającego nawiasu to błąd składniowy (patrz ramka na stronie 54).
Tego rodzaju usterki „gramatyczne” uniemożliwiają uruchomienie skryptu. Kiedy
spróbujesz przetestować taki kod, przeglądarka poinformuje Cię, że popełniłeś błąd
składniowy. Mylące jest to, że poszczególne przeglądarki opisują usterki w różny
sposób. W konsoli błędów Firefoksa (patrz strona 56) pojawia się komunikat o błędzie
„SyntaxError: Missing) after argument list” [czyli: błąd składni, brak) po liście
argumentów]. Internet Explorer (patrz strona 55) wyświetla informację w stylu
„Oczekiwano znaku ')'”. Konsola błędów przeglądarki Chrome pokazuje nieco my-
lący komunikat „SyntaxError: Unexpected token ;”, a konsola Safari (patrz strona
57) udostępnia przydatny komunikat typu „SyntaxError: Expected token ‘)’”. Firefox
zwykle wyświetla najbardziej zrozumiałe komunikaty o błędach, dlatego warto roz-
począć analizę problemów właśnie od tej przeglądarki (patrz rysunek 17.1).

Rysunek 17.1. Konsola błędów w Firefoksie wyświetla wszystkie błędy języka JavaScript wykryte przez przeglą-
darkę. Aby wyświetlić tę konsolę, wybierz z menu głównego opcję Narzędzia/Dla twórców witryn/Konsola WWW
w systemie Windows (Ctrl+Shift+K) na komputerach z systemem Windows lub Narzędzia/Dla twórców witryn/Konsola
WWW (+Option+K) na komputerach Mac. Ponieważ znajdują się tu usterki wykryte na wszystkich stronach,
warto często czyścić listę za pomocą przycisku Wyczyść (w kółku)

Błąd składniowy w instrukcji alert('witaj' ; jest dobrze widoczny. Jednak jeśli
w kodzie znajdują się zagnieżdżone nawiasy, łatwo pominąć zamykający znak tego
typu, natomiast trudno szybko dostrzec taką pomyłkę, na przykład:

if ((x>0) && (y<10) {
 // Różne operacje.
}

W tym fragmencie brakuje ostatniego zamykającego nawiasu w instrukcji warun-
kowej (po wyrażeniu (y<10)). Pierwszy wiersz powinien wyglądać następująco: if
((x>0) && (y<10)) {. Firefox udostępnia najbardziej zrozumiały opis tego problemu:

R O Z D Z I AŁ 1 7 . D I A G N O Z O W A N I E I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Najczęstsze błędy
w kodzie JavaScript

613

„Missing) after condition” (czyli brak) po warunku). W tabeli 17.1 znajdziesz listę
komunikatów o błędach składniowych, wyświetlanych przez konsolę błędów prze-
glądarki Firefox.

Tabela 17.1. Komunikaty, które najczęściej można zobaczyć w konsoli błędów przeglądarki Firefox,
oraz ich znaczenie

Komunikat o błędzie Wyjaśnienie

Unterminated string literal Brak otwierającego lub zamykającego cudzysłowu:

var name = Janek';

Ten błąd pojawia się też przy braku dopasowania
ograniczników:

var name = 'Janek";

Missing) after argument list Brak zamykającego nawiasu w wywołaniu funkcji lub
metody:

alert('witaj' ;

Missing) after condition Brak zamykającego nawiasu w instrukcji warunkowej:

if (x==0

Missing (before condition Brak otwierającego nawiasu w instrukcji warunkowej:

if x==0)

Missing } in compound statement Brak zamykającego nawiasu klamrowego w instrukcji
warunkowej:
if (score == 0) {
 alert('Koniec gry');
 // Brak znaku } w tym wierszu.

Missing } after property list Brak zamykającego nawiasu klamrowego w obiekcie
JavaScript:
var x = {
 fName: 'Robert',
 lName: 'Kowalski'
 // Brak znaku } w tym wierszu.

Syntax error Ogólny problem, który uniemożliwił interpreterowi
odczytanie skryptu.

Missing ; before statement Informuje o uruchomieniu dwóch instrukcji
w jednym wierszu bez rozdzielenia ich średnikiem. Może
wynikać także z błędnego zagnieżdżenia apostrofów
lub cudzysłowów:
var message='Mike'u, tu wystąpił błąd.';

Missing variable name Wynika z próby użycia zarezerwowanego słowa języka
JavaScript (patrz strona 65) jako nazwy zmiennej:
var if="Błąd składniowy.";

Błąd składniowy wystąpi także wtedy, jeśli zapomnisz podać drugi cudzysłów lub
apostrof. I tak instrukcja alert('witaj); jest nieprawidłowa, ponieważ brakuje
ostatniego apostrofu (poprawny zapis to alert('witaj');). Firefox wyświetli wtedy
komunikat „Unterminated string literal”, natomiast Internet Explorer — tekst „Brak
zakończenia stałej znakowej”. Przeglądarki Chrome oraz Safari, kiedy napotkają
taki błąd, wyświetlą komunikat: „SyntaxError: Unexpected token ILLEGAL”.

Także nawiasy klamrowe występują w parach. Są one potrzebne w instrukcjach wa-
runkowych (patrz strona 93), pętlach (patrz strona 93), przy tworzeniu funkcji (patrz
strona 115) i w obiektach JSON (patrz strona 500):

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Najczęstsze błędy
w kodzie JavaScript

614

if (score==0) {
 alert('Koniec gry');

W tym fragmencie brakuje zamykającego znaku }, dlatego w skrypcie pojawi się błąd
składniowy.

Jednym ze sposobów na przezwyciężenie problemu brakujących znaków przestan-
kowych jest wpisywanie obu symboli przed wprowadzeniem dalszego kodu. Załóżmy,
że chcesz dodać następujący fragment:

if ((name=='robert') && (score==0)) {
 alert('Przegrałeś, ale przynajmniej masz piękne imię');
}

Uwaga: Wiele dobrych edytorów tekstu udostępnia mechanizm kolorowania składni, który automa-

tycznie zaznacza pary odpowiadających sobie nawiasów, nawiasów kwadratowych oraz klamrowych.

Niektóre z nich potrafią nawet zaznaczać brakujące znaki przestankowe, dzięki czemu znacznie łatwiej

i szybciej można poprawiać błędy.

Najpierw wpisz zewnętrzne elementy, aby utworzyć szkielet instrukcji warunkowej:
if () {

}

Na tym etapie prawie nie ma kodu, dlatego łatwo zauważyć, czy wpisano wszystkie
znaki specjalne. Następnie dodawaj krok po kroku dalszy kod do czasu utworzenia
całego programu. W ten sam sposób warto tworzyć złożone literały obiektowe języka
JavaScript, używane na przykład do ustawiania opcji wtyczki Validation (patrz stro-
na 299) lub tworzenia obiektów JSON (patrz strona 500). Zacznij od podstawowej
struktury:

var options = {

};

Następnie rozwiń ją:
var options = {
 rules : {

 },
 messages : {

 }
};

Teraz można dokończyć obiekt:
var options = {
 rules : {
 name : 'required',
 email: 'email'
 },
 messages : {
 name : 'Podaj nazwę użytkownika',
 email: 'Podaj adres e-mail'
 }
};

R O Z D Z I AŁ 1 7 . D I A G N O Z O W A N I E I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Najczęstsze błędy
w kodzie JavaScript

615

To podejście pozwala sprawdzić kod na różnych etapach i znacznie ułatwia wykry-
wanie błędów związanych ze znakami specjalnymi. Konsola błędów przeglądarki
Firefox (przedstawiona na stronie 56) udostępnia najbardziej zrozumiałe opisy
błędów. Jeśli skrypt nie działa, warto wyświetlić stronę w tej przeglądarce i zaj-
rzeć do konsoli błędów. Kilka najczęściej spotykanych błędów zostało przedsta-
wionych w tabeli 17.1.

W I E D Z A W P I G U Ł C E

Rodzaje błędów
Są trzy podstawowe kategorie błędów występujące

w programach w języku JavaScript. Niektóre usterki

są natychmiast widoczne, natomiast inne można wykryć

dopiero po uruchomieniu skryptu.

 Błędy składniowe. Usterki tego typu to pomy ki

gramatyczne, które sprawiają, że kod jest niezro-

zumiały dla interpretera. Błędy tego rodzaju to

efekt między innymi braku zamykających nawiasów

zwykłych lub klamrowych albo cudzysłowów. Prze-

glądarka natychmiast wykrywa takie usterki, dla-

tego nie uruchamia skryptu. Komunikaty o błędach

składniowych pojawiają się w konsoli błędów prze-

glądarki.

 Błędy czasu wykonania. Także kiedy przeglądarka

z powodzeniem wczyta skrypt, a interpreter go

przetworzy, nadal mogą pojawić się problemy.

Nawet jeśli składnia programu jest poprawna, mogą

wystąpić błędy czasu wykonania. Załóżmy, że na

początku skryptu utworzyłeś zmienną message.

W dalszej części programu kod dodaje do rysunku

funkcję obsługi zdarzenia click, aby po kliknięciu

obrazka pojawiało się okno dialogowe. W tej funkcji

może znajdować się instrukcja alert(MESSAGE);.

Jej składnia jest prawidłowa, jednak użyto tu na-

zwy MESSAGE zamiast message (duże litery za-

miast małych). Ten kod nie jest nieprawidłowy,

jednak odwołuje się do zmiennej MESSAGE za-

miast message. Zgodnie z tym, czego dowiedzia-

łeś się na stronie 64, język JavaScript uwzględnia

wielkość znaków, dlatego nazwy MESSAGE i message

oznaczają dwie różne zmienne. Kiedy użytkownik

kliknie rysunek, interpreter spróbuje znaleźć nie-

istniejącą zmienną MESSAGE i zgłosi błąd czasu wy-

konania.

Inny często spotykany błąd czasu wykonania wystę-

puje przy próbie dostępu do elementu strony, który

albo nie istnieje, albo nie został jeszcze wczytany

do pamięci przeglądarki. Opis tego problemu znajdziesz

w omówieniu funkcji $(document).ready() biblioteki

jQuery (patrz strona 190).

 Błędy logiczne. Czasem skrypt działa, ale w nie-

oczekiwany sposób. W kodzie może znajdować się

instrukcja if-else (patrz strona 93), która wyko-

nuje zadanie A, jeśli warunek jest spełniony, i ope-

rację B, jeśli warunek jest fałszywy. Niestety, oka-

zuje się, że program nigdy nie uruchamia kodu B,

nawet jeśli warunek jest w oczywisty sposób fał-

szywy. Błędy tego rodzaju to wynik niepoprawnego

użycia operatora równości (patrz strona 67). Dla

interpretera języka JavaScript kod jest technicz-

nie poprawny, jednak programista popełnił w logice

programu błąd, który uniemożliwia prawidłowe

działanie skryptu.

Inny przykład błędu logicznego to pętla nieskoń-

czona. Jest to fragment kodu działający w nieskoń-

czoność, co zwykle powoduje „zawieszenie” progra-

mu, a nawet awarię przeglądarki. Oto przykładowa

pętla nieskończona:
for (var i=1; i>0; i += 1) {
 // Ten kod będzie działał w nieskończoność.
}

Pętla ta będzie działać, dopóki warunek i>0 będzie speł-

niony. Ponieważ zmienna i ma początkowo wartość 1

(var i=1), a każde uruchomienie pętli powoduje

zwiększenie jej o 1 (i += 1), wartość zmiennej będzie

zawsze większa od 0. Oznacza to, że pętla nigdy nie

przerwie działania (aby przypomnieć sobie informacje

o pętlach for, zajrzyj na stronę 109).

Błędy logiczne są zwykle najtrudniejsze do wykrycia. Jed-

nak korzystając z technik diagnostycznych, opisanych na

stronie 621, będziesz w stanie wykryć i rozwiązać wiele

często występujących problemów.

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Najczęstsze błędy
w kodzie JavaScript

616

Cudzysłowy i apostrofy
Początkujący programiści często mają problemy z cudzysłowami i apostrofami.
Symbole te służą do tworzenia łańcuchów liter i innych znaków (i są nazywane lite-
rałami łańcuchowymi). Takich ciągów można używać jako komunikatów na
stronach lub zmiennych w programach. JavaScript, podobnie jak inne języki pro-
gramowania, umożliwia tworzenie literałów łańcuchowych za pomocą cudzysłowów
i apostrofów. Poniższa instrukcja:

var name="Janek";

oznacza to samo co następna:
var name='Janek';

W poprzednim punkcie dowiedziałeś się, że trzeba użyć cudzysłowu otwierającego
i zamykającego. Jeśli o tym zapomnisz, Firefox wyświetli komunikat „Unterminated
string literal” (także inne przeglądarki nie uruchomią błędnego skryptu). Ponadto,
co opisano na stronie 62, należy używać pasujących do siebie ograniczników,
na przykład dwóch apostrofów lub dwóch cudzysłowów. Dlatego instrukcja var
name='Janek spowoduje błąd.

Inny często spotykany problem związany jest z używaniem cudzysłowów i apostro-
fów w łańcuchach znaków. Bardzo łatwo można popełnić następujący błąd:

var message='Mike'u, tu kryje się błąd.';

Zwróć uwagę na apostrof w słowie „Mike’u”. Interpreter potraktuje ten znak jak za-
mykający apostrof, dlatego wykryje instrukcję var message='Mike', a pozostałą część
wiersza uzna za błędną. W konsoli błędów Firefoksa pojawi się komunikat „Missing
; before statement”, ponieważ przeglądarka potraktuje drugi apostrof jak koniec
prostej instrukcji języka JavaScript, a dalszy kod — jak następne polecenie.

Możesz uniknąć takich problemów na dwa sposoby. Pierwszy z nich polega na łą-
czeniu apostrofów i cudzysłowów. Możesz otoczyć cudzysłowami łańcuch znaków
z apostrofami lub na odwrót. Na przykład wcześniejszy błąd można naprawić w na-
stępujący sposób:

var message="Mike'u, problem został rozwiązany.";

Jeśli łańcuch znaków zawiera cudzysłowy, można użyć poniższej techniki:
var message='Jacek powiedział: "Rozwiązałem problem".';

Inne podejście polega na użyciu w łańcuchu znaków sekwencji ucieczki z apostro-
fem lub cudzysłowem. Technikę tę szczegółowo opisano na stronie 62, a tu znaj-
dziesz krótkie przypomnienie. Aby utworzyć sekwencję ucieczki, poprzedź dany znak
specjalny ukośnikiem:

var message='Mike\'u, ten zapis jest poprawny.';

Interpreter traktuje sekwencję \' jak znak apostrofu, a nie jak symbol służący do
otwierania i zamykania łańcuchów znaków.

R O Z D Z I AŁ 1 7 . D I A G N O Z O W A N I E I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Najczęstsze błędy
w kodzie JavaScript

617

Używanie słów zarezerwowanych
Na stronie 65 wymieniono długą listę słów zarezerwowanych dla języka JavaScript.
Są to słowa używane w składni języka, na przykład if, do, for i while, a także wła-
ściwości obiektu przeglądarki, między innymi alert, location, window i document.

Poniższy kod wywoła błąd składniowy:
var if = "To nie zadziała.";

Ponieważ słowo if służy do tworzenia instrukcji warunkowych, na przykład if
(x==0), nie można nazwać w ten sposób zmiennej. Jednak niektóre przeglądarki
nie wygenerują błędów, jeśli w nazwie zmiennej użyjesz słowa z obiektowego modelu
przeglądarek. Przykładowo słowo document określa dokument HTML. Przeanali-
zujmy następujący fragment kodu:

var document='Dzieje się coś dziwnego.';
alert(document);

Podczas próby wykonania takiego kodu przeglądarki nie wygenerują błędu, a jedy-
nie okienko komunikatu z tekstem „[object HTMLDocument]”, który nie odnosi
się bezpośrednio do obiektu dokumentu HTML. Innymi słowy, przeglądarki te nie
pozwolą na nadpisanie obiektu dokumentu łańcuchem znaków.

Pojedynczy znak równości w instrukcjach warunkowych
Instrukcje warunkowe (patrz strona 93) umożliwiają programom reagowanie w róż-
ny sposób w zależności od wartości zmiennej, stanu elementu na stronie lub innych
warunków występujących w skrypcie. Instrukcja warunkowa może wyświetlać rysu-
nek, jeśli jest ukryty, a w przeciwnym razie — ukrywać go. Warunki mogą być tylko
prawdziwe (true) lub fałszywe (false). Niestety, łatwo utworzyć instrukcję, w której
warunek jest zawsze spełniony:

if (score=100) {
 alert('Wygrałeś!');
}

Ten kod ma sprawdzać wartość zmiennej score. Jeśli wynosi ona 100, powinno
pojawić się okno dialogowe z wiadomością „Wygrałeś!”. Jednak ten fragment wy-
świetli takie okienko zawsze, niezależnie od wartości zmiennej score przed uru-
chomieniem instrukcji warunkowej. Dzieje się tak, ponieważ pojedynczy znak
równości to operator przypisania, a więc instrukcja score=100 przypisze wartość
100 do zmiennej score. Interpreter potraktuje operację przypisania jak wartość
true i nie tylko wyświetli komunikat w oknie dialogowym, ale też zmieni
wartość zmiennej score na 100.

Aby uniknąć tego błędu, należy zawsze używać dwóch znaków równości przy spraw-
dzaniu, czy dwie wartości są takie same:

if (score==100) {
 alert('Wygrałeś!');
}

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Najczęstsze błędy
w kodzie JavaScript

618

Wielkość znaków
Pamiętaj, że język JavaScript uwzględnia wielkość znaków. Interpreter sprawdza nie
tylko litery użyte w nazwach zmiennych, funkcji, metod i słów kluczowych, ale też
ich wielkość. Dlatego dla interpretera instrukcje alert('hej') i ALERT('hej') nie
są tym samym. Pierwsze polecenie, alert('hej'), wywołuje wbudowane polecenie
alert() przeglądarki, natomiast druga instrukcja, ALERT('hej'), spowoduje wy-
wołanie funkcji ALERT(), zdefiniowanej przez użytkownika.

Przy korzystaniu z rozwlekłych metod pobierania elementów modelu DOM, get
ElementsByTagName() i getElementById(), mogą wystąpić problemy, ponieważ
nazwy tych metod są zapisywane przy użyciu zarówno małych, jak i dużych liter
(co jest kolejnym powodem przemawiającym za korzystaniem wyłącznie z biblioteki
jQuery). Także przy stosowaniu dużych i małych liter w nazwach zmiennych oraz
funkcji mogą czasem pojawić się kłopoty.

Jeśli zobaczysz komunikat o błędzie „x is not defined” (gdzie x to nazwa zmiennej,
funkcji lub metody), problem może wynikać z nieodpowiedniej wielkości znaków.

Nieprawidłowe ścieżki do zewnętrznych plików JavaScript
Inny często pojawiający się błąd to niepoprawne ścieżki do zewnętrznych plików
JavaScript. Na stronie 49 opisano, jak należy dołączać takie pliki do stron — trzeba
wskazać odpowiedni plik we właściwości src znacznika <script>. Dlatego w sekcji
<head> strony HTML należy umieścić tag <script>:

<script src="site_js.js"></script>

Właściwość src działa jak atrybut href odnośników i wskazuje ścieżkę do pliku
JavaScript. Jak wspomniano w ramce „Rodzaje adresów URL”, są trzy sposoby
wskazywania plików: ścieżki bezwzględne (http://www.site.com/site_js.js), podane
względem katalogu głównego (/site_js.js) i podane względem dokumentu (site_js.js).

Ścieżki określane względem dokumentu opisują, jak przeglądarka ma przejść od bie-
żącego dokumentu (strony WWW) do konkretnego pliku. Odnośniki tego rodzaju są
używane często, ponieważ umożliwiają przetestowanie strony i kodu JavaScript bez-
pośrednio na komputerze. Jeśli użyjesz odsyłaczy podanych względem katalogu głów-
nego, na potrzeby testów będziesz musiał zainstalować serwer sieciowy na kom-
puterze (lub przenieść pliki na serwer). Podczas stosowania adresów określanych
względem katalogu głównego w celu testowania stron na własnym komputerze
konieczne będzie zainstalowanie i uruchomienie na nim serwera WWW (lub prze-
niesienie stron na taki serwer w celu ich przetestowania).

Więcej informacji o ścieżkach znajdziesz na stronie 45. Jednak, ogólnie rzecz biorąc,
jeśli używasz zewnętrznych plików JavaScript i odkryjesz, że skrypt nie działa, do-
kładnie sprawdź, czy wpisałeś poprawne ścieżki.

Wskazówka: Jeśli korzystasz z biblioteki jQuery i w konsoli błędów Firefoksa zobaczysz komunikat

„$ is not defined”, prawdopodobnie nie dołączyłeś prawidłowo pliku jquery.js (patrz strona 135).

http://www.site.com/site_js.js

R O Z D Z I AŁ 1 7 . D I A G N O Z O W A N I E I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Najczęstsze błędy
w kodzie JavaScript

619

Nieprawidłowe ścieżki w zewnętrznych plikach JavaScript
Inny problem pojawia się przy używaniu ścieżek podawanych względem dokumentu
w zewnętrznych plikach JavaScript. Skrypt może wyświetlać na stronie rysunki (na
przykład pokaz slajdów lub obrazek wybrany losowo w danym dniu). Jeśli rysunki
są wskazywane względem dokumentu, mogą wystąpić problemy, jeżeli ścieżki znaj-
dują się w zewnętrznym pliku JavaScript. Dlaczego? Kiedy przeglądarka dołącza ze-
wnętrzny plik JavaScript do strony, punktem wyjścia w ścieżkach podanych
względem dokumentu jest dana strona. Dlatego każdą taką ścieżkę należy zapisać
względem strony, a nie pliku JavaScript.

Oto prosty przykład ilustrujący ten problem. Na rysunku 17.2 widoczna jest struktu-
ra bardzo prostej witryny. Składa się ona z dwóch stron (page.html i about.html), czte-
rech katalogów (libs, images, pages i about), zewnętrznego pliku JavaScript (site_js.js
w katalogu libs) i rysunku (photo.jpg w katalogu images). Załóżmy, że w pliku
site_js.js znajduje się ścieżka do pliku photo.jpg, potrzebna na przykład do wstępnego
pobrania obrazka (patrz strona 242) lub dynamicznego wyświetlenia go na stronie.

Rysunek 17.2. Ścieżki podawane względem do-
kumentu zależą od lokalizacji plików wyjścio-
wego i docelowego. Na przykład ścieżka tego
typu z pliku site_js.js do rysunku photo.jpg (numer
1) to ../images/photo.jpg. Ścieżka do tego same-
go obrazka ze strony page.html (numer 2) to images/
photo.jpg, a z pliku about.html — ../../images/
photo.jpg

W pliku site_js.js ścieżka do rysunku photo.jpg podana względem dokumentu to
../images/photo.jpg (numer 1 na rysunku 14.2). Ta ścieżka nakazuje przeglą-
darce wyjście z katalogu libs (../), wejście do folderu images (images/) i pobranie
pliku photo.jpg. Jednak na stronie page.html ścieżka do obrazka (numer 2 na rysunku
14.2) to tylko images/photo.jpg. Oznacza to, że ścieżka do tego samego zdjęcia
jest w obu plikach inna.

Jeśli chcesz użyć skryptu site_js.js na stronie page.html, musisz podać ścieżkę nu-
mer 2, aby określić lokalizację pliku photo.jpg (ścieżkę trzeba podać względem do-
kumentu page.html). Oznacza to też, że pliku site_js.js nie można użyć na stronie
znajdującej się w dowolnym innym katalogu witryny, ponieważ ścieżka względna
musi być wtedy inna (numer 3 na rysunku 17.2).

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Najczęstsze błędy
w kodzie JavaScript

620

Istnieje kilka sposobów na rozwiązanie tego problemu. Przede wszystkim możliwe
jest, że nigdy nie natrafisz na taką sytuację, ponieważ nie będziesz umieszczał
w plikach JavaScript ścieżek do innych dokumentów. Jeśli jednak chcesz stosować
tę technikę, powinieneś używać ścieżek podawanych względem katalogu głównego
(patrz strona 45), które są takie same dla wszystkich stron witryny. Inna możli-
wość to określenie ścieżki do pliku na poszczególnych stronach WWW. Możesz
na przykład dołączyć do każdej z nich zewnętrzny plik JavaScript i zdefiniować
zmienną przechowującą ścieżkę do odpowiedniego pliku podaną względem doku-
mentu (danej strony).

I w końcu możesz także zastosować podejście użyte w pokazie slajdów ze strony
249. Ścieżki są tam zapisane w odnośnikach na poszczególnych stronach, a kod
JavaScript pobiera odpowiednie ścieżki z kodu HTML. Jeśli dana ścieżka działa
na stronie, będzie poprawna także w skrypcie.

Znikające zmienne i funkcje
Czasem możesz napotkać błąd typu „x is not defined”, gdzie x to nazwa zmiennej lub
wywoływanej funkcji. Usterka ta może wynikać z błędnego wpisania nazwy zmiennej
lub funkcji albo użycia liter nieodpowiedniej wielkości. Jednak jeśli zajrzysz do kodu
i stwierdzisz, że dana jednostka jest prawidłowo zdefiniowana w skrypcie, mógł wy-
stąpić problem z zasięgiem.

Zasięg zmiennych i funkcji opisano szczegółowo na stronie 121. Warto pamiętać, że
jeśli zmienna została zdefiniowana wewnątrz funkcji, będzie dostępna tylko w niej
(i w innych funkcjach zagnieżdżonych w funkcji głównej). Oto prosty przykład:

1 function sayName(name) {
2 var message = 'Twoje imię to ' + name;
3 }
4 sayName();
5 alert(message); // Błąd — nazwa message jest niezdefiniowana.

Zmienna message jest zdefiniowana w funkcji sayName(), dlatego istnieje tylko
w niej. Poza funkcją zmienna jest niedostępna, dlatego przy próbie jej użycia w wier-
szu 5. wystąpi błąd.

Ten problem może pojawić się także przy korzystaniu z jQuery. Na stronie 190
dowiedziałeś się, jak ważna przy stosowaniu tej biblioteki jest funkcja $(document).
ready(). Wszystkie instrukcje z tej funkcji są uruchamiane dopiero po wczytaniu
kodu HTML strony. Jeśli zdefiniujesz w metodzie $(document).ready() zmienne
i funkcje, a następnie spróbujesz użyć ich poza nią, pojawi się problem:

$(document).ready(function() {
 var msg = 'witaj';
});
alert(msg); // Błąd — msg jest niezdefiniowana.

Dlatego kiedy używasz jQuery, pamiętaj o umieszczeniu całego kodu w funkcji
$(document).ready():

$(document).ready(function() {
 var msg = 'witaj';
 alert(msg); // Zmienna msg jest dostępna.
});

R O Z D Z I AŁ 1 7 . D I A G N O Z O W A N I E I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Testowanie aplikacji przy
użyciu konsoli

621

W I E D Z A W P I G U Ł C E

Jak zmniejszyć liczbę błędów?
Najlepszy sposób na radzenie sobie z błędami w pro-

gramach to szybkie ich wykrywanie. Jeśli zaczniesz te-

sty z wykorzystaniem przeglądarki dopiero po napisa-

niu 300-wierszowego skryptu, znalezienie przyczyny

problemu może być naprawdę trudne. Oto dwie naj-

ważniejsze techniki zapobiegania usterkom.

 Tworzenie skryptów w krótkich fragmentach.

Jak już prawdopodobnie zauważyłeś, programy

JavaScript bywają mało czytelne z uwagi na znaki

},), ', instrukcje if, else, funkcje i tak dalej.

Nie próbuj pisać całego skryptu naraz (chyba że

jesteś naprawdę dobrym programistą, program

jest krótki lub czujesz, że masz szczęście). Jest tak

wiele źródeł potencjalnych błędów w kodzie, że

warto rozwijać skrypty stopniowo.

Załóżmy, że obok pola tekstowego chcesz wyświetlić

liczbę wpisanych w nim znaków. Rozwiązanie to jest

stosowane w witrynach, w których liczba zna-

ków w polu jest ograniczona na przykład do 300.

Za pomocą języka JavaScript można łatwo wykonać

opisane zadanie, jednak składa się ono z kilku kroków:

reagowania na wystąpienie zdarzenie keydown (kiedy

użytkownik wpisze literę w polu), odczytywania

wartości z pola, zliczania wprowadzonych znaków

i wyświetlania ich liczby na stronie.

Możesz spróbować napisać cały skrypt za jednym ra-

zem, jednak warto najpierw utworzyć kod dla etapu 1.

(reagowanie na zdarzenie keydown), a następnie przete-

stować go w przeglądarce (może Ci w tym pomóc wyko-

rzystanie polecenia alert() lub funkcji console.log(),

opisanej na następnej stronie, wykonywanych w odpo-

wiedzi na zdarzenie keydown). Jeśli pierwszy frag-

ment działa, można przejść do etapu 2., przetesto-

wać kod i tak dalej.

Wraz z nabywaniem doświadczenia nie będziesz mu-

siał testować tak krótkich fragmentów. Warto wtedy

napisać od razu kilka części skryptu, a następnie prze-

testować jego większą porcję.

 Częste testowanie. Należy często testować skrypty

w przeglądarce. Warto to robić przynajmniej po

ukończeniu każdego fragmentu programu, co

opisano w poprzednim punkcie. Ponadto należy

sprawdzić program w różnych przeglądarkach:

Internet Explorerze 8 i nowszych, oraz w naj-

nowszych wersjach przeglądarek Firefoks, Chrome

i Safari oraz w innych aplikacjach, których mogą

używać osoby odwiedzające daną witrynę.

Testowanie aplikacji przy użyciu konsoli
Jeśli jeszcze nie używałeś konsoli JavaScript przeglądarki, nie miałeś okazji po-
znać jednego z najlepszych narzędzi dla twórców stron WWW. Wszystkie nowo-
czesne przeglądarki dysponują takimi konsolami, które mogą pomóc w popra-
wianiu kodów HTML, CSS oraz JavaScript.

Otwieranie konsoli

Aby skorzystać z konsoli, najpierw należy wyświetlić stronę w przeglądarce. Na-
stępnie trzeba wykonać jedną z poniższych czynności.

 Google Chrome: Kliknij przycisk ustawień przeglądarki (zakreślony na ry-
sunku 17.3), a następnie wybierz opcję Więcej narzędzi/Konsola JavaScript.
Możesz także nacisnąć kombinację klawiszy Ctrl+Shift+J (w systemie Windows)
lub +Options+J (w systemie Mac OS).

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Testowanie aplikacji przy
użyciu konsoli

622

Rysunek 17.3. Konsola JavaScript wyświetla wszystkie błędy, które wystąpiły na bieżącej stronie. W przedsta-
wionej obok przeglądarce Chrome można ją wyświetlić, klikając przycisk widoczny z prawej strony paska adresu
(zakreślony) i wybierając opcję Więcej narzędzi/Konsola JavaScript. Aby zobaczyć wiersz, w którym wystąpił
błąd, należy kliknąć fragment kodu bezpośrednio pod komunikatem o nim. Przeglądarka wyświetli kartę Sources
i podświetli wiersz, w którym wystąp ł błąd

 Internet Explorer: Naciśnij klawisz F12, aby wyświetlić okno narzędzi de-
weloperskich, a następnie przejdź na kartę Konsola.

 Firefox: Aby w systemie Windows wyświetlić konsolę, kliknij przycisk Otwórz
menu dostępny z prawej strony paska narzędzi przeglądarki, następnie ikonę
Narzędzia i wybierz opcję Konsola WWW. W systemie Mac OS wybierz opcję
Narzędzia/Dla twórców witryn/Konsola WWW. Możesz także skorzystać z kom-
binacji klawiszy: Ctrl+Shift+I (w systemie Windows) lub +Option+K (w sys-
temie Mac OS).

 Safari: Konsolę błędów możesz wyświetlić z menu Programowanie, wybie-
rając opcje Programowanie/Pokaż konsolę błędów (lub naciskając kombinację
klawiszy Ctrl+Alt+C w systemie Windows lub +Option+C w systemie
Mac OS). Jednak to menu nie jest domyślnie dostępne po zainstalowaniu
przeglądarki, dlatego też trzeba je włączyć w oknie dialogowym właściwości.
W tym celu kliknij przycisk wyświetlający menu ustawień przeglądarki i wy-
bierz opcję Preferencje. W wyświetlonym oknie dialogowym przejdź na kartę
Zaawansowane, zaznacz pole wyboru Pokazuj menu Programowanie w pasku
menu i zamknij okno dialogowe.

R O Z D Z I AŁ 1 7 . D I A G N O Z O W A N I E I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Testowanie aplikacji przy
użyciu konsoli

623

Po ponownym uruchomieniu przeglądarki opcja Programowanie zostanie
wyświetlona w menu głównym pomiędzy opcjami Zakładki oraz Okno (w sys-
temie Mac OS), natomiast w systemie Windows będzie dostępna w menu wy-
świetlanym po kliknięciu przycisku ustawień strony. Z tego menu wybierz
opcję Pokaż konsolę błędów.

Przeglądanie błędów przy użyciu konsoli
W oknie konsoli wyświetlane są wszystkie błędy, jakie wystąpią w kodzie Java-
Script. Jako pierwsze przeglądarka wyświetla odszukane błędy syntaktyczne.
Zgodnie z informacjami podanymi na stronie 51, błędy syntaktyczne w progra-
mach komputerowych przypominają nieco błędy gramatyczne. Kiedy interpreter
języka JavaScript w przeglądarce odnajdzie taki błąd, zaprzestaje dalszego anali-
zowania i wykonywania skryptu. Interpreter poinformuje o błędzie, lecz jeśli na
stronie będzie ich więcej, nie dowiemy się o nich aż do momentu, gdy poprawimy
pierwszy z nich.

Po poprawieniu wszystkich błędów syntaktycznych mogą się pojawić błędy czasu
wykonywania (ang. runtime errors; patrz strona 606), czyli błędy, o których
przeglądarka informuje w trakcie wykonywania skryptu. Taki błąd może na przy-
kład spowodować próba odczytania wartości zmiennej, która nigdy nie została
utworzona. Konsola może stanowić naszą pierwszą linię obrony podczas prób lo-
kalizowania i poprawiania błędów w kodzie JavaScript (patrz rysunek 17.3).

Śledzenie działania skryptu
za pomocą funkcji console.log()
Kiedy skrypt zacznie działać, funkcjonuje jak czarna skrzynka. Programista nie wie,
co dzieje się w programie, i widzi tylko końcowe efekty, na przykład komunikat na
stronie, okno wyskakujące i tak dalej. Nie zawsze można sprawdzić, czy pętla działa
prawidłowo lub jaką wartość ma zmienna w danym momencie.

Programiści języka JavaScript od dawna używają metody alert() do wyświetla-
nia okienek z aktualną wartością zmiennych (patrz strona 46). Aby ustalić, jakie da-
ne zapisano w zmiennej elementName w pętli, możesz umieścić w niej polece-
nie alert(elementName);. Jest to jeden ze sposobów na zajrzenie do czarnej
skrzynki skryptu. Jednak okna dialogowe przeszkadzają w pracy. Aby je ukryć, mu-
sisz je kliknąć, a jeśli program uruchomi pętlę 20 razy, będziesz musiał zamknąć na-
prawdę wiele okienek.

Konsola JavaScript udostępnia lepszy sposób obserwacji programu. Nie tylko wyświe-
tla błędy (patrz poprzedni punkt), ale też służy do wyświetlania komunikatów z pro-
gramu. Funkcja console.log() działa podobnie jak document.write() (patrz strona
48), ale zamiast wyświetlać informacje na stronie, zapisuje je w konsoli.

Wskazówka: Wszystkie nowoczesne przeglądarki obsługują metodę console.log(). A zatem

można jej używać w przeglądarkach Chrome, Safari, Internet Explorer oraz Opera.

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Testowanie aplikacji przy
użyciu konsoli

624

Aby wyświetlić w konsoli aktualną wartość zmiennej elementName, możesz użyć
następującej instrukcji:

console.log(elementName);

Ta metoda — w odróżnieniu od polecenia alert() — nie zakłóca działania pro-
gramu, a jedynie dodaje komunikat do konsoli.

Aby rejestrowane komunikaty były bardziej zrozumiałe, można dołączyć do nich łań-
cuch znaków z dodatkowym tekstem. Jeśli na przykład chcesz sprawdzić, jaką wartość
ma zmienna name w danym miejscu programu, możesz użyć funkcji console.log()
w następujący sposób:

console.log(name);

Możesz też poprzedzić wartość zmiennej informacją:
console.log('Nazwa użytkownika: ', name);

To wywołanie spowoduje wyświetlenie w konsoli pojedynczego wiersza tekstu, za-
wierającego łańcuch Nazwa użytkownika: oraz zawartość zmiennej name.

Ale co zrobić w sytuacji, gdy wartość zmiennej chcemy umieścić gdzieś wewnątrz
łańcucha? Załóżmy, że rejestrujemy wynik zdobyty przez użytkownika i chcemy wy-
świetlić w konsoli zrozumiały komunikat, taki jak: „Janek zdobył 50 punktów”.
Innymi słowy, zależy nam na tym, by na początku łańcucha znaków umieścić imię
gracza, a wynik — gdzieś pośrodku łańcucha.

W tym celu w wywołaniu funkcji console.log() należy zapisać: łańcuch znaków
zawierający sekwencje %s (po jednej dla każdej zmiennej, której wartość chcemy wy-
świetlić), przecinek, nazwę zmiennej, przecinek i w końcu nazwę drugiej zmiennej.
Oto przykład takiego wywołania:

console.log('%s zdobył %s punktów', name, score);

Sekwencja %s oznacza: „Wstaw zamiast mnie wartość zmiennej”. Innymi słowy,
skrypt zastąpi pierwsze wystąpienie symbolu %s wartością zmiennej name, a drugie
— wartością zmiennej score.

Funkcja log() służy jedynie do zbierania informacji o działaniu skryptu w trakcie
jego rozwijania. Kiedy program jest gotowy, należy usunąć z programu wszystkie wy-
wołania console.log().

Przykład — korzystanie z konsoli
W tym przykładzie dowiesz się, jak użyć funkcji console.log() do sprawdzenia,
co dzieje się w programie. Analizowany skrypt będzie wyświetlał liczbę znaków wpisa-
nych w polu tekstowym formularza.

Uwaga: Informacje o pobieraniu przykładowych plików znajdziesz na stronie 46.

W przedstawionym tu przykładzie będziemy używać przeglądarki Google Chrome.
Możesz go także wykonać w swojej ulubionej przeglądarce, lecz jej działanie może
się nieco różnić od opisanego poniżej.

R O Z D Z I AŁ 1 7 . D I A G N O Z O W A N I E I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Testowanie aplikacji przy
użyciu konsoli

625

 1. Otwórz w edytorze tekstu plik console.html.

Skrypt wymaga do działania biblioteki jQuery, dlatego jej zewnętrzny plik Java-
Script jest już dołączony do strony. Dodano także otwierający i zamykający
znacznik <script>. Teraz należy wprowadzić funkcję $(document).ready()
biblioteki jQuery.

 2. Między znacznikami <script> w górnej części strony wpisz kod wyróżniony
pogrubieniem:

<script>
$(document).ready(function() {

}); // koniec funkcji ready
</script>

Funkcję $(document).ready() poznałeś na stronie 190. Sprawia ona, że przeglą-
darka wczytuje cały kod strony przed uruchomieniem programu JavaScript.
Najpierw użyj funkcji console.log()do wyświetlenia komunikatu o urucho-
mieniu funkcji .ready().

 3. Dodaj do skryptu kod wyróżniony pogrubieniem:
<script>
$(document).ready(function() {
 console.log('GOTOWE');
}); // koniec funkcji ready
</script>

Funkcja console.log() jest uruchamiana w miejscu, w którym ją wywołasz.
Oznacza to, że kiedy przeglądarka wczyta kod HTML strony (na ten moment
czeka funkcja ready()), zapisze tekst „GOTOWE” w konsoli. Używanie funkcji
ready() to standardowa i prosta operacja, dlatego zwykle nie trzeba wywoływać na
tym etapie funkcji console.log(), jednak tu pozwala to zademonstrować
działanie funkcji log(). Do rozwijanej strony dodasz później wiele wywołań
tej funkcji, aby dobrze ją poznać.

 4. Zapisz plik i otwórz go w przeglądarce Chrome. Jeśli okno konsoli nie jest
widoczne, wyświetl je, naciskając kombinację Ctrl+Shift+J (w systemie
Windows) lub +Option+J (w systemie Mac OS).

W konsoli powinno pojawić się słowo GOTOWE (wyróżnione kółkiem na ry-
sunku 17.4). Rozwijany skrypt ma wyświetlać liczbę znaków w polu formularza.
Wartość ta ma się zmieniać po każdym wprowadzonym znaku. Aby uzyskać
ten efekt, należy dodać do pola tekstowego zdarzenie keyup (patrz strona
182). Na każdym etapie rozwijania skryptu dodasz funkcję console.log(),
aby kontrolować, co dzieje się w programie.

 5. Po wierszu dodanym w kroku 3. wpisz poniższy kod:
$('#comments').keyup(function() {
 console.log('Zdarzenie: keyup');
}); // koniec funkcji keyup

Koniecznie zapisz ten kod wewnątrz funkcji $(document).ready().

Na stronie znajduje się znacznik <textarea> o identyfikatorze comments. Ele-
ment ten można pobrać za pomocą selektora jQuery, $('#comments'). W tym
fragmencie dodano też funkcję obsługi zdarzenia keyup (informacje o dołączaniu

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Testowanie aplikacji przy
użyciu konsoli

626

Rysunek 17.4. Możesz używać konsoli JavaScript do wyświetlania w przeglądarce tajemnych komunikatów. Jednak
możliwości te znacznie lepiej nadają się do użycia podczas testowania programów. W tym przypadku prosty komu-
nikat — GOTOWE — informuje, że programowi udało się pomyślnie wywołać funkcję $(document).ready() jQuery

zdarzeń znajdziesz na stronie 182). Wywołana tu funkcja console.log() wyświe-
tla w konsoli JavaScript komunikat o stanie, informujący o każdym zgłoszeniu
zdarzenia keyup. Jest to wygodny sposób na sprawdzenie, czy funkcja obsługi
zdarzenia jest uruchamiana, czy może coś blokuje zgłoszenie danego zdarzenia.

Zapisz stronę, odśwież ją w przeglądarce i wpisz kilka znaków w polu teksto-
wym. Upewnij się, że jest widoczna konsola JavaScript — powinieneś w niej
zobaczyć kilka wierszy z tekstem „Zdarzenie: keyup”. Obok komunikatu po-
winna zostać wyświetlona także liczba (w niektórych przeglądarkach będzie ona
umieszczona po lewej, a w innych po prawej stronie komunikatu), oznaczająca,
ile razy dany komunikat został wyświetlony w konsoli.

Skoro zdarzenie keyup działa, można pobrać zawartość pola tekstowego i przypi-
sać ją do zmiennej. Aby sprawdzić, czy skrypt zapisuje odpowiednie dane, należy
wyświetlić zawartość zmiennej w konsoli.

 6. Dodaj wiersze 3. i 4. pod kodem wpisanym w kroku 5.:
1 $('#comments').keyup(function() {
2 console.log('Zdarzenie: keyup');
3 var text = $(this).val();
4 console.log('Treść komentarza: ', text);
5 }); // koniec funkcji keyup

Wiersz 3. pobiera zawartość pola tekstowego i zapisuje ją w zmiennej text
(informacje o sprawdzaniu wartości pól tekstowych znajdziesz na stronie 283).
Wiersz 4. wyświetla komunikat w konsoli. Tu wiadomość składa się z łańcucha

R O Z D Z I AŁ 1 7 . D I A G N O Z O W A N I E I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Testowanie aplikacji przy
użyciu konsoli

627

znaków 'Treść komentarza: ' i aktualnej zawartości pola tekstowego. Jeśli pro-
gram nie działa prawidłowo, standardową techniką diagnostyczną jest wyświe-
tlenie wartości zmiennych. Pozwala to upewnić się, że zmienne zawierają ocze-
kiwane informacje.

 7. Zapisz plik, odśwież go w przeglądarce i wpisz dowolny tekst w polu ko-
mentarza.

Po wpisaniu każdej litery w konsoli powinna pojawić się zawartość pola komen-
tarza. Korzystanie z konsoli nie powinno już sprawiać Ci dużych problemów,
dlatego dodaj jeszcze jeden komunikat i dokończ skrypt.

 8. Zmodyfikuj funkcję obsługi zdarzenia keyup przez dodanie dwóch nowych
wierszy (5. i 6. w poniższym kodzie):

1 $('#comments').keyup(function() {
2 console.log('Zdarzenie: keyup');
3 var text = $(this).val();
4 console.log('Treść komentarza: ', text);
5 var chars = text.length;
6 console.log('Liczba znaków: ', chars);
7 }); // koniec funkcji keyup

Wiersz 5. sprawdza liczbę znaków zapisanych w zmiennej text (właściwość
length omówiono na stronie 565) i przypisuje tę wartość do zmiennej chars.
Aby się upewnić, że skrypt poprawnie pobiera liczbę znaków, należy za pomocą
funkcji log() wyświetlić komunikat w konsoli (wiersz 6.).

Pozostała do wykonania jeszcze jedna operacja — ukończenie skryptu, aby
wyświetlał liczbę znaków użytkownikowi.

 9. Dodaj ostatni wiersz na końcu funkcji obsługi zdarzenia keyup (wiersz 10.).
Gotowy skrypt powinien wyglądać następująco:

1 <script>
2 $(document).ready(function() {
3 console.log('READY');
4 $('#comments').keyup(function() {
5 console.log('Zdarzenie: keyup');
6 var text = $(this).val();
7 console.log('Treść komentarza: ', text);
8 var chars = text.length;
9 console.log('Liczba znaków: ', chars);
10 $('#count').text("Liczba znaków: " + chars);
11 }); // koniec funkcji keyup
12 }); // koniec funkcji ready
13 </script>

 10. Zapisz plik i wyświetl go w przeglądarce.

Teraz konsola powinna wyglądać taki, jak ta z rysunku 17.5. Gotową wersję
rozwiązania zawiera plik complete_console.html w katalogu R17 w archiwum
z przykładami.

Uwaga: Po utworzeniu działającego programu należy usunąć ze skryptu wszystkie wywołania

console.log(). Funkcja log() wywoła błędy w niektórych starszych przeglądarkach.

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Testowanie aplikacji przy
użyciu konsoli

628

Rysunek 17.5. Konsola JavaScript to doskonałe narzędzie do wyświetlania diagnostycznych informacji
w czasie działania programu. Możesz też pogrupować zbiory komunikatów (na przykład wszystkie wiadomości
zapisane w pętli). W tym celu dodaj funkcję console.group() przed pierwszym wywołaniem console.log() w grupie,
a po wyświetleniu ostatniego komunikatu ze zbioru wywołaj funkcję console.groupEnd()

Diagnozowanie zaawansowane
Konsola JavaScript to doskonałe narzędzie do wyświetlania komunikatów z infor-
macjami o funkcjonowaniu programu. Jednak czasem skrypt działa tak szybko, że
trudno zauważyć, jakie operacje zachodzą na poszczególnych etapach. Trzeba wte-
dy spowolnić program. Na szczęście przeglądarki udostępniają użyteczne debuggery
skryptów JavaScript, które pozwalają na prześledzenie działania programu wiersz
po wierszu i zobaczenie, co dzieje się na każdym etapie skryptu.

Uwaga: W tym przykładzie zastosowana została przeglądarka Google Chrome, jednak debuggery

JavaScriptu o bardzo podobnych możliwościach dostępne są także w innych przeglądarkach, takich jak

Firefox, Opera, Safari oraz Internet Explorer.

Diagnozowanie to proces naprawiania nieprawidłowo działających programów. Aby
dobrze zrozumieć funkcjonowanie skryptu (lub występujące w nim problemy),
czasem trzeba krok po kroku prześledzić jego działanie.

R O Z D Z I AŁ 1 7 . D I A G N O Z O W A N I E I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Testowanie aplikacji przy
użyciu konsoli

629

Aby użyć debuggera, należy umieścić w określonych wierszach kodu punkty wstrzy-
mania (nazywane też punktami przerwania). Są to miejsca, w których interpreter
wstrzymuje działanie i czeka na polecenia. Należy wtedy użyć kontrolek debuggera,
które pozwalają uruchomić program wiersz po wierszu. W ten sposób możesz dokła-
dnie prześledzić, jak działają poszczególne instrukcje. Proces korzystania z debuggera
przebiega następująco:

 1. Otwórz stronę w przeglądarce.

Pamiętaj, że w opisywanym tu przykładzie zastosowana została przeglądarka
Google Chrome oraz jej wbudowany debugger. W debuggerach dostępnych
w innych przeglądarkach konkretne wykonywane czynności oraz wygląd paneli
mogą być nieco inne.

 2. Otwórz konsolę JavaScript.

Aby otworzyć narzędzia dla programistów używanej przeglądarki, postępuj
zgodnie z instrukcjami opisanymi na stronie 51. Kiedy korzystasz z przeglą-
darki Chrome, konsolę JavaScript najprościej otworzysz, używając kombina-
cji klawiszy Ctrl+Shift+J (w systemie Windows) lub +Options+J (w sys-
temie Mac OS).

 3. Kliknij kartę Sources, a następnie z listy plików wybierz plik zawierający
kod JavaScript, który chcesz przetestować (patrz rysunek 17.6).

Rysunek 17.6. Debugger umożliwia dodawanie punktów wstrzymania (wierszy, w których skrypt wstrzymuje
działanie i czeka na polecenia), kontrolowanie wykonywania kodu i podglądanie zmiennych na liście Czujka. W czasie
wykonywania programu aktualny wiersz (oczekujący na uruchomienie) jest podświetlony

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Testowanie aplikacji przy
użyciu konsoli

630

W przeglądarce Chrome kod źródłowy pliku, który chcemy testować, jest wy-
świetlany na karcie Sources. W przypadku skryptu umieszczonego bezpośred-
nio na stronie WWW, na karcie jest wyświetlany cały kod strony (włącznie
z kodem HTML). Jeśli jednak wybierzemy zewnętrzny plik JavaScript, to na
karcie zostanie wyświetlony wyłącznie kod tego pliku.

 4. Wybierz z menu kodu źródłowego (patrz rysunek 17.6) plik z diagnozowanym
skryptem.

Skrypty często znajdują się w różnych miejscach strony i w zewnętrznych pli-
kach JavaScript. Jeśli na stronie działają skrypty z kilku plików, trzeba wybrać
dokument zawierający diagnozowany kod.

 5. Dodaj punkty wstrzymania.

Aby dodać punkt wstrzymania, kliknij lewy margines obok numeru wiersza. Po-
jawi się znacznik reprezentujący taki punkt.

Uwaga: Dodawanie punktów wstrzymania do wierszy, które zawierają tylko komentarze, jest bez-

celowe. Debugger nie zatrzyma skryptu w takim miejscu. Punkty wstrzymania należy dodawać

tylko do wierszy z wykonywalnym kodem JavaScript.

 6. Odśwież stronę.

Aby dodać punkty wstrzymania w wybranych miejscach skryptu, trzeba najpierw
wyświetlić stronę w przeglądarce, zatem może się zdarzyć, że diagnozowany kod
JavaScript już zostanie uruchomiony (jeszcze przed dodaniem punktów wstrzy-
mania). Należy wtedy odświeżyć stronę, aby ponownie włączyć skrypt.

Jeśli dodałeś punkt wstrzymania do funkcji reagującej na zdarzenie (na przykład
chcesz zdiagnozować kod uruchamiany po kliknięciu przycisku lub umieszcze-
niu kursora nad odnośnikiem), musisz je wywołać — kliknąć przycisk lub na-
jechać kursorem na odsyłacz — aby dojść do punktu wstrzymania i rozpocząć
proces diagnozowania.

Kiedy skrypt dojdzie do punktu wstrzymania, przerwie działanie. Program zosta-
nie zatrzymany w czasie i będzie oczekiwał na wykonanie wiersza po pierwszym
punkcie wstrzymania.

 7. Użyj kontrolek debuggera do przejścia przez program krok po kroku.

Większość debuggerów udostępnia cztery kontrolki (patrz rysunek 17.6), które
określają, jak program ma działać po zatrzymaniu się w punkcie wstrzyma-
nia. Informacje o tych kontrolkach znajdziesz w następnym podpunkcie
rozdziału.

 8. Obserwuj stan programu na liście Watch Expressions (patrz rysunek 17.7).

Celem analizowania działania programu krok po kroku jest śledzenie, co dzieje
się w każdym wierszu skryptu. Lista Watch Expressions udostępnia podsta-
wowe informacje o stanie programu i pozwala wskazać dodatkowe zmienne, któ-
re chcesz obserwować. Możesz w ten sposób śledzić na przykład wartość zmien-
nej score. Na stronie 632 dowiesz się, jak korzystać z listy Watch Expressions.

 9. Napraw skrypt w edytorze tekstu.

R O Z D Z I AŁ 1 7 . D I A G N O Z O W A N I E I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Testowanie aplikacji przy
użyciu konsoli

631

W czasie przechodzenia przez skrypt powinieneś wykryć problem i na przy-
kład dowiedzieć się, dlaczego wartość danej zmiennej nigdy się nie zmienia,
a warunek zawsze jest prawdziwy. Po uzyskaniu potrzebnych informacji można
przejść do edytora tekstu i zmodyfikować skrypt (na stronie 633 znajduje się
przykład ilustrujący naprawianie skryptu).

 10. Przetestuj stronę w przeglądarce. Jeśli to konieczne, powtórz powyższe kroki,
aby usunąć wykryte problemy.

Kontrolowanie działania skryptu za pomocą debuggera

Po dodaniu do skryptu punktów wstrzymania i odświeżeniu strony można urucho-
mić kod wiersz po wierszu. Jeśli dodałeś punkt wstrzymania do fragmentu wykony-
wanego przy wczytywaniu strony, skrypt zatrzyma się w tym punkcie. Jeżeli punkt
wstrzymania znajduje się w wierszu uruchamianym po wystąpieniu zdarzenia (na
przykład po kliknięciu odnośnika), aby dojść do tego punktu, trzeba wywołać dane
zdarzenie.

Kiedy debugger przerwie program w punkcie wstrzymania, nie uruchomi danego
wiersza, ale zatrzyma się tuż przed nim. Można wtedy kliknąć jeden z czterech przyci-
sków debuggera, aby określić jego dalsze działanie (patrz rysunek 17.7).

 Resume script execution (wznów wykonywanie skryptu). Przycisk Kontynuuj
ponownie uruchamia skrypt. Program nie zatrzyma się do momentu napo-
tkania przez interpreter następnego punktu wstrzymania lub do czasu zakoń-
czenia działania. Jeśli skrypt ponownie dojdzie do punktu wstrzymania, za-
trzyma się w oczekiwaniu na polecenia użytkownika.

Użyj przycisku Kontynuuj, jeśli chcesz uruchomić program lub przejść do na-
stępnego punktu wstrzymania.

 Step over next funcion call (przeskocz wywołanie następnej funkcji). Ta
przydatna opcja wykonuje aktualny wiersz kodu, a następnie zatrzymuje działa-
nie skryptu. Jej nazwa wynika z tego, że jeśli bieżący wiersz zawiera wywołanie
funkcji, debugger nie wyświetli jej kodu ani się w nim nie zatrzyma, ale wyko-
na go i zatrzyma się w następnym wierszu. Warto korzystać z tej opcji, jeśli
wiadomo, że dana funkcja działa bezbłędnie. Jeżeli przykładowo skrypt wywo-
łuje funkcję biblioteki jQuery, warto ją przeskoczyć. Jeśli tego nie zrobisz, bę-
dziesz musiał przez długi czas śledzić wiersz po wierszu skomplikowany kod
tej biblioteki. Z tej opcji będziesz zazwyczaj korzystał, chyba że w aktualnym
wierszu kodu znajduje się wywołanie funkcji, którą sam utworzyłeś — jeśli
chcesz sprawdzić, co się wewnątrz niej dzieje, powinieneś skorzystać z opisanej
poniżej opcji Step into next function call.

 Step into next function call (wejdź do wywołania następnej funkcji). Ta
opcja powoduje wkroczenie debuggera w kod funkcji. Oznacza to, że jeśli bieżący
wiersz zawiera wywołanie funkcji, debugger wkroczy w nią i zatrzyma się na jej
pierwszym wierszu. Ta opcja jest przydatna, jeżeli nie jesteś pewien, czy problem
występuje w głównym skrypcie, czy w funkcji.

Jeśli jesteś pewien, że dana funkcja działa poprawnie (na przykład korzystałeś
z niej już dziesiątki razy), nie warto stosować tej opcji. Dobrze jest też używać
Step over next function call opcji zamiast Step into next function call przy

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Testowanie aplikacji przy
użyciu konsoli

632

diagnozowaniu wierszy kodu z selektorami i poleceniami biblioteki jQuery. Na
przykład $('#button') to wyrażenie umożliwiające bibliotece jQuery pobranie
elementu strony. Jest to też funkcja tej biblioteki, dlatego jeśli klikniesz przycisk
Step into next function call, wkroczysz w złożony świat jQuery. Jeśli tak się sta-
nie, zauważysz to, ponieważ karta ze skryptem zmieni się i wyświetli cały kod
JavaScript z pliku biblioteki jQuery.

Jeśli w czasie korzystania z debuggera zagubisz się w funkcji lub w kodzie bi-
blioteki języka JavaScript, takiej jak jQuery, możesz wydostać się z danego
fragmentu za pomocą kontrolki Step out of current function.

 Step out of current function (wyjdź z bieżącej funkcji). Ten przycisk powo-
duje wyjście debuggera z wywołania funkcji. Zwykle jest używany po kliknięciu
przycisku Step into next fuction call. Wybranie tej opcji powoduje wykonanie
kodu funkcji bez zatrzymywania się w każdym jej wierszu. Kiedy klikniesz ten
przycisk, debugger wróci do wiersza wywołania funkcji i zatrzyma skrypt.

Obserwowanie skryptu
Choć przyciski debuggera pozwalają kontrolować wykonywanie skryptu, celem ko-
rzystania z tego narzędzia jest śledzenie tego, co dzieje się w programie. Pomocna
jest w tym lista Watch Expressions (patrz rysunek 17.7). Wyświetla ona zmienne
i funkcje dostępne w kontekście wykonywanego wiersza kodu. Oznacza to, że jeśli
umieścisz punkt wstrzymania w funkcji, zobaczysz listę wszystkich zdefiniowa-
nych w niej zmiennych. Jeżeli dodasz taki punkt w głównym ciele skryptu, pojawią
się funkcje zdefiniowane w tym obszarze. Ponadto na liście Watch Expressions
widoczne są wszystkie utworzone funkcje.

Przy użyciu żółtego paska z napisem „Nowe wyrażenie czujki” możesz dodawać wła-
sne zmienne i wyrażenia. Wystarczy kliknąć ten pasek, a pojawi się pole tekstowe.
Wpisz nazwę przeznaczonej do obserwacji zmiennej lub instrukcję języka JavaScript,
którą chcesz uruchomić. Ponieważ debugger nie śledzi wartości zmiennej licznika
w pętlach for (patrz strona 112), możesz ją dodać, a następnie obserwować jej
zmiany przy każdym uruchomieniu danej pętli.

Listę Watch Expressions możesz traktować jak okno z ciągle wywoływanym polece-
niem console.log(). Lista ta wyświetla wartość zmiennej lub wyrażenia w mo-
mencie wykonywania danego wiersza kodu.

Lista Watch Expressions zapewnia wartościowy wgląd w program i udostępnia efekt
„zatrzymania filmu”, który pozwala dokładnie określić miejsce wystąpienia błędu
w skrypcie. Na przykład jeśli wiesz, że dana zmienna przechowuje liczbę, możesz
przejść przez program krok po kroku, aby zobaczyć, jaką wartość zapisuje w zmiennej
w momencie jej utworzenia i jak modyfikuje przechowywane w niej instrukcje.
Jeżeli po kliknięciu przycisków Step over next funcion call lub Step out of cur-
rent function zauważysz, że zmienna przyjmuje nieoczekiwaną wartość, praw-
dopodobnie znalazłeś wiersz, w którym pojawia się błąd.

Uwaga: Pamiętaj, że kiedy program jest zatrzymany, debugger podświetla następny wiersz kodu, któ-

ry zostanie wykonany. A zatem, jeśli wyróżniony wiersz ustawia wartość zmiennej, nie zobaczysz jej

wartości na liście Watch Expressions aż do momentu naciśnięcia przycisku Step over next function call.

R O Z D Z I AŁ 1 7 . D I A G N O Z O W A N I E I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Przykład diagnozowania

633

Rysunek 17.7. Lista Watch
Expressions wyświetla war-
tość różnych zmiennych
w czasie działania programu.
Możesz dodać do listy własne
wyrażenia, które pojawią się
na paskach o szarym tle
w górnej części okna

Przykład diagnozowania
W tym przykładzie użyjesz konsoli JavaScript przeglądarki Chrome do zdiagno-
zowania pliku zawierającego błędy różnego rodzaju (składniowe, czasu wykonania
i logiczne). Strona to prosty quiz, który wyświetla trzy pytania i uzyskany wynik.
Aby zobaczyć, jak powinna ona działać, otwórz w dowolnej przeglądarce plik
complete_debugger.html z katalogu R17.

Uwaga: Informacje o pobieraniu przykładowych plików znajdziesz na stronie 46.

Podobnie jak wszystkie inne przykłady prezentowane w tym rozdziale, także i ten
zostanie wykonany przy użyciu przeglądarki Chrome. Możesz spróbować wykonać
go w innej przeglądarce, jednak w takim przypadku zarówno konsola JavaSript, jak
i debugger mogą wyglądać inaczej niż w zamieszczonym tu opisie.

 1. Uruchom przeglądarkę Chrome i otwórz plik debugger.html z katalogu R17.

Otwórz konsolę JavaScript — w przeglądarce Chrome zrobisz to najprościej,
używając kombinacji klawiszy Ctrl+Shift+J (w systemie Windows) lub
+Options+J (w systemie Mac OS).

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Przykład diagnozowania

634

Konsola wyświetli informacje o dwóch błędach. Najpierw zajmiesz się dru-
gim z nich. Został opisany jako: „Uncaught SyntaxError: Unexpected token ; ”1.
Znaczenie tego komunikatu nie jest tak od razu oczywiste, jednak informuje
on o tym, że przeglądarka nie oczekiwała średnika w miejscu, w którym go
znalazła. Zważywszy, że średnik oznacza koniec instrukcji, można dojść do
wniosku, że to z tą instrukcją jest coś nie w porządku. Zwróć także uwagę, że
podany został numer wiersza kodu, w którym przeglądarka znalazła błąd
(został on zakreślony na rysunku 17.8).

Rysunek 17.8.
Konsola przeglądarki
Chrome to pierwszy
przystanek przy
wykrywaniu błędów
składniowych i czasu
wykonania, które
uniemożliwiają
wykonanie skryptu

 2. Kliknij numer wiersza (na rysunku 17.8 został on zakreślony).

Spowoduje to wyświetlenie panelu Sources i podświetlenie wiersza, w którym
wystąpił problem. Pamiętaj, że bardzo dużo błędów to zwyczajne, proste
pomyłki typograficzne. Do tych, które zdarzają się najczęściej należą pomi-
nięcie zamykającego nawiasu, nawiasu klamrowego (}) lub kwadratowego
(]), które można stosunkowo łatwo zlokalizować i poprawić. W tym przy-
padku, w wierszu 11 rozpoczyna się definicja tablicy — var quiz = [— lecz
w kodzie zabrakło końca definicji, czyli zamykającego nawiasu].

1 Nieprzechwycony wyjątek SyntaxError: Nieoczekiwany leksem ; — przyp. tłum.

R O Z D Z I AŁ 1 7 . D I A G N O Z O W A N I E I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Przykład diagnozowania

635

 3. Uruchom edytor tekstu i otwórz plik debugger.html. Znajdź wiersz 15.
(znajduje się w nim tylko znak ;). Dodaj zamykający nawias kwadratowy
przed symbolem ;, aby wiersz wyglądał następująco:

];

Nowy nawias kwadratowy zamyka zagnieżdżoną tablicę, która obejmuje
wszystkie pytania i odpowiedzi quizu.

 4. Zapisz plik. Wróć do przeglądarki Chrome i odśwież stronę.

W kodzie wciąż znajduje się pierwszy z początkowych błędów. A do tego poja-
wił się następny! Tym razem konsola informuje, że „$ is not defined”, i wska-
zuje wiersz 9. z funkcją $(document).ready() biblioteki jQuery. Kiedy prze-
glądarka informuje, że coś jest „not defined”, oznacza to, iż kod wskazuje na
nieistniejący element, na przykład zmienną lub funkcję, której jeszcze nie
utworzyłeś. Może to też być skutek popełnienia literówki. Tu jednak kod wygląda
poprawnie. Przyczyna znajduje się we wcześniejszej części kodu:

<script src="_js/jquery.min.js"></script>

Standardowym problemem przy korzystaniu z zewnętrznych plików jest błęd-
nie podana ścieżka do skryptu. Tu plik jquery.min.js znajduje się w katalogu
o nazwie _js poza katalogiem danej strony, natomiast ścieżka informuje, że ka-
talog _js jest w tym samym folderze. Ponieważ Firefox nie potrafi znaleźć pliku
jquery.min.js (to w nim zdefiniowano specjalną funkcję $() biblioteki jQuery),
informuje o błędzie.

 5. Zmień znacznik <script>, aby wyglądał jak ten poniżej:
<script src="../_js/jquery.min.js"></script>

Fragment ../ informuje, że katalog js znajduje się poza bieżącym folderem, dla-
tego ścieżka prowadzi teraz do pliku jQuery. Jakie błędy mogą się jeszcze kryć
w programie?

 6. Zapisz plik, wróć do przeglądarki Chrome i odśwież stronę.

Brak błędów; a to dlatego, że oba były spowodowane przez ten sam problem.
Pierwszy z nich informował, że nie można znaleźć pliku biblioteki jQuery;
a ponieważ przeglądarka nie mogła go znaleźć, zatem nie wiedziała, co ozna-
cza $. Wygląda na to, że strona została naprawiona, ale czy na pewno?

 7. Kliknij przycisk Rozpocznij quiz.

Następny błąd! Tym razem konsola informuje, że „askQuestions is not defi-
ned”, i wskazuje na wiersz 69. w końcowej części skryptu. Ponieważ ten problem
pojawia się tylko po uruchomieniu programu, jest to błąd czasu wykonania
(patrz ramka na stronie 615). Problem pojawia się w końcowej części skryptu,
w poniższej instrukcji warunkowej:

if (quiz.length>0) {
 askQuestions();
} else {
 giveResults();
}

Prawdopodobnie zauważyłeś już, że kiedy dany element jest niezdefiniowany,
często wynika to z popełnienia prostej literówki. Tu askQuestions() to wy-
wołanie funkcji, dlatego zajrzyj do kodu i spróbuj ją znaleźć.

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Przykład diagnozowania

636

Czy znalazłeś funkcję? Choć w kodzie nie ma metody askQuestions(), powi-
nieneś zauważyć funkcję askQuestion() (bez litery „s”).

 8. Wróć do edytora tekstu i usuń ostatnią literę „s” z wywołania askQuestions()
w wierszu 69. (w końcowej części skryptu). Zapisz plik, odśwież go w prze-
glądarce i ponownie kliknij przycisk Rozpocznij quiz.

Tym razem pojawi się pytanie z pięcioma odpowiedziami w formacie wielokrot-
nego wyboru. Niestety, przy ostatniej możliwości znajduje się etykieta undefined.
Wygląda to na usterkę, jednak konsola jest pusta, dlatego technicznie nie ma
błędu w kodzie JavaScript. Problem musiał wystąpić w logice programu. Aby
odkryć przyczynę błędu, trzeba użyć debuggera.

 9. W przeglądarce Chrome kliknij kartę Sources i z listy wybierz plik debugger.
html (patrz rysunek 17.9).

Karta Sources zapewnia dostęp do kodu JavaScript strony. Jeśli strona zawiera
kod w tym języku, a ponadto dołączono do niej zewnętrzne pliki JavaScript,
w menu kodu źródłowego możesz określić, który plik chcesz zdiagnozować.

Rysunek 17.9. W debuggerze przeglądarki można zdiagnozować dowolny skrypt używany przez daną stronę.
Menu kodu źródłowego pozwala wybrać kod JavaScript zagnieżdżony w tej stronie lub zapisany w dołączonych
zewnętrznych plikach JavaScript

R O Z D Z I AŁ 1 7 . D I A G N O Z O W A N I E I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Przykład diagnozowania

637

Ponieważ problemem jest przycisk opcji z napisem „undefined”, warto rozpo-
cząć szukanie przyczyny kłopotów w kodzie tworzącym takie przyciski. Jeśli jesteś
autorem danego skryptu, prawdopodobnie wiesz, gdzie szukać potrzebnego
kodu. Jednak jeżeli otrzymałeś program z usterkami, musisz go przejrzeć, aby
znaleźć właściwy fragment.

Tu przyciski opcji tworzy funkcja o nazwie buildAnswers(), która przygotowuje
zbiór odpowiedzi do wyboru reprezentowanych przez wspomniane elementy.
Ta funkcja przyjmuje tablicę z tekstem każdego przycisku, a zwraca łańcuch
znaków z kodem HTML utworzonych przycisków. Warto rozpocząć diagnozo-
wanie od tej właśnie funkcji.

 10. Przewiń zawartość środkowego panelu karty Sources (prezentującego kod
HTML i JavaScript wybranej strony) w dół, tak by widoczny był wiersz 47.
Ustaw punkt wstrzymania w wierszu 46. (w kółku na rysunku 17.9).

Numer wiersza zostanie podświetlony, co będzie oznaczać, że znajduje się
w nim punkt wstrzymania, czy też miejsce, w którym interpreter JavaScriptu
przerwie wykonywanie kodu. Oznacza to, że kiedy ponownie uruchomisz pro-
gram, interpreter dojdzie do tego wiersza i zatrzyma skrypt, a Ty będziesz
mógł przejść przez kod wiersz po wierszu, aby zobaczyć, jak działa.

Debugger umożliwia też podgląd wartości zmiennych w czasie działania pro-
gram, co przypomina korzystanie z funkcji console.log() (patrz strona 623).
Musisz tylko poinformować debugger, jakie zmienne chcesz obserwować.

 11. W panelu z prawej strony kliknij przycisk „+” (umieszczony bezpośrednio na
prawo od nagłówka listy Watch Expressions), wpisz literę i, a następnie
wciśnij klawisz Enter.

Dodałeś w ten sposób zmienną i do listy Watch Expressions. Jest to zmienna
licznika pętli for, określająca liczbę uruchomień tej pętli (więcej informacji o pę-
tlach znajdziesz na stronie 109). W czasie działania skryptu będziesz mógł śle-
dzić zmiany tej wartości. Następnie dodaj nową obserwowaną zmienną.

 12. Ponownie kliknij przycisk „+” obok nagłówka Watch Expressions, wpisz
wyrażenie answers.length i wciśnij klawisz Enter.

Nie przejmuj się wartością, którą debugger wyświetli na tym etapie (prawdo-
podobnie będzie to tekst „answers is not defined”). Nie możesz śledzić war-
tości zmiennych, dopóki debugger nie wejdzie do odpowiedniej funkcji. Teraz
można już przyjrzeć się działaniu skryptu.

 13. Kliknij przycisk Załaduj tę stronę ponownie lub wciśnij kombinację kla-
wiszy Ctrl+R (+R). Kiedy przeglądarka odświeży stronę, kliknij przycisk
Uruchom quiz.

Skrypt rozpocznie działanie, a na stronie pojawi się pierwsze pytanie. Jednak tuż
przed utworzeniem przycisków opcji (w wierszu 46.) debugger wstrzyma pro-
gram (patrz górna część rysunku 17.10). Zauważ, że na liście Watch Expressions
zmienna i ma wartość „not defined”. Dzieje się tak, ponieważ punkt wstrzy-
mania blokuje program tuż przed uruchomieniem danego wiersza. Oznacza to,
że pętla nie została jeszcze uruchomiona, dlatego zmienna i na razie nie istnieje.

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Przykład diagnozowania

638

Rysunek 17.10.
Lista Watch
Expressions może
zawierać nie tylko
zmienne i wyraże-
nia, które do niej
dodamy. Przykła-
dowo sekcja Scope
Variables prezen-
tuje wszystkie
zmienne dostępne
w „zasięgu” bieżą-
cej funkcji. W tym
przypadku (górny
rysunek) widać,
że w funkcji buil-
dAnswer() dostęp-
ne są zmienne
answerHTML
oraz answers

Z kolei wartość wyrażenia answers.length to 4. Tablica answers zawiera od-
powiedzi przekazane do funkcji. Właściwość length tej tablicy określa liczbę jej
elementów. Tu dostępne są cztery odpowiedzi, dlatego po zakończeniu działania
funkcji powinny pojawić się cztery przyciski opcji.

 14. Kliknij przycisk Step over next function call (patrz rysunek 17.10).

Ten przycisk powoduje przejście do następnego wiersza programu. Zauważ, że
zmienna i ma teraz wartość 0. Kliknij kilkakrotnie, aby przejść przez pętlę.

 15. Klikaj przycisk Step over next function call, dopóki zmienna i na liście Watch
Expressions nie przyjmie wartości 5 (patrz dolna część rysunku 15.10).

Choć tablica answers zawiera tylko cztery elementy, pętla for jest uruchamiana
pięciokrotnie (to wartość zmiennej i). Dlatego pętla kończy działanie w nieocze-
kiwanym momencie. Pamiętaj, że w pętli for środkowa instrukcja to warunek,
który musi być spełniony, aby skrypt uruchomił kod w pętli (patrz strona 112).
Tu ten warunek to i<=answers.length;. Oznacza to, że pętla zaczyna działanie,
kiedy zmienna i ma wartość 0. Skrypt ponownie uruchamia pętlę, dopóki
zmienna i ma wartość mniejszą od liczby elementów tablicy answers lub równą
jej. Dlatego przed wyjściem z pętli zmienna i przyjmie wartości 0, 1, 2, 3 oraz 4,

R O Z D Z I AŁ 1 7 . D I A G N O Z O W A N I E I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

Przykład diagnozowania

639

co oznacza pięciokrotne uruchomienie pętli. Ponieważ jednak tablica odpo-
wiedzi zawiera tylko cztery elementy, podczas piątej iteracji pętli zabraknie już
odpowiedzi do wyświetlenia: komunikat „undefined” pojawia się dlatego, że
w tablicy odpowiedzi nie ma piątego elementu.

 16. Wróć do edytora tekstu i zmodyfikuj pętlę for w wierszu 46., aby wyglądała
następująco:

for (i=0;i<answers.length;i++) {

Teraz pętla zostanie uruchomiona tyle razy, ile elementów znajduje się w tablicy
answers, dlatego utworzy jeden przycisk opcji dla każdej odpowiedzi.

 17. Zapisz plik i wyświetl go w przeglądarce.

Możesz kliknąć podświetlony numer wiersza na karcie Sources, aby usunąć
punkt wstrzymania i bez przeszkód obserwować działanie ukończonej strony.

Gotową wersję przykładu zawiera plik complete_debugger.html. Jak widać, wyszu-
kiwanie błędów w programie może być czasochłonne. Na szczęście debuggery
znacznie ułatwiają zbadanie „wnętrza” skryptu i ustalenie przyczyn problemów.

C ZĘŚĆ V  W S K A Z Ó W K I , S Z T U C Z K I I R O Z W IĄZ Y W A N I E P R O B L E M Ó W

640

Dodatki

 Dodatek A. Materiały związane z językiem JavaScript

 Skorowidz

VI
CZĘŚĆ

Materiały związane
z językiem JavaScript

a książka zawiera informacje i omówienie praktycznych technik, które po-
zwolą Ci rozpocząć karierę programisty języka JavaScript. Jednak żadna
książka nie obejmuje odpowiedzi na wszystkie pytania z tej dziedziny. Pro-

gramowanie w języku JavaScript to bardzo obszerne zagadnienie, a w tym dodatku
dowiesz się, gdzie możesz kontynuować dociekania i naukę.

Źródła informacji
Czasem aby przeczytać książkę, trzeba posłużyć się słownikiem. W trakcie tworzenia
programów w języku JavaScript warto mieć kompletne źródło informacji na temat
różnych słów kluczowych, pojęć, metod i innych elementów składni tego języka.
Takie materiały są dostępne zarówno w internecie, jak i w formie książek.

Witryny
 Witryna ECMAScript (http://www.ecmascript.org/) zawiera dokumentację

i informacje na temat języka ECSAScript (to oficjalna nazwa JavaScriptu).
Na niej należy szukać informacji o aktualnym stanie tego języka (oraz o jego
przyszłości).

 Encyklopedia języka JavaScript w witrynie Mozilla Developer Center
(https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference) to kom-
pletne źródło informacji na temat języka JavaScript. Dokumentacja ta jest nie-
zwykle szczegółowa, choć czasami trudna do zrozumienia, gdyż kierowana dla
odbiorców z odpowiednim wykształceniem informatycznym.

T

A
DODATEK

http://www.ecmascript.org/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference

C ZĘŚĆ V I  D O D A T K I

Podstawy języka JavaScript

644

 WebPlatform (http://www.webplatform.org/) zawiera informacje dotyczące
języka JavaScript, DOM i CSS, jak również dane o tym, które możliwości są
obsługiwane przez poszczególne wersje przeglądarek. To prawdziwa ency-
klopedia dla twórców aplikacji internetowych.

 Dokumentacja języka JavaScript na witrynie MSDN (http://msdn.microsoft.
com/en-us/library/d1et7k7c(v=VS.94).aspx) Microsoftu to doskonałe źródło
wiedzy, jeśli tworzysz witryny przeznaczone dla przeglądarki Internet Explorer.
Choć udostępnia ona informacje na temat języka JavaScript w wersjach obsłu-
giwanych przez inne przeglądarki, jednak zawiera wiele informacji o implemen-
tacji języka używanej w Internet Explorerze.

Książki
 JavaScript: The Definitive Guide1 autorstwa Davida Flanagana (wydawnictwo

O’Reilly) to najbardziej wyczerpująca drukowana encyklopedia języka JavaScript.
Jest to treściwa i obszerna pozycja i zawiera wszystkie szczegóły potrzebne do
dobrego zrozumienia języka JavaScript.

Podstawy języka JavaScript
JavaScript nie jest prosty w nauce, dlatego zawsze warto korzystać z wielu źródeł
informacji, aby opanować wszelkie niuanse tworzenia aplikacji sieciowych. Wymie-
nione w tym podrozdziale materiały pomagają poznać podstawy tego języka (co
czasem bywa trudne).

Witryny
 Samouczek języka JavaScript w witrynie W3 Schools (www.w3schools.com/js)

to rozbudowany (choć nie zawsze zawierający szczegółowe wyjaśnienia) porad-
nik, który opisuje większość aspektów programowania w języku JavaScript.

 Wprowadzenie do języka JavaScript na witrynie howtocreate.co.uk (http://
www.howtocreate.co.uk/tutorials/javascript/introduction) stanowi ogólnie do-
stępny, szczegółowy opis języka. Oczywiście, ponieważ korzystasz z biblioteki
jQuery, nie będziesz potrzebował wielu spośród zamieszczonych tam informacji,
gdyż dotyczą one tradycyjnych sposobów pobierania elementów DOM i mani-
pulowania nimi.

Książki
 Head First JavaScript2 autorstwa Michaela Morrisona (wydawnictwo O’Reilly) to

ciekawe i bogato ilustrowane wprowadzenie do języka JavaScript. Znajdziesz tu
wiele informacji o języku JavaScript, podanych w zabawnym i dowcipnym stylu.

1 Wydanie polskie: JavaScript. Podręcznik programisty, RM, 2002 — przyp. tłum.
2 Wydanie polskie: Head First JavaScript. Edycja polska, Helion, Gliwice 2009 — przyp. tłum.

http://www.webplatform.org/
http://msdn.microsoft.com/en-us/library/d1et7k7c(v=VS.94).aspx
http://msdn.microsoft.com/en-us/library/d1et7k7c(v=VS.94).aspx
http://www.w3schools.com/js
http://www.howtocreate.co.uk/tutorials/javascript/introduction
http://www.howtocreate.co.uk/tutorials/javascript/introduction

 D O D A T E K A  M A T E R I AŁY Z W IĄZ A N E Z JĘZ Y K I E M J A V A S C R I P T

Zaawansowany język
JavaScript

645

jQuery
Niniejsza książka jest poświęcona głównie bibliotece jQuery, jednak warto dużo
lepiej poznać to rozbudowane, przyspieszające pracę i ciekawe narzędzie.

Witryny
 Blog jQuery (http://blog.jquery.com/) pozwala być na bieżąco ze wszystkimi

zmianami wprowadzanymi w jQuery.

 Dokumentacja jQuery (http://docs.jquery.com) to miejsce stanowiące główne
źródło poszukiwań odpowiedzi na wszelkie pytania związane z tą biblioteką.
Wszystkie możliwości, funkcje i tajniki biblioteki jQuery zostały tu dokładnie
opisane. Przykłady demonstrują działanie wszystkich funkcji biblioteki, dzięki
czemu można się dowiedzieć, jakie są zalecane sposoby ich stosowania i jak
powinny działać.

 jQuery Fundamentals (http://jqfundamentals.com/) to witryna prezentująca
jQuery w unikalnym, praktycznym stylu. Nie tylko wyjaśnia podstawowe
pojęcia związane z tą biblioteką, lecz także na każdej stronie udostępnia
„piaskownicę” JavaScript, dzięki której czytelnik może eksperymentować
z prezentowanym kodem i na bieżąco oglądać wyniki jego działania.

Książki
 JQuery in Action autorstwa Beara Bibeaulta i Yehudy Katza (wydawnictwo

Manning) to szczegółowe omówienie biblioteki jQuery z wieloma przykła-
dami. Książka ta wymaga pewnej wiedzy z zakresu języka JavaScript i pro-
gramowania.

 jQuery Cookbook to książka wydana przez wydawnictwo O’Reilly, zawiera-
jąca wiele „przepisów” na rozwiązywanie najczęściej spotykanych zadań i pro-
blemów, przed jakimi stają programiści. Została napisana przez sporą grupę
osób, spośród których wiele to najbardziej błyskotliwe umysły w dziedzinie
stosowania jQuery.

Zaawansowany język JavaScript
O tak, język JavaScript jest bardziej skomplikowany, niż możesz sądzić po lekturze
tej książki. Kiedy dobrze opanujesz podstawy, możesz zechcieć wzbogacić wiedzę
na temat tego złożonego języka.

http://blog.jquery.com/
http://docs.jquery.com
http://jqfundamentals.com/

C ZĘŚĆ V I  D O D A T K I

Zaawansowany język
JavaScript

646

Artykuły i prezentacje
 JS-Must-Watch (https://github.com/bolshchikov/js-must-watch/) to repozy-

torium na serwisie GitHub zawierające listę najlepszych prezentacji i klipów
wideo poświęconych językowi JavaScript.

Witryny
 Eloquent JavaScript (http://eloquentjavascript.net) to witryna z samouczkiem

języka JavaScript. Jest dobrze uporządkowana, a lekcje są przedstawione w po-
mysłowy sposób. Choć teoretycznie witryna ta jest przeznaczona dla począt-
kujących, autor pisze tak, jakby odbiorcami byli zawodowi informatycy, dlatego
nie jest to najlepsze źródło informacji, jeśli dopiero uczysz się języka JavaScript
lub programowania. Jest także dostępna w formie drukowanej książki.

 Sekcja poświęcona językowi JavaScript w witrynie Douglasa Crockforda
(http://javascript.crockford.com/) zawiera wiele (skomplikowanych) materia-
łów na temat tego języka. Witryna jest bardzo bogata w informacje, przy czym
zrozumienie niektórych z nich wymaga posiadania specjalistycznej wiedzy.

 Dział poświęcony językowi JavaScript na witrynie Mozilla Developers
Network (https://developer.mozilla.org/en-US/docs/Web/JavaScript) zawiera
bardzo dużo informacji na temat JavaScriptu, w tym jego encyklopedię, o której
wspomniano na początku tego dodatku, a także przewodnik (https://developer.
mozilla.org/en-US/docs/Web/JavaScript/Guide) opisujący różne istniejące wer-
sje języka oraz szczegółowe przykłady przeznaczone dla programistów o różnym
poziomie wiedzy — od początkujących do zaawansowanych.

Książki
 The Principles of Object-Oriented JavaScript3 napisana przez Nicholę Zaka-

sa to krótka książka (ma mniej niż 100 stron) poświęcona zaawansowanym
sposobom organizowania kodu. To pozycja dla profesjonalistów, którą warto
przeczytać.

 JavaScript Patterns4 (wydawnictwo O’Reilly). Jeśli naprawdę chcesz rozwinąć
swoje umiejętności programowania w języku JavaScript, w tej książce znaj-
dziesz programistyczne „wzorce” pokazujące, jak rozwiązywać najczęściej spoty-
kane problemy, takie jak najlepsze sposoby korzystania z literałów obiektowych,
formatu JSON oraz tablic. To pozycja dla zaawansowanych programistów.

 W tej nieco już starej, lecz wciąż dobrej książce JavaScript: The Good Parts5

Douglas Crockford (wydawnictwo O’Reilly) opisuje najbardziej przydatne
elementy języka JavaScript i metody unikania błędów. Douglas wie, o czym

3 Wydanie polskie: JavaScript. Zasady programowania obiektowego, Helion, Gliwice 2014

— przyp. tłum.
4 Wydanie polskie: JavaScript. Wzorce, Helion, Gliwice 2012 — przyp. tłum.
5 Wydanie polskie: JavaScript — mocne strony, Helion, Gliwice 2009 — przyp. tłum.

https://github.com/bolshchikov/js-must-watch/
http://eloquentjavascript.net
http://javascript.crockford.com/
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide

 D O D A T E K A  M A T E R I AŁY Z W IĄZ A N E Z JĘZ Y K I E M J A V A S C R I P T

CSS

647

pisze, ponieważ jest starszym architektem do spraw języka JavaScript w firmie
Yahoo!, jak również twórcą formatu JSON. Książka jest krótka i treściwa,
jednak zawiera wiele wartościowej wiedzy na temat właściwego korzystania
z JavaScriptu.

CSS
Jeśli postanowiłeś zmierzyć się z tą książką, prawdopodobnie znasz już język CSS.
JavaScript pozwala wykorzystać możliwości stylów CSS nie tylko do kontrolowania
wyglądu elementów, ale też na przykład do przenoszenia ich po ekranie za pomocą
animacji. Jeśli potrzebujesz przypomnieć sobie informacje o języku CSS, w tym pod-
rozdziale znajdziesz listę kilku przydatnych źródeł.

Witryny
 Kompletny przewodnik po języku CSS w witrynie WestCiv (http://www.

westciv.com/style_master/academy/css_tutorial/) opisuje niemal każdy aspekt
kaskadowych arkuszy stylów. Nie poznasz tu zestawu różnych technik, ale
znajdziesz solidne omówienie podstaw języka CSS oraz tworzenia stylów i ich
arkuszy.

 Dokumentacja CSS na witrynie Mozilla Developer Network (https://
developer.mozilla.org/en-US/docs/Web/CSS/Reference) zawiera alfabetyczną
listę wszystkich właściwości CSS wraz z wyczerpującymi informacjami na
ich temat.

 Poradnik Selectutorial (http://css.maxdesign.com.au/selectutorial/) to do-
skonałe miejsce na naukę składni selektorów języka CSS. Ponieważ jQuery
oparto na pomyśle stosowania selektorów do manipulowania kodem HTML
strony, warto bardzo dobrze opanować to zagadnienie.

Książki
 CSS: The Missing Manual6 wydanie 3. autorstwa Davida Sawyera McFarlanda

(wydawnictwo O’Reilly) to wyczerpująca książka o kaskadowych arkuszach
stylów napisana w formie samouczka. Obejmuje szczegółowe omówienie ję-
zyka CSS, a także praktyczne przykłady i wskazówki pomocne przy rozwiązy-
waniu problemów, które pozwolą się upewnić, że kod CSS będzie działał w róż-
nych przeglądarkach.

 CSS: The Definitive Guide7 autorstwa Erica Meyera (wydawnictwo O’Reilly). Ty-
tuł mówi sam za siebie — w tej książce opisano język CSS na takim poziomie
szczegółowości, że praktycznie niemożliwe jest przeczytanie jej całej za jednym
razem.

6 Wydanie polskie: CSS3. Nieoficjalny podręcznik. Wydanie III, Helion, Gliwice 2013 —

przyp. tłum.
7 Wydanie polskie: CSS. Kaskadowe arkusze stylów. Przewodnik encyklopedyczny. Wydanie III,

Helion, Gliwice 2008 — przyp. tłum.

http://www.westciv.com/style_master/academy/css_tutorial/
http://www.westciv.com/style_master/academy/css_tutorial/
https://developer.mozilla.org/en-US/docs/Web/CSS/Reference
https://developer.mozilla.org/en-US/docs/Web/CSS/Reference
http://css.maxdesign.com.au/selectutorial/

C ZĘŚĆ V I  D O D A T K I
648

Skorowidz

A
adres URL, 45, 259, 508
AJAX, Asynchronous JavaScript and XML, 471

formatowanie danych, 487
obsługa błędów, 494
przetwarzanie danych, 490

akcje, 167
akordeony jQuery UI, 363
aktywowanie pola, 290, 295
animacje, 209, 211, 220, 465

CSS3, 231, 234
tempo, 221

animowanie
kolorów, 220
zmiany klas, 466

animowany pasek, 225
API, Application Programming Interface, 548
API key, 507
atrybut, 146

checked, 284
href, 251
src, 44, 240
title, 346

atrybuty
HREF, 167
HTML, 166
znaczników, 160

automatyczne uzupełnianie, 393, 394, 398

B
biblioteka, 49

Dojo Toolkit, 135
jQuery, 20, 131, 135
jQuery UI, 321
Mootools, 135
Yahoo User Interface Library, 135

biblioteki JavaScript, 133, 135

blokowanie
działania odnośników, 256
przesyłania danych, 292
reakcji na zdarzenia, 195

błąd składniowy, 54, 612
błędy, 161

czasu wykonania, 615
logiczne, 615
składniowe, 615
w kodzie, 54, 611

brak symboli końcowych, 612

C
CDN, content distribution network, 136
CSS, Cascading Style Sheets, 23, 150

blok deklaracji, 25
deklaracja, 25
modyfikacja właściwości, 163
odczyt właściwości, 163
selektor, 24
wartości, 25
właściwości, 25
zmiana właściwości, 164

CSS3, 231
cytat wyróżniany, 171
czas wczytywania kodu, 609

D
dane złożone JSON, 503
daty i godziny, 592
debugger, 629, 631, 636
delegowanie zdarzeń, event delegation,

198–205, 531
diagnozowanie

pliku, 633
skryptu, 636
zaawansowane, 628

 S K O R O W I D Z
650

dodawanie
efektu rollover, 245
elementów do tablicy, 80
etykietek ekranowych, 347
formatu JSON, 509
funkcji anonimowej, 184
identyfikatorów, 508
jQuery, 139
jQuery UI, 329
kanału Flickr, 506
kodu JavaScript, 40
komunikatów, 301
komunikatów o błędach, 304
menu, 368
odwołania zwrotnego, 509
okna dialogowego, 522
operacji, 185
przycisków, 339, 341, 520
reguł walidacji, 303
tekstu, 48
tematu do strony, 414
treści, 157, 546
widżetu Draggable, 422
wyróżnionych cytatów, 171
zadań, 519, 525
zdjęć, 512
zestawu kart, 351, 356

dokumentacja jQuery, 548, 552
dołączanie

pliku JavaScript, 49
pliku jQuery, 137
wtyczki Validation, 301
zdarzenia, 184

DOM, Document Object Model, 146, 554
dopasowanie liczby, 573
dopasowywanie wzorców, 582
dopełnianie pojedynczych cyfr, 596
dostarczanie podpowiedzi, 393
dostęp do

błędów, 55
danych, 502

dostosowywanie
przycisków, 390
wyglądu, 407

dyrektywa @keyframes, 235
działanie

funkcji, 118
odnośników, 256
znaczników, 22

dzielenie łańcuchów znaków, 605

E
edycja zadań, 538
efekt, 211, 325, 421

blind, 462
bounce, 463
clip, 463
distance, 463

drop, 463
effect(), 462
explode, 461, 463
fade, 463
fold, 463
hide(), 461
hightlight, 464
puff, 464
pulsate, 464
rollover, 243, 245
scale, 464
shake, 464
show(), 461
size, 465
slide, 465
times, 463
toggle(), 462

efekty
jQuery UI, 461, 462
wizualne, 249

elementy
formularza, 281
pętli for, 113
tablicy, 79
wyzwalające, 343

etykiety ekranowe, 345
kod HTML, 350
opcje, 348
treści HTML, 349

F
FAQ, Frequently Asked Questions, 204
FIFO, First In, First Out, 82
filtr

:even, 154
:odd, 154
:first, 154
:last, 154
:not(), 154
:has(), 154
:contains(), 155
:hidden(), 155
:visible, 155
checked, 282, 284
selected, 283

filtry jQuery, 153
format

godziny, 595
JSON, 491, 500

formatowanie
danych, 487
komunikatów, 319
wartości monetarnych, 590

formularze, 279, 375
aktywowanie pola, 290, 295
daty ze stylem, 375
inteligentne, 290
logowania, 216

S K O R O W I D Z
651

proste wzbogacanie, 294
ukrywanie opcji, 293
ukrywanie pól, 298
walidacja, 299
widżety usprawniające, 401
włączanie pól, 291
wyłączanie pól, 295
wyświetlanie opcji, 293

funkcja, Patrz także metoda
$(), 544
$(document).ready(), 169, 191, 205, 358
$.each(), 504
$.getJSON(), 501
$.get(), 501
$.post(), 501
.after(), 159, 561
.append(), 158, 560
.before(), 159, 561
.button(), 523
.children(), 556
.closest(), 557
.empty(), 563
.end(), 559
.find(), 548, 556
.html(), 157, 560
.next(), 560
.parent(), 557
.prepend(), 159, 561
.ready(), 191
.remove(), 561
.replaceWith(), 561
.siblings(), 558
.text(), 158, 560
.unwrap(), 563
.wrap(), 561
.wrapInner(), 562
accordion(), 367
addClass(), 162, 466
alert(), 187
animate(), 220–228
append(), 546
appendTo(), 318
attr(), 166, 241, 256
autocomplete(), 398
buildAnswer(), 638
button(), 390, 392, 406
buttonset(), 392
click(), 218, 254, 257
console.log(), 623, 624
css(), 163, 165, 297, 445, 553
datepicker(), 403
dialog(), 336–339, 522, 530
document.write(), 86
draggable(), 431, 447
drop, 447
droppable(), 437, 447
each(), 168, 255, 505
effect(), 462
fadeIn(), 214, 253

fadeOut(), 167, 209, 214, 225
fadeTo(), 214
fadeToggle(), 214
focus(), 291
get(), 488
getMonth(), 593
hide(), 206, 212, 461
hover(), 192, 227, 244
jQuery(), 544
not(), 259
off(), 196
on(), 197–202
openExt(), 260
parseFloat(), 588
parseInt(), 588
post(), 488
prepend(), 499, 546
preventDefault(), 195, 257
processData(), 498
processResponse(), 492
prop(), 297
ready(), 141, 186, 190
remove(), 254
removeAttr(), 166
removeClass(), 162, 466
selectmenu(), 387, 405
serialize(), 490
show(), 212, 257, 461
slideDown(), 208, 216
slideToggle(), 216
slideUp(), 209, 216, 533
sortable(), 452, 455, 458
stopPropagation(), 197
tabs(), 354, 358, 360
text(), 528
toggle(), 213, 462
toggleClass(), 234, 466
tooltip(), 346–349
val(), 281, 283, 284, 300
validate(), 302, 306, 309

funkcje, 115, 620
anonimowe, 168, 184, 186, 524
do manipulacji kodem, 560
nazwy zmiennych, 121
pobieranie informacji, 120
przekazywanie danych, 118
quiz, 124
systemu operacyjnego, 31
wbudowane, 60
zwrotne, 223, 477, 493, 533

G
galeria fotografii, 249, 250
generowanie

liczby losowej, 592
podpowiedzi, 395

GitHub, 267
grupowanie fragmentów wzorców, 576

 S K O R O W I D Z
652

H
HTML, Hypertext Markup Language, 21
HTML5, 42, 301

I
identyfikator tooltip, 545
ikona

główna, 390
pomocnicza, 390

instrukcja, 59
else if, 99, 101
if, 95
Switch, 603

instrukcje
warunkowe, 94
warunkowe zagnieżdżone, 104

interakcje, 325, 421, 493
interfejs użytkownika, 323, 326
interpreter języka JavaScript, 40

J
JavaScript, 17

funkcje, 115
gramatyka, 59
instrukcje, 59
instrukcje warunkowe, 94, 105
komentarze, 88
literały obiektowe, 165
obiekty, 86
operacje matematyczne, 68
pętle, 109
pierwszy program, 37
słowa kluczowe, 65
struktury logicznych, 93
struktury sterujące, 93
tablice, 77, 111
typy danych, 60
wbudowane funkcje, 60
zmienne, 63

jednostki miary, 220
język

CSS, 23
HTML, 21
HTML5, 42
JavaScript, 17

języki
kompilowane, 39
skryptowe, 39

jQuery, 20, 133, 135
AJAX, 479
animacje, 211
efekt rollover, 243
efekty, 211
filtry, 153

klasy, 161
kolekcje, 155
menu responsywne, 270
metoda load(), 480
obsługa zdarzeń, 182
pobieranie elementów, 147
podmiana obrazków, 241
rozjaśnianie elementów, 213
selektory, 282
ukrywania elementów, 212
wczytywanie rysunków, 242
wtyczka Validation, 301, 318
wtyczki, 265
wygaszanie elementów, 213
wyświetlania elementów, 212
wzbogacanie formularzy, 279
zamiana rysunków, 239
zastosowania, 239
zdarzenia, 177
zdarzenia specyficzne, 190

jQuery UI, 323, 325
akordeony, 363
animacje, 465
arkusze stylów, 415
dokładne umiejscawianie, 343
dostosowywanie wyglądu, 407
efekty, 421, 461
formularze, 375
interakcje, 421
interfejs użytkownika, 323
okna dialogowe, 330, 523
pasek nawigacyjny, 371
prezentowanie informacji, 345
przesłanianie stylów, 415
stosowanie nowego tematu, 413
tematy graficzne, 383
widżet Autocomplete, 394–396, 400
widżet Datepicker, 375
widżet Draggable, 421
widżet Droppable, 434
widżet przycisku, 389, 390
widżet Selectmenu, 368
widżet Sortable, 449
widżet Tabs, 354
zatsosowania, 327
zastosowania zaawansowane, 469
zdarzenia niestandardowe, 357

JSON, JavaScript Object Notation, 500
JSON z wypełnieniem, 506
JSONP, JSON with padding, 506

K
kalendarze, 377, 383
kanał Flickr, 506
karta Sources, 629, 637
karty, 351
karty prezentujące zawartość, 360

S K O R O W I D Z
653

kategoria
Ajax, 551
Attributes, 550
CSS, 550
Data, 551
Deffered objects, 551
Dimenstions, 552
Effects, 551
Events, 550
Forms, 551
Internals, 552
Manipulation, 550
Offset, 552
Selectors, 549
Traversing, 550
Utilities, 551

klasa, 161
animateDiv, 236
button, 232
close, 209
faded, 233
required, 303, 304
ui-dialog-title, 420
ui-menu, 369
ui-widget, 419

klatki kluczowe, keyframes, 234
klauzula else, 98, 101
klucz, 507
kod HTML

formularza, 280
menu nawigacyjnego, 270
sekcji strony, 295

kolejka FIFO, 82
kolejność wykonywania operacji, 69
kolekcje jQuery, 155
komentarze, 88
komunikacja z serwerem WWW, 476
komunikat o błędzie, 99, 301, 304, 309,

319, 613
konfigurowanie serwera WWW, 476
konsola, 621, 624

błędów, 57
JavaScript, 52, 53, 56, 628

kontrola działania odnośnik, 255
kontrolki formularza, 279
kontrolowanie działania skryptu, 631

L
liczba, 61

błędów, 621
losowa, 591

lista
FAQ, 204
rozwijana stylowa, 383
wypunktowana, 270
zadań, 519, 525
zagnieżdżona, 272

literały obiektowe, 165, 489

Ł
łańcuch znaków, 61

dzielenie, 605
odnajdywanie wzorów, 570
określanie długości, 566
pobieranie fragmentu, 569
przeszukiwanie łańcuchów, 567
z zapytaniem, 487
zamiana na liczbę, 587
zmiana wielkości znaków, 566

łańcuchy
formatujące, 379
wywołań funkcji, 156

łączenie
liczb, 70
łańcuchów znaków, 69
opcji, 510
różnych elementów, 606
tablic, 605

M
magazyn lokalny, 539
manipulacja kodem HTML, 560
menu, 31

nawigacyjne, 270
wielopoziomowe, 372

metoda
$.each(), 515
$.get(), 495
$.getJSON(), 510
addClass(), 467
blur(), 263
cancel, 458
close(), 263
destroy, 458
detach(), 533
disable, 458
draggable(), 441
each(), 504
effect(), 529, 536
enable, 458
find(), 528
focus(), 263
GET, 477, 488
get(), 486
getDay(), 594
getHours(), 594
indexOf(), 568
load(), 480, 482, 485
match(), 575, 584
Math.random(), 591
menu(), 373
moveBy(), 263
moveTo(), 264
Number(), 587
on(), 197
open(), 262

 S K O R O W I D Z
654

metoda
parent(), 532
parseInt(), 164
POST, 477, 488
post(), 486
prepend(), 529, 534
prop(), 285
remove(), 536
removeClass(), 467
resizeBy(), 264
resizeTo(), 264
scrollBy(), 264
scrollTo(), 264
search(), 582
send(), 478
serialize, 458, 459
slice(), 569
slideUp(), 532, 534
switchClass(), 467
toArray, 459
toggleClass(), 467

metody
obiektu Date, 593
widżetów Sortable, 458

modalne okna dialogowe, 335
modyfikowanie

stron, 142
tematów graficznych, 407
treści, 546
właściwości CSS, 163

N
nagłówki kart, 353
narzędzia

do programowania, 26
inspekcji kodu, 419

narzędzie inspektora, 420
nawias

klamrowy, 95, 105, 165, 229
kwadratowy, 78

nazwy zmiennych, 64, 121
negowanie warunków, 103

O
obiekt, 86

buttons, 344
Date, 593, 595, 597
JSON, 501, 502
rules, 306
XMLHttpRequest, 474, 476

obiekty
reprezentujące zdarzenia, 194
jQuery, 147

obserwowanie skryptu, 632
obsługa

błędów, 494
danych, 477
kanałów, 509

kilku elementów, 199
listy zadań, 519
quizów, 124, 129
stref czasowych, 599
zdarzeń, 182, 185, 226, 531

odczyt
atrybutów HTML, 166
atrybutów znaczników, 160
właściwości CSS, 163

odnośniki, 251
blokowanie działania, 256
działanie domyślne, 256
lokalizacja docelowa, 255
pobieranie, 255
zewnętrzne, 258

odświeżanie strony, 472
odwołanie zwrotne JSONP, 509
okna dialogowe, 330, 332

dodawanie przycisków, 339, 341
modalne, 335
otwieranie, 338
przekazywanie opcji, 336

okno przeglądarki, 261
opcja

accept, 436
active, 365
activeClass, 436
animate, 365
axis, 424, 451
buttons, 524
cancel, 424, 451
cancelWith, 452
change, 387
changeMonth, 378
changeYear, 378
collapsible, 365
connectToSortable, 424
connectWith, 535
containment, 425, 452
cursor, 453, 535
cursorAt, 453
dateFormat, 378, 379
delay, 401, 453
disabled, 437
distance, 453
equalTo, 308
event, 365
grid, 426, 453
handle, 427, 453
heightStyle, 365
helper, 427
hoverClass, 437
icons, 365, 370, 386, 390
items, 454
max, 308
maxDate, 379
maxlength
min, 308
minDate, 380

S K O R O W I D Z
655

minLength, 307, 401
monthNames, 378
numberOfMonths, 378
opacity, 428, 454
placeholder, 454
position, 370, 386
range, 308
rangelength, 307
revert, 428
revertDuration, 429
scope, 429, 437
snap, 429
snapMode, 430
snapTolerance, 430
source, 401
text, 391
tolerance, 438
width, 385
yearRange, 380
zIndex, 430, 446

opcje
etykietek ekranowych, 348
formularza, 293
widżetu Autocomplete, 400
widżetu Draggable, 424
widżetu Droppable, 436
widżetu Sortable, 451
zestawów kart, 354

operacje matematyczne, 68
operator

!=, 96
!==, 96
*=, 72
/=, 72
++, 72
+=, 72
<, 96
<=, 96
-=, 72
==, 96
===, 96
>, 96
>=, 96
LUB, 103
NIE, 103
trójargumentowy, 602

optymalizacja selektorów, 547
organizacja W3C, 23
oszczędzanie miejsca, 363
otwieranie konsoli, 621
oznaczanie zadań, 519, 531

P
panele treści, 353
pasek nawigacyjny, 371
pętla

do-while, 114
for, 112
while, 109

pętle automatyczne, 155
plik

accordion.html, 366
advanced_tooltips.html, 350
airports.js, 395, 396, 404
birthdate.html, 381
callback.html, 224
console.html, 625
debugger.html, 633
events_intro.html, 185
faq.html, 205
flickr.html, 512
form.html, 295, 402, 404
gallery.html, 251
index.html, 534
interactions.css, 447
jquery.js, 301
jquery-ui.min.js, 329
load.html, 483
login.html, 217, 496
menu.html, 274
open_external.js, 260
panel1.html, 361
products.php, 399
rollover.html, 245, 246
sm-core.css, 273
tabs.html, 356
todo.js, 524, 536
tooltips.html, 347

pliki
.js, 44
JavaScript, 42, 49, 606
jQuery, 138

pobieranie
czasu, 594
danych, 398
elementów strony, 147, 183
informacji, 74
kodu XML, 495
miesiąca, 593
odnośników, 184, 255
odpowiedzi, 478
pliku jQuery, 138

podgląd źródła strony, 161
podmienianie

obrazków, 241
rysunków, 239

podpowiedzi, 395
podwzorce, 586
pole

tekstowe, 290
wyboru, 284, 534

polecenie
alert(), 199
prompt(), 124

porównywanie wartości, 105
pozycjonowanie bezwzględne, 215

 S K O R O W I D Z
656

prezentacja
danych, 511
informacji, 345
JSONP, 506
obsługi zdarzeń, 185

problemy, 611
program

Aptana Studio, 27
Atom, 27
BBEdit, 27
Brackets, 26
CoffeeCup Free HTML Editor, 26
Dreamweaver, 28
Eclipse, 27
EditPlus, 27
Emacs, 27
HTML-Kit, 26
Notepad++, 26
SublimeText, 27
TextWrangler, 26
ThemeRoller, 327, 407
Vim, 27

programowanie komputerowe, 38
programy, 40

bezpłatne, 26
komercyjne, 27
reagujące inteligentnie, 93

projekt jQuery UI, 144
przeciąganie i upuszczanie, 94
przeglądanie

błędów, 623
informacji, 473

przeglądarka, 474
Chrome, 52, 53
Firefox, 56
Internet Explorer, 55
Safari, 57

przejścia CSS3, 231, 232
przekazywanie

funkcji do zdarzenia, 183
obsługi zdarzenia, 202
zdarzeń, 197

przesłanianie stylów, 415
przesuwanie

elementów, 216
znacznika <div>, 225

przesyłanie
danych, 292
formularzy, 473

przetwarzanie danych, 490
przezroczystość, 232
przyciski, 389
przypisywanie zdarzenia, 183
pseudoklasa

active, 232
hover, 232, 534

pusta instrukcja if, 207

R
reakcje na zdarzenia, 195
referencje do okien, 263
reguły walidacji, 303

zaawansowane, 306
responsywne menu nawigacyjne, 270

kod CSS, 273
kod HTML, 270
kod JavaScript, 273

rodzaje
adresów URL, 45
błędów, 615

rozwiązywanie problemów, 611

S
sekcja

nagłówkowa, 22
Theme, 327

selektor, 148
#gallery, 251
#mainMenu, 372
hidden, 208

selektory
atrybutów, 152
CSS, 150
dzieci, 151
elementów, 149
elementów potomnych, 151
elementów sąsiadujących, 152
identyfikatorów, 148
klas, 150
zaawansowane, 151

serwer
CDN, 137
WWW, 475, 476

serwis GitHub, 267
siatka pól, 427
silnik zarządzania układem, 40
składnia języka, 39
skróty klawiaturowe, 31
skrypt JavaScript, 475
skrypty po stronie

klienta, 41
serwera, 41

słowa
kluczowe, 65
zarezerwowane, 65, 617

słowo kluczowe
if, 95
this, 169

sortowanie elementów strony, 449
sprawdzanie

kilku warunków, 98
stanu przycisków, 284
warunków, 102
wprowadzonych danych, 94
występowania liczb, 589

S K O R O W I D Z
657

stan przycisków, 284
stosowanie

elementów tablicy, 79
funkcji css(), 554
instrukcji warunkowych, 105
jQuery UI, 327
komentarzy, 89
liczb, 587
łańcuchów znaków, 565
metody $.getJSON(), 510
okien dialogowych, 331
osobnych etykiet, 397
osobnych wartości, 397
słów zarezerwowanych, 617
tablicy danych, 395
typów danych, 67
widżetu Droppable, 435
widżetu Sortable, 449
wtyczek jQuery, 268
wyrażeń regularnych, 571
zmiennych, 66, 67, 72

strona dokumentacji, 553
struktura

funkcji, 116
galerii fotografii, 250

styl, 24
komunikatów, 310
widżetów, 418

stylowe przyciski, 389

Ś
ścieżka

bezwzględna, 45
do zewnętrznego pliku, 618
względna, 45

śledzenie działania skryptu, 623

T
tablica

danych, 395
obiektów, 397
współrzędnych, 425

tablice, 77, 111
dodawanie elementów, 80
tworzenie, 78
usuwanie elementów, 82
zapisywanie danych, 83

technika
JSONP, 506
przeciągnij i upuść, 443

techniki języka JavaScript, 565
technologia AJAX, 471
tematy graficzne jQuery UI, 383
tempo animacji, 221, 465
testowanie

aplikacji, 621
wyrażeń regularnych, 585

ThemeRoller
Clickable items, 411
Content, 411
Corner Radius, 410
Drop shadows, 412
Error, 412
Font settings, 409
Header/Toolbar, 410
Highlight, 412
Kolor ikon, 411
Kolor obramowania, 411
Kolor tekstu, 411
Kolor tła, 410
Modal Screen for overlays, 412
Nieprzezroczystość tekstury tła, 411
Tekstura tła, 410

tworzenie
adresu URL, 508
akordeonu, 366
aplikacji, 519
daty, 597, 598
interfejsu użytkownika, 326
kodu JavaScript, 609
kolejek, 82
komunikatów, 72
liczb losowych, 591
nowych okien, 260
okna dialogowego, 332
paska nawigacyjnego, 371
skryptów, 479
sliderów, 266
tablic, 78
wyrażeń regularnych, 572
zmiennych, 63

typy danych, 60

U
uciekający element pływający, 373
ukośnik, 31
ukrywanie

opcji formularza, 293
pól, 298

umieszczanie wskaźnika myszy, 192
URL, Uniform Resource Locator, 45
ustawianie atrybutów znaczników, 160
usuwanie

atrybutów HTML, 166
elementów, 160
elementów z tablicy, 82
wskaźnika myszy, 192
zadań, 520, 536, 539
zdarzeń, 196

używanie, Patrz stosowanie

 S K O R O W I D Z
658

W
W3C, World Wide Web Consortium, 146
walidacja, 302

formularzy, 94, 299
pól wyboru, 316
prosta, 312
przycisków opcji, 316
strony, 23
z wykorzystaniem serwera, 309
zaawansowana, 305, 313

walidator kodu HTML, 258
wartości

elementów formularzy, 283
logiczne, 62, 99

wartość $(this), 203
wczytywanie rysunków, 242
wersje biblioteki jQuery, 138, 140
węzeł, node, 146
widżet, 324

Autocomplete, 394–396, 400
automatycznego uzupełniania, 394
Datepicker jQuery UI, 375
Dialog, 333
Draggable, 421

opcje, 424
zastosowanie, 423
zdarzenia, 430

Droppable, 434
opcje, 436
stosowanie, 435
zdarzenia, 438

kalendarza, 377, 383
przycisku, 389, 390
Selectmenu, 368, 388
Sortable, 449

metody, 458
opcje, 451
stosowanie, 449
zdarzenia, 455

Tabs, 354
widżety

okna dialogowego, 343
usprawniające formularze, 401
Wijmo UI, 326

wielkość znaków, 618
właściwości

CSS, 554
kalendarzy, 377
list rozwijanych, 385
okien, 261
okna dialogowego, 333

właściwość
active, 354
animation-play-state, 236
collapsible, 355
content, 349
contentEditable, 538
disabled, 426

draggable, 333
easing, 466
event, 355
height, 262, 334
heightStyle, 355
hide, 335, 348, 354
left, 262
location, 262
location.hostname, 259
menubar, 263
modal, 335
my, 343
placeholder, 456
of, 343
opacity, 232
position, 215, 336, 348
resizable, 334
responseXML, 478
scrollbars, 262
show, 335, 348, 354
status, 262
toolbar, 262
tooltipClass, 348
top, 262
track, 348
transition, 233
ui.helper, 432, 439, 455
ui.item, 455
ui.item.index, 387
ui.item.label, 387
ui.item.value, 387
ui.offset, 433, 440, 456
ui.originalPosition, 433, 440, 456
ui.position, 433, 440, 456
ui.sender, 456
width, 262, 334
zdarzenia, 195

włączanie pól, 291
wskaźnik myszy, 192, 425
wstępne wczytywanie rysunków, 242
wstrzymywanie przekazywania zdarzeń, 197
wtyczka

jPanel, 278
Multi-level Push Menu, 278
SmartMenus, 270, 277
Validation, 301, 305, 318

wtyczki
jQuery, 265
jQWidgets, 326
Kendo UI, 326

wydajność kodu JavaScript, 599
wygląd przycisków, 391
wykrywanie błędów, 51
wyłączanie pól, 291, 295
wyrażenia regularne, 571, 573, 577

adresy e-mail, 579
adresy stron WWW, 581
daty, 580
kod pocztowy, 577

S K O R O W I D Z
659

numer telefonu stacjonarnego, 578
symbole, 572
testowanie, 585
zastępowanie tekstów, 585

wyrażenie
$(), 544
$(this), 170, 252, 448, 533, 536, 545
answers.length, 637

wysuwany formularz logowania, 216
wysyłanie żądania, 478
wyświetlanie

danych HTML, 472
komunikatów, 330, 626
opcji formularza, 293

wzbogacanie formularza, 294

Z, Ź
zagnieżdżanie instrukcji warunkowych, 104
zaokrąglanie liczb, 589
zapisywanie

danych, 83
listy, 539
pobranych elementów, 544
na serwerze, 539
ustawień, 600, 601

zarządzanie zdarzeniami, 197
zasada szczegółowości, 416
zasięg zmiennych, 123, 620
zastępowanie

elementów, 160
tekstów, 585, 586

zastosowania jQuery, 239
zastosowanie

indexOf(), 567
metody $.get(), 495
metody load(), 482
walidacji, 311
widżetu Draggable, 423
wyrażeń regularnych, 574

zdarzenia, 177
niestandardowe jQuery UI, 357
specyficzne, 190
usuwanie, 196
widżetu Draggable, 430
widżetu Droppable, 438
widżetu Sortable, 455
związane z dokumentem i oknem, 180
związane z formularzami, 181, 285
związane z klawiaturą, 182
związane z myszą, 179

zdarzenie
activate, 441, 456
beforestop, 457
blur, 181, 288
create, 455
change, 181, 289, 457
click, 179, 289, 531
create, 431
dblclick, 179

deactivate, 441, 457
drag, 433
drop, 439, 447
focus, 181, 286
keydown, 182
keypress, 182
keyup, 182, 627
loa, 190
load, 180, 190
mousedown, 179
mousemove, 180
mouseout, 180, 193
mouseover, 179, 193, 196
mouseup, 179
out, 442, 457
over, 442, 457
receive, 457
remove, 457
reset, 181
resize, 180
scroll, 180
sort, 456
start, 432, 444, 455
stop, 434, 445, 457
submit, 181, 195, 285
unload, 181
update, 457

zestawy kart, 351
zewnętrzne pliki JavaScript, 42
zmiana

atrybutu src, 240
wartości zmiennych, 71
wielkości znaków, 566
właściwości CSS, 164
wyglądu elementu, 534

zmienne, 63, 620
znacznik

<a>, 22, 555
<body>, 22
<div>, 146, 177, 183, 226–230, 245
<form>, 279
<html>, 22, 146
, 243, 555
<input>, 281
, 201, 272, 526, 532
<p>, 22, 218
<script>, 40, 42, 107, 635
, 172, 516, 526, 532
, 22
<td>, 600
, 170, 202, 370
końcowy, 22
początkowy, 22

znak
apostrofu, 616
cudzysłowu, 62, 616
równości, 617

znaki
karetki, 67
tabulacji, 67

źródła informacji, 643

 S K O R O W I D Z
660

http://program-partnerski.helion.pl/

	Spis treści
	Nieoficjalna czołówka
	O autorze
	O zespole pracującym nad książką
	Podziękowania
	Seria Nieoficjalny podręcznik

	Wprowadzenie
	Czym jest JavaScript?
	Trochę historii
	JavaScript jest wszędzie

	Czym jest jQuery?
	HTML: podstawowa struktura
	Działanie znaczników HTML

	CSS: dodawanie stylu do stron
	Anatomia stylu

	Narzędzia do programowania w języku JavaScript
	Programy bezpłatne
	Oprogramowanie komercyjne

	O książce
	Podejście do języka JavaScript stosowane w tej książce
	Struktura książki

	Podstawy
	O/tych/ukośnikach

	Zasoby internetowe
	Przykłady
	Opinie i uwagi
	Errata

	Część I. Wprowadzenie do języka JavaScript
	Rozdział 1. Pierwszy program w języku JavaScript
	Wprowadzenie do programowania
	Czym jest program komputerowy?

	Jak dodać kod JavaScript do strony?
	Zewnętrzne pliki JavaScript

	Pierwszy program w języku JavaScript
	Dodawanie tekstu do stron
	Dołączanie zewnętrznych plików JavaScript
	Wykrywanie błędów
	Konsola JavaScript w przeglądarce Chrome
	Konsola przeglądarki Internet Explorer
	Konsola JavaScript w przeglądarce Firefox
	Konsola błędów w przeglądarce Safari

	Rozdział 2. Gramatyka języka JavaScript
	Instrukcje
	Wbudowane funkcje
	Typy danych
	Liczby
	Łańcuchy znaków
	Wartości logiczne

	Zmienne
	Tworzenie zmiennych
	Używanie zmiennych

	Używanie typów danych i zmiennych
	Podstawowe operacje matematyczne
	Kolejność wykonywania operacji
	Łączenie łańcuchów znaków
	Łączenie liczb i łańcuchów znaków
	Zmienianie wartości zmiennych

	Przykład — używanie zmiennych do tworzenia komunikatów
	Przykład — pobieranie informacji
	Tablice
	Tworzenie tablic
	Używanie elementów tablicy
	Dodawanie elementów do tablicy
	Usuwanie elementów z tablicy

	Przykład — zapisywanie danych na stronie za pomocą tablic
	Krótka lekcja o obiektach
	Komentarze
	Kiedy używać komentarzy?
	Komentarze w tej książce

	Rozdział 3. Dodawanie struktur logicznych i sterujących
	Programy reagujące inteligentnie
	Podstawy instrukcji warunkowych
	Uwzględnianie planu awaryjnego
	Sprawdzanie kilku warunków
	Bardziej skomplikowane warunki
	Zagnieżdżanie instrukcji warunkowych
	Wskazówki na temat pisania instrukcji warunkowych

	Przykład — używanie instrukcji warunkowych
	Obsługa powtarzających się zadań za pomocą pętli
	Pętle while
	Pętle i tablice
	Pętle for
	Pętle do-while

	Funkcje — wielokrotne korzystanie z przydatnego kodu
	Krótki przykład
	Przekazywanie danych do funkcji
	Pobieranie informacji z funkcji
	Unikanie konfliktów między nazwami zmiennych

	Przykład — prosty quiz

	Część II. Wprowadzenie do biblioteki jQuery
	Rozdział 4. Wprowadzenie do jQuery
	Kilka słów o bibliotekach JavaScript
	Jak zdobyć jQuery?
	Dołączanie pliku jQuery z serwera CDN
	Pobieranie pliku jQuery

	Dodawanie jQuery do strony
	Podstawowe informacje o modyfikowaniu stron WWW
	Zrozumieć DOM
	Pobieranie elementów stron na sposób jQuery
	Proste selektory
	Selektory zaawansowane
	Filtry jQuery
	Zrozumienie kolekcji jQuery

	Dodawanie treści do stron
	Zastępowanie i usuwanie wybranych elementów

	Ustawianie i odczyt atrybutów znaczników
	Klasy
	Odczyt i modyfikacja właściwości CSS
	Jednoczesna zmiana wielu właściwości CSS

	Odczyt, ustawienia i usuwanie atrybutów HTML
	Wykonanie akcji na każdym elemencie kolekcji
	Funkcje anonimowe
	this oraz $(this)

	Automatycznie tworzone, wyróżniane cytaty
	Opis rozwiązania
	Kod rozwiązania

	Rozdział 5. Akcja i reakcja — ożywianie stron za pomocą zdarzeń
	Czym są zdarzenia?
	Zdarzenia związane z myszą
	Zdarzenia związane z dokumentem i oknem
	Zdarzenia związane z formularzami
	Zdarzenia związane z klawiaturą

	Obsługa zdarzeń przy użyciu jQuery
	Przykład — prezentacja obsługi zdarzeń
	Zdarzenia specyficzne dla biblioteki jQuery
	Oczekiwanie na wczytanie kodu HTML
	Umieszczanie i usuwanie wskaźnika myszy z elementu
	Obiekt reprezentujący zdarzenie
	Blokowanie standardowych reakcji na zdarzenia
	Usuwanie zdarzeń

	Zaawansowane zarządzanie zdarzeniami
	Inne sposoby stosowania funkcji on()
	Delegowanie zdarzeń przy użyciu funkcji on()

	Przykład — jednostronicowa lista FAQ
	Omówienie zadania
	Tworzenie kodu

	Rozdział 6. Animacje i efekty
	Efekty biblioteki jQuery
	Podstawowe wyświetlanie i ukrywanie
	Wygaszanie oraz rozjaśnianie elementów
	Przesuwanie elementów

	Przykład — wysuwany formularz logowania
	Tworzenie kodu

	Animacje
	Tempo animacji

	Wykonywanie operacji po zakończeniu efektu
	Przykład — animowany pasek ze zdjęciami
	Tworzenie kodu

	jQuery i przejścia oraz animacje CSS3
	jQuery i przejścia CSS
	jQuery i animacje CSS

	Rozdział 7. Popularne zastosowania jQuery
	Zamiana rysunków
	Zmienianie atrybutu src rysunków
	Podmiana obrazków przy użyciu jQuery
	Wstępne wczytywanie rysunków
	Efekt rollover z użyciem obrazków

	Przykład — dodawanie efektu rollover z użyciem rysunków
	Omówienie zadania
	Tworzenie kodu

	Przykład — galeria fotografii z efektami wizualnymi
	Omówienie zadania
	Tworzenie kodu

	Kontrola działania odnośników
	Pobieranie odnośników w kodzie JavaScript
	Określanie lokalizacji docelowej
	Blokowanie domyślnego działania odnośników

	Otwieranie zewnętrznych odnośników w nowym oknie
	Tworzenie nowych okien
	Właściwości okien

	Przedstawienie wtyczek jQuery
	Czego szukać we wtyczce jQuery?
	Podstawy stosowania wtyczek jQuery

	Responsywne menu nawigacyjne
	Kod HTML
	Kod CSS
	Kod JavaScript
	Przykład
	Dostosowywanie wyglądu wtyczki SmartMenus

	Rozdział 8. Wzbogacanie formularzy
	Wprowadzenie do formularzy
	Pobieranie elementów formularzy
	Pobieranie i ustawianie wartości elementów formularzy
	Sprawdzanie stanu przycisków opcji i pól wyboru
	Zdarzenia związane z formularzami

	Inteligentne formularze
	Aktywowanie pierwszego pola formularza
	Wyłączanie i włączanie pól
	Ukrywanie i wyświetlanie opcji formularza

	Przykład — proste wzbogacanie formularza
	Aktywowanie pola
	Wyłączanie pól formularza
	Ukrywanie pól formularza

	Walidacja formularzy
	Wtyczka Validation
	Podstawowa walidacja
	Zaawansowana walidacja
	Określanie stylu komunikatów o błędach

	Przykład zastosowania walidacji
	Prosta walidacja
	Walidacja zaawansowana
	Walidacja pól wyboru i przycisków opcji
	Formatowanie komunikatów o błędach

	Część III. Wprowadzenie do biblioteki jQuery UI
	Rozdział 9. Rozbudowa interfejsu użytkownika
	Czym jest jQuery UI?
	Dlaczego warto używać jQuery UI?
	Stosowanie jQuery UI
	Dodawanie jQuery UI do strony

	Wyświetlanie komunikatów przy użyciu okien dialogowych
	Miniprzykład — tworzenie okna dialogowego
	Określanie właściwości okna dialogowego
	Miniprzykład — przekazywanie opcji do okna dialogowego
	Otwieranie okna dialogowego w odpowiedzi na zdarzenia
	Dodawanie przycisków do okien dialogowych
	Miniprzykład — dodawanie przycisków do okien dialogowych

	Prezentowanie informacji w etykietkach ekranowych
	Miniprzykład — szybkie dodawanie etykietek ekranowych
	Opcje etykietek ekranowych
	Umieszczanie w etykietkach treści HTML
	Miniprzykład — umieszczanie kodu HTML w etykietkach ekranowych

	Dodawanie zestawów kart
	Opcje zestawów kart
	Miniprzykład — dodawanie zestawu kart
	Karty prezentujące zawartość

	Oszczędzanie miejsca z wykorzystaniem akordeonów
	Miniprzykład — tworzenie akordeonu jQuery UI

	Dodawanie menu
	Tworzenie poziomego paska nawigacyjnego

	Rozdział 10. Formularze raz jeszcze
	Wybieranie dat ze stylem
	Określanie właściwości kalendarzy
	Przykład — pole do wyboru daty urodzenia

	Stylowe rozwijane listy
	Określanie właściwości list rozwijanych
	Wykonywanie operacji po wybraniu opcji z listy

	Stylowe przyciski
	Dostosowywanie przycisków

	Poprawianie wyglądu przycisków opcji i pól wyboru
	Dostarczanie podpowiedzi przy użyciu automatycznego uzupełniania
	Generowanie podpowiedzi przy użyciu tablicy danych
	Stosowanie osobnych etykiet i wartości
	Pobieranie danych automatycznego uzupełniania z serwera
	Opcje widżetu Autocomplete

	Przykład — widżety UI usprawniające formularze

	Rozdział 11. Dostosowywanie wyglądu jQuery UI
	Prezentacja narzędzia ThemeRoller
	Pobieranie i stosowanie nowego tematu
	Dodawanie własnego tematu do istniejących stron WWW
	Więcej informacji o arkuszach stylów jQuery UI

	Przesłanianie stylów jQuery UI
	Zasada szczegółowości
	Jak są określane style widżetów jQuery UI?

	Rozdział 12. Interakcje i efekty jQuery UI
	Widżet Draggable
	Dodawanie widżetu Draggable do strony
	Miniprzykład — zastosowanie widżetu Draggable
	Opcje widżetu Draggable
	Zdarzenia widżetu Draggable

	Widżet Droppable
	Stosowanie widżetu Droppable
	Opcje widżetu Droppable
	Zdarzenia widżetu Droppable

	Przykład — technika „przeciągnij i upuść”
	Sortowanie elementów strony
	Stosowanie widżetu Sortable
	Opcje widżetu Sortable
	Zdarzenia widżetu Sortable
	Metody widżetów Sortable

	Efekty jQuery UI
	Efekty
	Tempo animacji
	Animowanie zmiany klas

	Część IV. Zaawansowane zastosowania jQuery i języka JavaScript
	Rozdział 13. Wprowadzenie do technologii AJAX
	Czym jest AJAX?
	AJAX — podstawy
	Elementy układanki
	Komunikacja z serwerem WWW

	AJAX w bibliotece jQuery
	Używanie metody load()
	Przykład — korzystanie z metody load()
	Metody get() i post()
	Formatowanie danych przesyłanych na serwer
	Przetwarzanie danych zwróconych z serwera
	Obsługa błędów
	Przykład — korzystanie z metody $.get()

	Format JSON
	Dostęp do danych z obiektów JSON
	Złożone dane JSON

	Prezentacja JSONP
	Dodawanie do witryny kanału Flickr
	Tworzenie adresu URL
	Łączenie opcji
	Stosowanie metody $.getJSON()
	Prezentacja danych kanału Flickr w formacie JSON

	Przykład — dodawanie zdjęć z Flickr na własnej stronie

	Rozdział 14. Tworzenie aplikacji do obsługi listy zadań
	Przegląd aplikacji
	Dodanie przycisku
	Dodanie okna dialogowego
	Dodawanie zadań
	Oznaczanie zadania jako wykonanego
	Delegowanie zdarzeń

	Usuwanie zadań
	Dalsze kroki
	Edycja zadań
	Potwierdzanie usunięcia
	Zapisywanie listy
	Inne pomysły

	Część V. Wskazówki, sztuczki i rozwiązywanie problemów
	Rozdział 15. Wykorzystywanie wszystkich możliwości jQuery
	Przydatne informacje i sztuczki związane z jQuery
	$() to to samo, co jQuery()
	Zapisywanie pobranych elementów w zmiennych
	Jak najrzadsze dodawanie treści
	Optymalizacja selektorów

	Korzystanie z dokumentacji jQuery
	Czytanie dokumentacji na stronie jQuery

	Poruszanie się po DOM
	Inne funkcje do manipulacji kodem HTML

	Rozdział 16. Zaawansowane techniki języka JavaScript
	Stosowanie łańcuchów znaków
	Określanie długości łańcucha
	Zmiana wielkości znaków w łańcuchu
	Przeszukiwanie łańcuchów znaków: zastosowanie indexOf()
	Pobieranie fragmentu łańcucha przy użyciu metody slice()

	Odnajdywanie wzorów w łańcuchach
	Tworzenie i stosowanie podstawowych wyrażeń regularnych
	Tworzenie wyrażeń regularnych
	Grupowanie fragmentów wzorców
	Przydatne wyrażenia regularne
	Dopasowywanie wzorców
	Zastępowanie tekstów
	Testowanie wyrażeń regularnych

	Stosowanie liczb
	Zamiana łańcucha znaków na liczbę
	Sprawdzanie występowania liczb
	Zaokrąglanie liczb
	Formatowanie wartości monetarnych
	Tworzenie liczb losowych

	Daty i godziny
	Pobieranie miesiąca
	Określanie dnia tygodnia
	Pobieranie czasu
	Tworzenie daty innej niż bieżąca

	Tworzenie bardziej wydajnego kodu JavaScript
	Zapisywanie ustawień w zmiennych
	Zapisywanie ustawień w obiektach
	Operator trójargumentowy
	Instrukcja Switch
	Łączenie tablic i dzielenie łańcuchów znaków

	Łączenie różnych elementów
	Używanie zewnętrznych plików JavaScript

	Tworzenie kodu JavaScript o krótkim czasie wczytywania

	Rozdział 17. Diagnozowanie i rozwiązywanie problemów
	Najczęstsze błędy w kodzie JavaScript
	Brak symboli końcowych
	Cudzysłowy i apostrofy
	Używanie słów zarezerwowanych
	Pojedynczy znak równości w instrukcjach warunkowych
	Wielkość znaków
	Nieprawidłowe ścieżki do zewnętrznych plików JavaScript
	Nieprawidłowe ścieżki w zewnętrznych plikach JavaScript
	Znikające zmienne i funkcje

	Testowanie aplikacji przy użyciu konsoli
	Otwieranie konsoli
	Przeglądanie błędów przy użyciu konsoli
	Śledzenie działania skryptu za pomocą funkcji console.log()
	Przykład — korzystanie z konsoli
	Diagnozowanie zaawansowane

	Przykład diagnozowania

	Część VI. Dodatki
	Dodatek A. Materiały związane z językiem JavaScript
	Źródła informacji
	Witryny
	Książki

	Podstawy języka JavaScript
	Witryny
	Książki

	jQuery
	Witryny
	Książki

	Zaawansowany język JavaScript
	Artykuły i prezentacje
	Witryny
	Książki

	CSS
	Witryny
	Książki

	Skorowidz

